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Executive functions are subject to a marked age-related decline, but have been shown
to benefit from cognitive training interventions. As of yet, it is, however, still relatively
unclear which neural mechanism can mediate training-related performance gains. In the
present electrophysiological study, we examined the effects of multi-domain cognitive
training on performance in an untrained cue-based task switch paradigm featuring
Stroop color words: participants either had to indicate the word meaning of Stroop
stimuli (word task) or perform the more difficult task of color naming (color task).
One-hundred and three older adults (>65 years old) were randomly assigned to a
training group receiving a 4-month multi-domain cognitive training, a passive no-contact
control group or an active (social) control group receiving a 4-month relaxation training.
For all groups, we recorded performance and EEG measures before and after the
intervention. For the cognitive training group, but not for the two control groups, we
observed an increase in response accuracy at posttest, irrespective of task and trial
type. No training-related effects on reaction times were found. Cognitive training was
also associated with an overall increase in N2 amplitude and a decrease of P2 latency
on single trials. Training-related performance gains were thus likely mediated by an
enhancement of response selection and improved access to relevant stimulus-response
mappings. Additionally, cognitive training was associated with an amplitude decrease
in the time window of the target-locked P3 at fronto-central electrodes. An increase
in the switch positivity during advance task preparation emerged after both cognitive
and relaxation training. Training-related behavioral and event-related potential (ERP)
effects were not modulated by task difficulty. The data suggest that cognitive training
increased slow negative potentials during target processing which enhanced the N2 and
reduced a subsequent P3-like component on both switch and non-switch trials and
irrespective of task difficulty. Our findings further corroborate the effectiveness of multi-
domain cognitive training in older adults and indicate that ERPs can be instrumental in
uncovering the neural processes underlying training-related performance gains.
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INTRODUCTION

All planned goal-directed behavior is mediated by executive
control functions, such as selective attention, working memory,
the inhibition of irrelevant information or the selection and
coordination of relevant task sets. Previous research has indicated
that these functions are subject to a marked age-related decline
beginning as early as in midlife (Li et al., 2004; Sander et al,,
2012). Given the crucial role of executive control functions for
activities of daily living, age-related deficits in this domain can
be particularly detrimental to the well-being and autonomy of
older adults (Burgess et al., 1998; Jonides et al., 2008). Cognitive
functions show a remarkable degree of plasticity across the
lifespan, however, and can hence benefit from different types of
training interventions up to a very old age (Hertzog et al., 2008;
Karbach and Schubert, 2013; for reviews see Kueider et al., 2012;
Ballesteros et al., 2015).

Cognitive training regimen which focus on a single domain
or task, such as working memory or task switching, have been
shown to consistently improve performance in the trained task
(for meta-analyses, see Karbach and Verhaeghen, 2014; Lampit
et al,, 2014b; Au et al,, 2015). Transfer of such training gains
to untrained tasks or everyday functioning appears to be more
limited, however, and has been reported only in some cases
(Karbach and Verhaeghen, 2014; Au et al.,, 2015), but not in
others (Ball et al., 2002; Melby-Lervig and Hulme, 2013; Melby-
Lervag et al., 2016).

It has been hypothesized that a substantial overlap between
the processes underlying performance in the training task and
those underlying performance in the transfer task is necessary
for successful transfer to occur (Jonides, 2004; Dahlin et al.,
2008; Lustig et al., 2009; Buschkuehl et al., 2012). In light of
this, cognitive training interventions which focus not only on a
single function but on multiple cognitive functions have recently
been discussed as a more effective training measure which may
potentially yield broader transfer effects (Gates and Valenzuela,
2010; Karbach, 2014). In keeping with this, cognitive training
programs integrating multiple tasks have shown both near and
far transfer effects to measures of perceptual processing, working
memory updating, memory accuracy and reasoning (Mahncke
et al., 2006; Wild-Wall et al., 2012; Walton et al., 2014; Baniqued
et al., 2015). Moreover, Lampit et al. (2014a) reported transfer
gains from a multi-domain training aimed at reasoning, memory,
attention and visuo-spatial abilities to a bookkeeping task closely
mirroring a real-world work scenario. In direct comparisons
to single-domain interventions, multi-domain cognitive training
has additionally been associated with more pronounced benefits
in far transfer tasks measuring executive attentional control
(Binder et al,, 2016) and increased longevity of training-related
performance benefits (Cheng et al., 2012).

Recent resting-state fMRI studies have been able to offer
some insights into the neural processes which may mediate
performance gains associated with multi-domain cognitive
training: older adults who have undergone multi-domain
cognitive training show increased neural lateralization and
functional connectivity (Cao et al., 2016; Li et al., 2016; Luo et al.,
2016; see also Binder et al., 2017, for similar electrophysiological

data). Such brain activation patterns are commonly found in
much younger adults suggesting that multi-domain cognitive
training may be able to compensate age-related changes to
neural connectivity at least to some degree. In keeping with this,
multi-domain cognitive training has also been associated with
a reduction in age-related cortical thinning in fronto-temporal
areas (Kim et al,, 2015; Jiang et al., 2016).

A drawback of these imaging studies is that they employed
predominantly passive control groups. It is thus possible that
the structural differences observed between training and control
groups reflect differences in general activity rather than training-
specific benefits (see Redick et al., 2013). Moreover, it is still
relatively unclear what functional consequences the observed
structural changes may have, especially for the crucial domain
of executive control. In two previous studies, we thus compared
middle-aged and older adults who had undergone multi-domain
cognitive training to both active and passive control groups and
examined event-related potential (ERP) indices of performance
in a task switching paradigm (Gajewski and Falkenstein, 2012;
Gajewski et al., 2017).

Task switching paradigms have the advantage of yielding
indices of multiple distinct subcomponents of executive control.
The paradigm requires participants to attend to two or more
different tasks in distinct experimental blocks. In single blocks,
participants always have to perform only one of the tasks whereas
they have to flexibly switch between different tasks on a trial-
by-trial basis in the mixed block. Mixed blocks thus feature stay
trials on which the same task as in the preceding trial has to
be performed and switch trials on which a different task has
to be performed. In memory-based switch tasks, participants
have to memorize a fixed task order for these mixed blocks. In
cue-based paradigms, the task order is instead random and a
cue preceding each target stimulus indicates which task is to be
performed.

Despite the fact that both single and stay trials constitute
task repetitions, performance on trials in the single block is
usually better than on stay trials in the mixed block. These
general switch costs or mixing costs have been interpreted as
indexing the ability to maintain a task set in the context of
a different, interfering task set. The ability to flexibly switch
between tasks on a trial-by trial basis is instead reflected in
specific or local switch costs, i.e., performance decrements in
switch trials relative to stay trials (Allport et al., 1994; Rogers
and Monsell, 1995; Meiran, 1996; see Kiesel et al., 2010, for
a review). Age-comparative research has indicated that older
adults show increased general switch costs relative to younger
adults, but similar specific switch costs (Kramer et al., 1999; Kray
and Lindenberger, 2000; Mayr, 2001). It thus appears that aging
negatively affects the ability to simultaneously maintain and
coordinate distinct task sets, but leaves task switching abilities
relatively intact.

Our previous training studies have indicated that multi-
domain cognitive training has the potential to compensate
at least some of this age-related deficit and can lead to a
reduction in general switch costs (Gajewski and Falkenstein,
2012; Gajewski et al., 2017). In our studies, these performance
gains were accompanied by amplitude increases in three ERPs,
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the N2, the P3 and the error negativity (Ne). The target-
locked N2 is a negative deflection with a fronto-central
maximum, which has been linked to both the detection of
stimulus novelty and cognitive control, in terms of response
inhibition and the resolution of response conflict during
responding (Folstein and Van Petten, 2008). It is thus thought
to reflect the implementation of stimulus-response associations,
i.e., response selection, which is hampered on interference or
conflict trials (Gajewski et al., 2008). In the context of task
switching paradigms, the N2 has been found to be decreased
in latency and amplitude for task repetitions (Gajewski et al.,
2010a). A training-related increase in N2 amplitude may thus
reflect improved response selection. The subsequent target-P3,
a positive deflection with a parietal focus, has been associated
with the allocation of processing resources, specifically memory
operations (e.g., Polich, 2007). As such, its amplitude is largest
for single trials, intermediate for stay trials and lowest for
switch trials (Kieffaber and Hetrick, 2005; Jost et al., 2008;
Gajewski et al., 2010b; Gajewski and Falkenstein, 2012). A
training-related increase in P3 amplitude can thus be interpreted
in terms of improved resource allocation. Finally, the error
negativity (Ne or error-related negativity, ERN) is an early
negative deflection which is elicited by the detection of a
response error (Falkenstein et al, 1991). A training-related
increase in Ne amplitude thus reflects improvements in error
monitoring.

In the present study, we wanted to corroborate and extend our
previous findings on the functional neural processes mediating
gains in executive functioning associated with multi-domain
cognitive training in older adults. To this end, we employed
a different task-switching transfer task than in our earlier
study which featured two rather than three distinct tasks and
introduced different levels of task difficulty. In order to gain
more thorough insights into neural processes involved in task
preparation and response selection we examined not only the
ERP components described in our earlier study, but also the
switch positivity during advance task preparation (Karayanidis
et al., 2010) and the target-locked P2 (Kieffaber and Hetrick,
2005).

One-hundred and three healthy older adults were randomly
assigned to either a multi-domain cognitive training group,
an active control group receiving relaxation training or a
passive no-contact control group. At pretest and posttest, we
used a binary cue-based switch paradigm featuring two tasks
with asymmetric difficulty levels as transfer task. Participants
had to indicate either the font color or the word meaning
of Stroop stimuli, that is color words which were printed
in colored fonts which could either be congruent to the
word meaning (ie., the word “yellow” presented in yellow
font) or incongruent to it (i.e., the word “red” presented
in yellow font). Word reading is the dominant behavior in
this context, rendering the color task much more difficult
than the word task (Stroop, 1935). Previous research has
indicated that age-related cognitive deficits can be exacerbated
with increasing task difficulty (e.g., Bierre et al, 2016). As
of yet, relatively little is known, however, about the impact
of task difficulty on training and transfer gains in older

adults. An fMRI study by Brehmer et al. (2011) has indicated
that training-related benefits to neural efficiency may come
to bear mainly under more difficult task conditions for this
age group. The present study aimed to further examine this
issue and pinpoint the specific neural processes which may
benefit from multi-domain cognitive training under difficult
as compared to easy task conditions. In order to do this, we
examined two additional ERP components which were omitted
in our earlier study on older adults (Gajewski and Falkenstein,
2012), the switch positivity and the target-locked P2. The
cue-locked switch positivity has been linked to anticipatory
processes associated with task-set reconfiguration. Its amplitude
is thus highest for switch trials, intermediate for stay trials
and lowest for single trials (Eppinger et al, 2007; Wrylie
et al, 2009; Jamadar et al, 2010; Karayanidis et al, 2010,
2011). The target-locked P2, an early positive deflection with
a fronto-central focus, is reduced on switch compared to stay
trials and has thus been related to the retrieval of stimulus-
response bindings (Kieffaber and Hetrick, 2005; Schapkin et al,,
2014).

Irrespective of task difficulty, we expected to observe
performance gains from pretest to posttest in the multi-domain
cognitive training group but not in the two control groups.
In keeping with our earlier study (Gajewski and Falkenstein,
2012), we further expected that these performance gains would
be accompanied by modulations of ERP components indexing
the resolution of response conflict during response selection
(N2) and the allocation of cognitive resources (target-locked
P3) as well as the retrieval of stimulus-response bindings (P2)
and anticipatory task-set reconfiguration (switch positivity).
Based on previous research (Brehmer et al., 2011), we expected
between-group differences to be more pronounced under
difficult task conditions.

MATERIALS AND METHODS

Participants

Participants were independently living, healthy older adults
which were screened for sufficient visual and auditory acuity.
Other exclusion criteria were a history of cardio-vascular, motor,
oncological, psychiatric or neurological diseases. Participants
were also excluded from the study if their self-reported cognitive
training activity exceeded 1.5 h per week. As a result of this
screening procedure, 32.5% of applicants were included in the
study. After completing the pretest, the 114 participants were
randomly assigned to a training group receiving a 4-month
multi-domain cognitive training (remaining N = 32; 20 female,
65-82 years old, mean age: 70.5 years, seven drop-outs due to
illness, relocation, technical malfunctions), a passive no-contact
control group (remaining N = 37; 21 female, 65-88 years
old, mean age: 70 years, two drop-outs due to technical
malfunctions) and an active (social) control group receiving
a 4-month relaxation training (remaining N = 34; 21 female,
65-87 years old, mean age: 70.9 years, two drop-outs due
to illness). All groups were comparable with respect to age,
education and cognitive status as assessed by Mini Mental State
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Examination (MMSE German version, Kessler et al., 2000),
verbal IQ (MWT-B, Lehrl, 2005), forward and backward digit
span and versions A and B of the Trail-Making Test (see, Wild-
Wall et al, 2012, for details). All participants were included
in the behavioral data analyses. Due to malfunctions of the
EEG equipment, data from six participans (one of the cognitive
control group, one of the active control group and three of the
passive control group) could not be included in the ERP analyses.
The study was carried out in accordance with the Declaration
of Helsinki and with the recommendations of the local ethics
committee of the Leibniz association. All participants gave
written informed consent and received 100 Euro to recompense
them for travel expenses.

Multi-Domain Cognitive Training and

Relaxation Training

Participants in the cognitive training and the active (social)
control group completed two 90-min training sessions per week
across a period of 4 months. Both trainings were conducted by
payed professional trainers in small groups of no more than
12 participants. Participants who had missed regular sessions
had the opportunity to take part in two additional sessions
after the regular training had been completed. Participants were
otherwise not encouraged to train outside of the regular training
sessions.

Participants in the cognitive training group were first
given basic information on cognitive functions, their
relevance for activities of daily living and the impact of
aging on these functions. Participants additionally learned
memory strategies, such as the method of loci. Subsequently,
participants completed 4 weeks of paper-pencil-based exercises
focused on improving processing speed, selective attention,
short-term memory span, verbal fluency and arithmetic and
reasoning skills (sudokus; MAT, Lehrl et al, 1994; Klauer,
2008). Simultaneously, participants without prior computer
experience were familiarized with the use of a computer
mouse and keyboard. In the final cognitive training phase,
participants completed computer-based cognitive exercises
focused on perceptual speed, selective attention and memory
(peds Braintrainer'; mentaga GYM?; Mental Aktiv®). This
multi-domain cognitive training regimen did not include a
task-switching task, a Stroop task or a combination thereof.
A more thorough description of the multi-domain cognitive
training has already been published elsewhere (see appendix of
Gajewski and Falkenstein, 2012).

The relaxation training of the active (social) control group
was comprised of gymnastic, back therapy, muscle relaxation
and stretching exercises as well as techniques from autogenous
training, progressive muscle relaxation, Qigong and massage
therapy. The training also included elements of health education,
giving basic information about healthy nutrition, the negative
effects of addictive substances, such as alcohol and nicotine and
the benefits of physical exercise.

lwww.ahano.de

2www.mentage.com
3www.mental-aktiv.de

Pre- and Posttest Procedure

Before and after the interventions, participants completed
pretest and posttest sessions, respectively. These included socio-
demographic questionnaires (pretest only), paper-and-pencil-
based neuropsychological tests and computer-based cognitive
tests with concurrent EEG-recording. While the present study
focuses on the Stroop switch task, data from other cognitive tasks
has been reported elsewhere (Gajewski and Falkenstein, 2012;
Wild-Wall et al., 2012). Cognitive testing and EEG-recording
were conducted in a dimly lit, electrically-shielded and sound-
attenuated room. All participants were tested individually and
were seated 90 cm from a 15 inch CRT monitor with a
resolution of 640 x 480. Stimulus presentation and response
acquisition were controlled by an IBM-compatible computer
running MS-DOS.

In the Stroop switch task, participants had to indicate either
the font color or the word meaning of Stroop stimuli. Stroop
stimuli (10 x 5-7 mm) were the German words “rot”, “griin”,
“blau” and “gelb” (red, green, blue and yellow, respectively)
which were presented on a black background in one of four
colored fonts (red, green, blue and yellow). Fonts could either
be congruent to the word meaning (i.e., the word “yellow”
presented in yellow font) or incongruent to it (i.e., the word
“red” presented in yellow font). Prior to the Stroop stimulus,
participants were presented with a cue which indicated which
task had to be performed in the current trial. A white square
(37 x 37 mm) indicated that font color was the relevant stimulus
dimension, whereas a white diamond (37 x 37 mm) indicated
that participants had to respond to the word meaning. Responses
were given by pressing one of four response keys which were
mounted in a response box and each corresponded to a specific
color.

A given trial thus began with the presentation of a fixation
cross for 300 ms, followed by the presentation of the cue
(diamond/square). After 1000 ms, the Stroop stimulus appeared
within the cue and remained onscreen until the participant had
responded by pressing one of the four response keys. Five-
hundred milliseconds after the participant’s response a positive
(plus sign) or negative (minus sign) feedback appeared. When
the reaction time exceeded 2500 ms, the word “schneller”
(faster) was presented in addition to the feedback in order to
encourage participants to respond more quickly on subsequent
trials.

Participants completed a total of 250 trials (50% congruent
and 50% incongruent) in three distinct experimental blocks.
The first two blocks were single blocks in which participants
always had to perform either the word (52 trials) or the color
task (52 trials). In the subsequent mixed block (146 trials),
participants instead had to perform the color task (73 trials)
or the word task (73 trials) in random order, as signaled by
the cue. Thirty-six trials of each task type were stay trials
in which the same task as in the preceding trial had to be
performed. The other 37 trials were switch trials in which a
different task than in the preceding trial had to be completed.
Across all conditions, half of the trials featured congruent Stroop
stimuli whereas the other half featured incongruent Stroop
stimuli.
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Electrophysiological Recording and

Analyses

EEG activity was recorded continuously from 32 active
BioSemi Pin-Type electrodes arranged according to the extended
10-20 system in a preconfigured cap (Easy Cap, Easycap GmbH,
Herrsching-Breitbrunn, Germany). Electrodes were placed at
positions Fpl, Fpz, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7,
C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, PO3, POz,
PO4, O1, Oz and O2. Eight additional electrodes were used
to record the EOG and activity at the left and right mastoids.
In the Bio-Semi system, ground and reference electrodes are
replaced by a feedback loop between an active and a passive
electrode at positions C1 and C2, respectively. Impedances for all
electrodes were kept below 10 k2. Signals were digitized with a
BioSemi Active Two amplifier at a sampling rate of 2048 Hz and
a bandpass of 0.01-140 Hz.

For off-line analysis, data were downscaled to a sampling
rate of 1000 Hz and digitally bandpass filtered at 0.05-17 Hz.
The first trial of each experimental block and trials with an
incorrect, very fast (<100 ms) or very slow (>2500 ms) response
were excluded from further analyses. The EEG was segmented
into cue-locked and target-locked epochs and baseline-corrected
with respect to the 100 ms pre-stimulus interval. Vertical
and horizontal ocular artifacts were corrected off-line (Gratton
et al, 1983), while trials with other artifacts (maximum
amplitude in the segment, 150 nV; maximum voltage step
between two successive sampling points, 50 pwV; maximum
difference between two sampling points within the segment,
+300 WV, lowest activity in a 100 ms interval, 0.5 wV) were
excluded from averaging. Electrodes were re-referenced to linked
mastoids. ERPs were averaged separately for each of the two
tasks (color, word) and the three trial types (single, switch,
stay).

The switch positivity and the target-locked P3 were quantified
as mean amplitudes between 300 ms and 600 ms post-cue and
post-stimulus, respectively, at electrode positions Fz, Cz and Pz.
The target-locked P2 was quantified as the most positive local
amplitude between 150 ms and 300 ms after stimulus onset
at FCz. The subsequent target-locked N2 was measured as the
most negative local amplitude between 200 ms and 400 ms
post-stimulus at Cz. Electrode positions and time windows were
selected on the basis of previous research (e.g., Polich, 2007;
Folstein and Van Petten, 2008; Gajewski and Falkenstein, 2012;
Schapkin et al., 2014).

RESULTS

Behavioral Data

The first trial of each experimental block was excluded
from further analyses. Trials with an incorrect, very fast
(<100 ms) or very slow (>2500 ms) response were not included
in the reaction time analyses. Mean accuracy and reaction
times as well as the linear integrated speed-accuracy score
(LISAS = mean reaction timeS.yndition + Standard deviation
of reaction timesy,/standard deviation of proportion of
eITOTS oty X proportion of errorsgondition; Vandierendonck, 2016)

were computed (see Figure 1). Due to lack of errors, LISAS could
not be computed for one participant from the cognitive training
group. All behavioral parameters were analyzed in separate
analysis of variances (ANOVAs) with the within-subject factors
Test Time (pretest, posttest), Trial Type (single, switch, stay)
and Task (color task, word task) and the between-subject factor
Group (cognitive training, active control, passive control). For
all parameters, we additionally computed mixing/general switch
costs (stay trials — single trials) and specific/local switch costs
(switch trials — stay trials) which were submitted to separate
ANOVAs with the within-subject factors Test Time and Task
and the between-subject factor Group. Results were Greenhouse-
Geisser corrected, where appropriate. For the sake of brevity,
we only list significant effects involving the factor Test Time.
In order to specify training-related changes, these effects were
further analyzed with Bonferroni post hoc tests.

In the reaction time data, we observed a significant main effect
of Test Time (F(1,100) = 8.21, p < 0.01, r;f, =0.08) and a significant
interaction of Test Time x Trial Type x Task (F(2200) = 5.48,
p < 0.01, nf) = 0.05). Post hoc tests indicated that for the color
task, reaction times decreased from pretest to posttest on single
and stay trials (both ps < 0.01), but not on switch trials (p = 0.18).
In the word task, reaction time benefits were limited to switch
trials (p < 0.01) and stay trials (p < 0.05), but did not emerge on
single trials (p = 0.68). None of the effects involving interactions
of the factors Test Time and Group were significant.

The accuracy data yielded a significant main effect of Test
Time (F1,1000 = 4.1, p < 0.05, nf) = 0.04) and a significant
interaction of Test Time x Group (F(2100) = 3.4, p < 0.05,
7]123 =0.06). Bonferroni post hoc tests showed reduced error rates at
posttest compared to pretest only in the cognitive training group
(p < 0.01), but not in the two control groups (both ps > 0.84).
Baseline accuracy at pretest was equivalent for the three groups
(all ps > 0.99).

For the LISAS data, we similarly found a significant main
effect of Test Time (F(1,99) = 12.21, p < 0.01, 75 = 0.11) as well
as a significant interaction of Test Time x Group (F(2,99) = 3,
p = 0.05, né = 0.06). In keeping with the accuracy data, only
the cognitive control group showed decreased LISAS, i.e., better
performance, at posttest compared to pretest (p < 0.001,
both control groups, ps > 0.18). At pretest, we observed no
significant differences in baseline performance between the three
groups (all ps > 0.89). The interaction of Test Time x Task
(F(1,99) = 6.01, p < 0.05, 77[2J = 0.06) was also significant. Post hoc
tests nevertheless showed significant performance benefits from
pretest to posttest in both the color task (p < 0.001) and in the
word task (p < 0.05).

Our analysis of mixing/general switch costs (stay
trials — single trials) and specific/local switch costs (switch
trials — stay trials) yielded no significant effects involving the
factor Test Time for either accuracy, reaction times or LISAS.

Behavioral Data Summary

Error rates and LISAS indicated performance gains from pretest
to posttest only for the cognitive training group, but not for
the two control groups. Training-related performance gains
emerged for all trial types and could thus not be attributed

Frontiers in Human Neuroscience | www.frontiersin.org

April 2017 | Volume 11 | Article 184


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Cognitive Training in Aging

Kuper et al.

Color Task

Word Task

AMMMIMIMPDDING
AAAARMHIIN
AMMIINY

Z
Posttest

MhAL-IIDHDHHDHHek
AAHIOINNNY
AMMDDIIY

7
Posttest | Pretest

24

AAMA€IIDT]NN
AN
SAN\\

Posttest

Passive Control

Active Control

Cognitive Training

1600
1500
1400
1300
1200
1100
1000
900
800

Passive Control

Active Control

6o
=
£
@
i
T
[
>
=
£
&
o
o

b

ok

Active Control Passive Control

Cognitive Training

<<<<<<<<<<<<<

Active Control Passive Control

Cognitive Training

1600 +

T
8
(%3]
-

1400

8 8

1100 -+

g 88

[sw] sswi] uonoeay

_____________

[

%

] sayey Jouu3

Passive Control

77

Posttest | Pretest

Hmmmianmmimiannnin
AN

Z
Active Control

ANMMMMIMIMDDID
Zmmna
AN\

)

Cognitive Training

Passive Control

Active Control

o
o=
£

@

s
T

[

>
2

£

&

o
o

Single Stay Switch

Pretest

%

Posttest
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*significant at p < 0.001).

(*

the standard error of the mean. Posttest reaction time gains associated with cognitive training are highlighted

easier word task, reaction time benefits emerged under mixing

conditions. For the more difficult color task, they were instead
limited to single and stay trials which did not require a task set

reconfiguration.

to reductions of mixing/general switch costs or specific/local

switch costs. All groups showed decreased reaction times at

posttest compared to pretest. These unspecific practice effects
were subject to the task participants had to perform: for the
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Cz and Pz as a function of session (pretest, posttest) and trial type (single, switch, stay). Time scaling ranges from —100 ms to 1100 ms around cue onset
and positive deflections are displayed downward. Cognitive training was associated with increased posttest amplitudes of the highlighted cue-locked P3 on stay

ERP Data

The switch positivity and the target-locked P3 were analyzed
in separate ANOVAs with the within-subject factors Electrode
Position (Fz, Cz, Pz), Test Time (pretest, posttest), Trial Type
(single, switch, stay) and Task (color task, word task) and
the between-subject factor Group (cognitive training, active
control, passive control). Target-locked P2 amplitude at FCz
and N2 amplitude at Cz were analyzed in separate ANOVAs
with the within-subject factors Test Time (pretest, posttest), Trial
Type (switch, stay) and Task (color task, word task) and the
between-subject factor Group (cognitive training, active control,
passive control). Results were Greenhouse-Geisser corrected,
where appropriate. Significant effects involving the crucial factor
Test Time are listed and were further analyzed with Bonferroni
post hoc tests.

Cue-Locked Switch Positivity Amplitude

Analyses of the switch positivity amplitude yielded a significant
main effect of Test Time (F(j,03) = 5.79, p < 0.05, né =0.06) as
well as interactions of Test Time x Electrode Position x Trial
Type x Task (Fuz9) = 3.96, p < 0.01, 77; = 0.04) and,

crucially, Test Time x Group x Electrode Position x Trial Type
(Fg,392) = 4.83, p = 0.05, 75 = 0.04). As illustrated in Figure 2,
post hoc tests indicated that in the cognitive training group, stay
trials elicited higher switch positivities at posttest compared to
pretest at all sites (Fz and Cz, ps < 0.05; Pz, p = 0.05; all other
ps > 0.14). In the active control group, higher posttest amplitudes
emerged at Cz for stay trials (p < 0.05) and Pz showed a trend
towards pre-post differences for single trials (p = 0.07; all other
ps > 0.15). For the passive control group, on the other hand, we
found no reliable pre-post differences at any electrode position
(all ps > 0.29).

Target-Locked P2 Amplitude and Latency

For P2 amplitudes at FCz, we observed a significant interaction of
Test Time x Task (F(j,98) = 4.93, p < 0.05, r][z) =0.05), yet post hoc
tests indicated no significant changes from pretest to posttest
for either the color or the word task (both ps > 0.11). None
of the effects involving the factor Group reached significance.
The P2 latency analysis yielded a significant main effect of Test
Time (F2196) = 4.6, p < 0.05, nf) = 0.05) and a significant
interaction of Test Time x Group X Trial Type (F,196) = 2.42,
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FIGURE 3 | Target-locked grand average ERPs for the three groups (cognitive training, active control, passive control) at Fz, FCz, Cz and Pz as a
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highlighted P3 for all trial types. Single trials (black lines) additionally showed reduced latencies of the highlighted P2 at posttest.

p =0.05, nf, = 0.05). Post hoc tests showed reduced P2 latencies
at posttest compared to pretest, but only on single trials of the
cognitive training group (p < 0.01; all other ps > 0.14, see
Figure 3).

Target-Locked N2 Amplitude and Latency

The analysis of N2 amplitudes at Cz, yielded a significant
interaction of Test Time x Group (F(98) = 3.36, p < 0.05,
r]f) = 0.06). Post hoc tests showed an increase in N2 amplitude
from pretest to posttest for the cognitive training group
(p < 0.01), but not for the two control groups (both ps > 0.34,
see Figure 3). The N2 latency analysis showed a significant
interaction of Test Time x Trial Type x Task (F(,196) = 6.25,
p < 0.01, 17}2, = 0.06). According to post hoc tests, N2 latencies

were shortened from pretest to posttest only on stay trials of the
color task (p < 0.01; all other ps > 0.13).

Target-Locked P3 Amplitude

For the target-locked mean P3 amplitude, we observed
significant interactions of Test Time x Electrode Position
(F2,106) = 4.67, p < 0.05, né = 0.05), and, importantly, Test
Time x Group x Electrode Position x Trial Type (F (s 392) = 2.72,
p < 0.01, n}% = 0.05). For both control groups, post hoc tests
showed no significant amplitude differences between pre- and
posttest, irrespective of trial type and electrode position (all
ps > 0.21; see Figure 3). For the cognitive training group, on
the other hand, P3 amplitudes decreased from pretest to posttest:
at Fz, amplitude decreases were significant for single and switch
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trials (both ps < 0.01). At Cz, we observed significant decreases
for switch and stay trials (both ps < 0.05) and a trend towards a
decrease for single trials (p = 0.07; Pz, all ps > 0.39).

ERP Data Summary

For all trial types, cognitive training was associated with an
increase of the target-locked N2 and a subsequent amplitude
decrease at fronto-central locations in the time range of the
target-locked P3. On single trials, we additionally observed
a training-related reduction of target-locked P2 latencies. In
the cue-target interval, the switch positivity on stay trials was
increased at posttest for both the cognitive training group and the
active control group. The passive control showed no significant
ERP differences between pretest and posttest.

DISCUSSION

The present study was aimed at examining the effects of multi-
domain cognitive training and task difficulty on executive
functions in older adults. To this end, healthy older adults
were randomly assigned to a passive control group, an active
control group receiving 4 months of relaxation training and a
cognitive training group who completed 4 months of multi-
domain cognitive training. In pre- and posttest sessions, we
recorded behavioral and ERP indices of performance in an
untrained task switching paradigm featuring Stroop stimuli.
Participants had to attend two tasks with different difficulty
levels, an easier word reading task and a more difficult color
naming task (see Stroop, 1935).

At the behavioral level, we observed reduced reaction times
at posttest compared to pretest. Although this effect appeared to
be driven mainly by reaction time reductions in the cognitive
training group and the active control group, it was not
significantly modulated by the factor Group. It thus should
be considered a practice effect induced by repeated testing
rather than a performance gain related to the increased activity
associated with training regimen. Interestingly, this practice
effect was modulated by task difficulty: in the easier word-
task, reaction time benefits emerged on stay and switch trials,
but not in single task blocks. In the more difficult color task,
reaction times instead decreased for single and stay trials, but
not for switch trials. In light of the low difficulty level of the
word task, it is feasible that only the more complex mixed
block offered room for improvement because performance
for the less demanding single trials was already at ceiling at
pretest. For the more difficult color task, on the other hand,
the task set configuration associated with switch trials may
have further elevated the difficulty level to such a degree that
practice was not sufficient to generate reliable reaction time
benefits.

In the context of the present study, accuracy and LISAS
results were more noteworthy than the reaction time data as
they indicated performance benefits associated exclusively with
multi-domain cognitive training: both parameters were reduced
at posttest compared to pretest only for the cognitive training
group, but not for the two control groups. This result pattern
corroborates and extends previous research on multi-domain

cognitive training which could show beneficial transfer effects
to executive functions in younger, middle-aged and older adults
(e.g., Gajewski and Falkenstein, 2012; Baniqued et al., 2015;
Gajewski et al.,, 2017). In keeping with these studies, training-
related performance gains became manifest in increased response
accuracy. In contrast to our initial hypothesis, however, these
accuracy improvements were equivalent in the color and in the
word task.

Cognitive training was not only associated with gains in
response accuracy, but also with modulations of cue- and
target-locked ERPs from pretest to posttest. Whereas the switch
positivity in the task preparation period was larger at posttest
both in the cognitive training group and the active control
group, changes in target-N2 and target-P3 amplitude as well
as target-P2 latency were limited to the cognitive training
group. Like the training-related benefits in accuracy, these ERP
modulations were not subject to the task participants had to
perform.

ERPs in the cue-target interval showed modulations from
pretest to posttest after either type of training regimen: on
posttest stay trials, we observed an increase in switch positivity
which was widespread for the cognitive training group and
limited to central sites for the active control group, but absent
in the passive control group. Modulations of the switch positivity
are thought to reflect the degree of task set updating necessary
to prepare for the upcoming task (for a review see Karayanidis
etal,, 2010). An enhancement of switch positivity amplitude from
pretest to posttest, notably in stay trials, may thus indicate a
training-related boost to the efficiency of maintaining a task set
from one trial to the next under mixing conditions. As both the
cognitive training group and the active control group showed an
increase in switch positivity amplitude, this efficiency gain may
be due to unspecific vitalization associated with training regimen
in general (see Gajewski and Falkenstein, 2015a).

Regarding the target-locked ERPs, the present target-P2 data
indicate that multi-domain cognitive training has the potential
to accelerate the processing operations underlying the P2, at
least under single task conditions. Previous research has linked
the P2 to the retrieval of stimulus-response bindings (Kieffaber
and Hetrick, 2005; Gajewski et al., 2008; Schapkin et al,
2014). The subsequent target-locked N2 has been associated
with cognitive control processes, such as response inhibition,
the resolution of response conflict and response selection (for
a review see Folstein and Van Petten, 2008). The training-
related enhancement of the target-locked N2 we observed in the
present study is consistent with our previous reports (Gajewski
and Falkenstein, 2012; Gajewski et al., 2017): multi-domain
cognitive training, was previously associated with an increase
in target-locked N2 amplitude in cue-based and memory-based
versions of a task switching paradigm featuring three tasks
with comparable difficulty levels. Whereas the earlier study
showed reliable N2 enhancements mainly for switch trials,
the present N2 data as well as data from the later study
indicate that cognitive training can also lead to amplitude
increases on single and stay trials (see Gajewski and Falkenstein,
2015a,b, for similar N2 enhancements due to habitual physical
activity).
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Taken together with our previous findings (Gajewski and
Falkenstein, 2012; Gajewski et al., 2017), the present ERP
data thus corroborate the idea that multi-domain cognitive
training can benefit processes involved in response selection,
especially in older adults. At the behavioral level, such a
training-related improvement of response selection consistently
appears to translate into an improvement of response accuracy
not only in older adults (the present study, Gajewski and
Falkenstein, 2012) but also in younger participants (Gajewski
et al,, 2017). To be more specific, the present and previous
data suggest that target-P2 and target-N2 are related to the
retrieval or activation of stimulus-response mappings or task sets
(target-P2) and the implementation of these sets (target-N2). The
mechanisms reflected in these ERP components are thus essential
for successfully executing a task-appropriate reaction, i.e., for
pressing the correct response key. When this process is enhanced
as indicated, for example, by a negative shift in the target-locked
N2, participants are less likely to make an error. In other words,
cognitive training enhances the ability to make a correct decision.
For the present study, this was the case irrespective of task
difficulty and on both switch and non-switch trials.

In contrast to our earlier report on older adults (Gajewski
and Falkenstein, 2012), the present data show an amplitude
decrease in the time window of the target-locked P3 at fronto-
central electrodes following cognitive training. In the earlier
study, participants had instead shown a training-related increase
in target-locked P3 amplitudes at posterior sites which we
interpreted in terms of improved cognitive resource allocation.
In younger adults, the P3 usually has a clear-cut parietal
focus (for a review see Polich, 2007). For the present older
participants, we instead observed cue-locked and target-locked
P3s with a more widespread distribution featuring parietal
and frontal foci. This is in line with previous age-comparative
research which has indicated that older adults may show a
broader distribution of the P3 which extends to anterior sites
as well and which likely reflects the compensatory increased
recruitment of prefrontal brain areas involved in cognitive
control (Kray et al.,, 2005; Eppinger et al., 2007; Adrover-Roig
and Barceld, 2010; Kopp et al., 2014). As the target-P3 amplitude
decrease observed in the present study was limited to fronto-
central electrodes, it could potentially reflect a training-related
reduction in this compensatory over-recruitment of frontal areas.
Alternatively, the target-P3 amplitude decrease could be related
to the enhancement of the preceding fronto-central target-N2
which extends into the P3 peak latency range, or to an even
broader negative shift in the time range of both target-locked
N2 and P3 (see Gajewski and Falkenstein, 2015a,b). Further ERP
research on cognitive training in older adults is needed to clarify
this issue.

Previous research on the impact of transfer task difficulty
on training-related performance gains is scarce. In one of the
few studies on the subject, Brehmer et al. (2011) examined the
performance of a cognitive training group and an active control
group in a working memory transfer task featuring high and
low load conditions. They found that neither group showed
performance gains from pretest to posttest in either condition
suggesting that performance was already at ceiling at pretest.

The present study instead featured a more difficult transfer task
which offered room for improvement from pretest to posttest.
Under these conditions, practice effects which were not directly
associated with cognitive training were subject to task difficulty
whereas genuine training-related performance benefits were not.
Likewise, cognitive training benefited performance on single,
stay and switch trials to a similar degree. As a result, we were
unable to link training-related performance gains to reductions
of mixing/general switch costs or specific/local switch costs
as previous studies have done (e.g., Gajewski and Falkenstein,
2012). Note, however, that particularly specific/local switch costs
were minimal at baseline in the cognitive training group. Any
potential impact of multi-domain cognitive training on these
costs thus would have been difficult to detect, in the present
study.

Conclusions

The present study corroborates and extends our understanding
of the neural underpinnings of performance gains associated
with multi-domain cognitive training in older adults. A 4 month
multi-domain cognitive training had beneficial effects on
response accuracy in an untrained binary switch paradigm
featuring two tasks with distinct difficulty levels. These training-
related performance gains were likely mediated by an increase in
target-locked N2 amplitude, an amplitude reduction in the time
range of the target-locked P3 and a decrease in target-P2 latency.
These ERP modulations indicate benefits to neural processes
involved in response selection which resulted in reduced error
rates on both switch and non-switch trials. Our findings suggest
that multi-domain cognitive training increases slow negative
potentials during target processing which enhance the N2 and
may additionally reduce the amplitude of a subsequent P3-like
component on both switch and non-switch trials and irrespective
of task difficulty.
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