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The present study aimed to compare various entropy measures to assess the dynamics

and complexity of center of pressure (COP) displacements. Perturbing balance tests

are often used in healthy subjects to imitate either pathological conditions or to test

the sensitivity of postural analysis techniques. Eleven healthy adult subjects were asked

to stand in normal stance in three experimental conditions while the visuo-kinesthetic

input was altered. COP displacement was recorded using a force plate. Three entropy

measures [Sample Entropy (SE), Multi-Scale Entropy (MSE), and Multivariate Multi

Scale Entropy (MMSE)] describing COP regularity at different scales were compared to

traditional measures of COP variability. The analyses of the COP trajectories revealed

that suppression of vision produced minor changes in COP displacement and in the

COP characteristics. The comparison with the reference analysis showed that the

entropy measures analysis techniques are more sensitive in the incremented time series

compared to the classical parameters and entropy measures of original time series.

Non-linear methods appear to be an additional valuable tool for analysis of the dynamics

of posture especially when applied on incremental time series.

Keywords: center of pressure, sample entropy, multi-scale entropy, multivariate multi-scale entropy, visuo-

kinesthetic effect

INTRODUCTION

Postural control is of paramount importance to ensure safe completion of complex tasks such
as locomotion or simpler tasks such as standing. Postural control in healthy subjects is strongly
affected by spatial orientation (Isableu et al., 1998) which in turn is based on both vestibulo-
proprioceptive and visual cues (Asch and Witkin, 1948). Some subjects show an increased visual
dependency (Guerraz et al., 2001) and therefore closing the eyes or introducing distorted visual
feedback (e.g., wearing translucent goggles) increases the difficulty of standing tasks (Bronstein,
1986). A diminished postural control may result in a loss of equilibrium and consequently in
falling (Carroll and Freedman, 1993; Collins and De Luca, 1993). This diminution may either be
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due to normal ageing (Pascolo et al., 2005, 2006) or due to a
neurodegenerative disorder such as Parkinson’s disease (Sabatini,
2000; Duarte and Zatsiorsky, 2001).

Usually, the quantification of postural control is included in
clinical assessments but this strongly depends on the technology
available. Either the postural control is rated based on clinical
rating scales (Bloem et al., 2016) e.g., Tinetti Balance Scale,
Rating Scale for Gait Evaluation, or on specific equipment such
as force plates (Yamada, 1995; Newell et al., 1997) to measure
body sway. The displacement of the center of pressure (COP)
(the point of application of the vertical resultant force acting
on the body from the supporting surface, dos Santos, 2008) is
commonly measured when evaluating the postural control of
a person (Carroll and Freedman, 1993; Collins and De Luca,
1993). The COP is highly irregular and non-stationary which
has led multiple studies to characterize the functional effects
of conditions such as disease, aging, cognitive task and visual
perception on the postural stability (Ramdani et al., 2009).

Techniques for quantifying the displacement of the COP
vary from descriptive measures (mean or standard deviation)
to techniques taken from signal processing (root-mean-square
and frequency analyses). The non-linear deterministic methods
allow for the exploration of the randomness or predictability
of the COP fluctuations. Those methods were used in studies
investigating the deterministic features of COP dynamics
(Myklebust et al., 1995; Riley et al., 1999; Doyle, 2004; Doyle
et al., 2005), and their potentially chaotic behavior (Cavanaugh,
2005; Costa et al., 2005; Roerdink et al., 2006; Cavanaugh
et al., 2007) but also on the quantification of the complexity
of COP time series (Ramdani et al., 2009). Entropy family,
as a non-linear measure of time series, has been widely
applied to study features of COP displacement in different
situations.

Entropy family quantifies the regularity (predictability) of
a signal, with predictable (e.g., periodic) signals resulting in
low entropy, or completely unpredictable signals, resulting in
high entropy. A more regular COP pattern indicates that the
postural behavior is more rigid (Donker et al., 2007), suggesting
that the regularity of COP displacements and the amount
of attention paid to postural control are dependent (Donker
et al., 2007; Vuillerme and Nafati, 2007). Complexity on the
other hand is associated with meaningful structural richness
(Grassberger, 1991) incorporating correlations over multiple
spatio-temporal scales. A decrease of complexity is related with
a functional decline; and a more rigid postural behavior results
in dysfunctional balance control during perturbations (Schniepp
et al., 2013).

For instance, the Sample Entropy (SE) (Roerdink et al.,
2006) has been used to investigate the effect of visual
perception (Sabatini, 2000), cerebral concussion (Cavanaugh,
2005; Cavanaugh et al., 2007) and cognitive tasks (Wei et al.,
2012) on postural dynamics. Multi-scale Entropy (MSE) and
Multivariate Multi-Scale Entropy (MMSE) (Ahmed and Mandic,
2011) are both able to represent the complexity of non-linear
time series in different scales (Ahmed and Mandic, 2011). They
measure and quantify the intrinsic complexity (Costa et al.,
2005) of single and multi-channel signals and then provide a

meaningful measure of regularity in biological signals as e.g.,
COP measurements (Ahmed and Mandic, 2012).

To extract additional features of the COP displacement, the
analysis of incremented time series of original signals may be
useful (Ramdani et al., 2009) and this approach provides extra
information compared to other approaches (Huang et al., 2013).
Incremented time series, equivalent to the velocity of the COP
displacements have been shown to be effective in the analysis
of physiological signals (Costa et al., 2007). In this study two
types of incremented time series were computed and studied, the
relationship between anterior-posterior (A/P) and medio-lateral
(M/L) COP displacement while using univariate and bivariate
entropy measures. Although previous studies (Costa et al., 2007;
Ramdani et al., 2009) applied incremental time series in their
COP analysis, no proof has been provided to determine its
performance and advantage.

The working hypothesis was to test if non-linear entropy
family methods quantify COP displacement better when using
incremented time series during three standing conditions with
varying visuo-kinesthetic input. In addition to the entropy
measures, classical posturographic methods were also used to
assess the COP displacement. The classical methods were then
compared with the entropy measures of the original time series.

METHODS EXPERIMENTS AND SUBJECTS

Eleven healthy subjects (Mean age: 25.6 years; Mean bodyweight
73.76 kg) voluntarily participated in the experiment after
signing a statement of informed consent as required by the
Helsinki declaration and the Paris-Saclay STAPS (Sciences
and Techniques of Sports and Physical Activities) local Ethics
Committee. Subjects stood upright looking forward, on a force
plate (AMTI OR6001200,Watertown, MA, USA) with their arms
hanging loosely by their sides and feet separated by a self-selected
distance (typically approximately 10 cm) for 30 s. Foot position
was marked with an erasable marker to ensure the position was
maintained if subjects needed to step off the force plate between
trials or conditions. Subjects performed three trials of stationary
bipedal standing in three different sensory conditions, eyes open
(EO), eyes closed (EC) and perturbed vision (PV) by wearing
translucent goggles, resulting in a total of nine trials. The trials
for each condition were averaged accordingly.

In the PV condition, even though the eyes were opened,
the visual input did not constitute a valid and meaningful
source (i.e., neither self-motion nor self-orientation cues) of
spatial referencing for postural balance, and cannot be integrated
together with proprioception in an optimal manner (Jeka et al.,
2000; Oie et al., 2001). Conditions were presented in a random
order for each participant. Subjects were instructed to stand
as still as possible with either the eyes open, eyes closed or
wearing translucent goggles. The COP trajectories were recorded
in both A/P and M/L directions at a sampling frequency of 250
Hz as shown in Figure 1. Rest periods of 60 s were provided
between trials. The resulting data was low-pass filtered at 5
Hz using an 8th order Butterworth filter with a zero-phase
digital filter (filtfilt.m) in the Matlab (MathWorks, Inc., USA)
environment.
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FIGURE 1 | This figure shows representative time series of COP data in

each of the three experimental conditions (EO, EC, PV). Differences

between conditions are explored using both classical parameters and entropy

based methods.

ANALYSIS

Classical Methods
To quantify differences between the conditions (EC, PV, EO),
the following variables were calculated from the postural sway:
the root-mean square (RMS), mean velocity (MV), path length
(PL), mean frequency (MF) and the surface area (SA) of COP
displacements in A/P and M/L directions. The RMS was defined
as the quadratic mean and is a measure of the postural sway
displacement in both the A/P and M/L directions [mm]. The
mean velocity defines the mean velocity of the postural sway
representing the path length divided by the trial duration [mm/s].
The path length was defined as the length of the COP trajectory
displacements on the platform surface [mm]. TheMF is themean
frequency of the power spectrum of the postural sway in both
the A/P and M/L directions. The SA is the surface area given by
the 95% confidence ellipse representing the smallest ellipse that
covers 95% of the points of the postural sway [mm2] (Paillard
et al., 2006).

Non-linear Methods
Three non-linear methods were used to measure the regularity
of COP signals and compare their sensitivity between the
incremented time series and the original time series. Sample
Entropy is essentially a negative logarithm of conditional
probability of the sequences of a data vector. If a vector of length
N has repeated itself in tolerance γ for m points, it will also
do so for m+1 points. The conditional probability means the
ratio of counts of repeated time of m+1 points to that of m
points. Thereby, high SE arises from a low probability of repeated
sequences in the data. Higher SE means lower regularity and
more complexity in the data. On the basis of SE, MSE is a method
to evaluate the complexity of signals over different time-scales
while MMSE generalizes the analysis to the multivariate case
(Wei et al., 2012).

The SE is mathematically computed as follows:
First, from a vector XN = {x1, x2, · · · , xN}, two sequences of

m consecutive points Xm(i) = {xi, . . . , xi+m−1} and Xm(j) =

{

xj, . . . , xj+m−1
}

(i, j ∈ [1,N −m] , i 6= j) are selected to
compute the maximum distance and compared to tolerance γ for
repeated sequences counting, according to Equation (1). For the
sequence Xm(i), its count is defined as Bmi (γ ).

d
[

Xm(i), Xm(j)
]

= max[
∣

∣xi+ k, xj+ k

∣

∣]

≤ γ (k ∈ [0,m − 1] , γ ≥ 0) (1)

1 where the tolerance γ equals to 0.1∼0.2∗SD (Richman and
Moorman, 2000), SD is the standard deviation of XN.

Bm(γ ) is the average amount of Bmi (γ ) for i ∈ [1,N −m], and
Bm+1(γ ) is the average of m +1 consecutive points. Thus, SE is
obtained using the Equation (2).

SE(N,m, γ ) = −ln

[

Bm+1(γ )

Bm(γ )

]

= −ln

[

(N−m− 1)−1 ∑N−m− 1
i= 1 Bm+ 1

i (γ )

(N−m)−1 ∑N−m
i= 1 Bmi (γ )

]

(2)

MSE has a coarse-grain procedure for the data vector XN before
SE computation, which is the main computation difference
between MSE and SE. Due to this procedure, MSE is able to
measure the distribution of complexity on multiple time-scales,
which is fundamentally different from SE. The coarse-grain
procedure averages each τ points to generate a new sequence
from the data. It is similar to a non-overlapping mean filter with
a window length τ . Changing τ leads to sequences in different
time-scales. Higher τ means lower frequency components in the
sequences. MSE generates the complexity distribution of the data
through the sequences in different time-scales, and MSE is equal
to SE when τ = 1. The parameter m is the length of repeated
mode in the data vector, which is defined by the data itself;
and the tolerance γ decides the limitation condition of repeated
mode. In biological time-series analysis, m is typically set at 2 or
3 and γ is 0.15∗standard deviation (SD) (XN) (Costa et al., 2005).

To calculate MSE, the following steps have to be computed:

the first step is to form a sequence y(τ )j based on the scale factor

τ , which can be found using the Equation (3):

y
(τ )
j =

1

τ

∑jτ

i= (j − 1)τ + 1
xi (3)

The equation to compute MSE can be expressed as follows:

MSE(N,m, τ , γ ) = − ln

[

Am+ 1(γ )

Am(γ )

]

(4)

where both Am(γ ) and Am+ 1(γ ) are the average repeated
amount of two sequences Ym(i) and Ym + 1(i) [see Equations
(1, 2)] to calculate Bmi (γ )) and tolerance γ is also for the formed

sequences y(τ )j with the length N′ = N/τ ∈ [10m, 30m] (Pincus

and Goldberger, 1994). Therefore, τ is defined by length of
N of XN and m. For example, N = 10,000 and m = 2,500
as the median of [102, 302] could be selected to calculate the
τmax = 10,000/500= 20 and τ ∈ [1, 20].
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MMSE provides a complexity distribution too, not for a
data vector but for the matrix vector from multichannel or
multivariate data, which is more adaptive to multi-dimension
or multi-parameter time series that are routinely measured in
experimental and biological systems.

Given the matrix X(p,N), p is the number of channels or
variates, N is the original length, so that the first step for
this matrix is just transforming it into a new matrix X′(p,N′),
based on scale factor τ regardless of m, which gives the new
matrix in a new time scale like the coarse-grain procedure
in MSE. In the second step, m and ε are extended to an
embedding vector and a time lag vector for a p -variate embedded
reconstruction respectively. For the consistence of each variate
in the matrix, the values of m and ε are identical, e.g., m =

[3,3,3]; ε = [1, 1, 1]. That means three MSE computations with
the embedding dimension m = 3 for three variates and the time
delay ε = 1. The time delay ε = 1 is the best choice when the
minimum embedding dimension for each of the time series is 3
(Cao et al., 1998).

In practice its first step is to define temporal scales of the

increased length by coarse-graining the p-variate
{

xk,i
}N

i= 1
, k =

1, 2, . . . , p. For a scale factor τ , the multivariate coarse-grained

time series y(τ )
k,j is calculated [see Equation (5)], where 1 ≤ j ≤

N/τ .

y
(τ )
k,j =

1

τ

jτ
∑

i = (j − 1)τ+1

xk,i (5)

In order to obtain the MMSE, the multivariate embedded vectors
Ym (i) ∈ R

p must be constructed firstl, which is shown as:

Ym(i) = [y1,i, y1,i+ε1 , . . . , y1,i+ (m1−1)ε1 , y2,i, y2,i+ε2 , . . . ,

y2,i+(m2−1)ε2 , . . . , yp,i, yp,i+εp , . . . , yp,i+(mp−1)εp ] (6)

where 1 ≤ i ≤ N′ − n and N′ = N/τ , n = max{M} ×

max{ε}. M =
[

m1,m2, . . . ,mp

]

∈ R
p is the embedding vector,

while ε =
[

ε1, ε1, . . . , εp
]

is the time lag vector and M =
∑p

k= 1 mk. Then the maximum norm is defined by Chebyshev
distance between any two composite delay vectors Ym(i) and
Ym(j), that is expressed as:

d
[

Ym(i),Ym(j)
]

= maxl= 1,...,m
{
∣

∣y
(

i + l− 1
)

− y(j + l− 1)
∣

∣

}

(7)

where j ∈ [1, N′ − n], j 6= i. For a given Ym(i), Pi is the number
of vector pairs that meets d

[

Ym(i),Ym(j)
]

≤ γ , so that Am
i (γ ) =

Pi/(N
′ − n − 1), where n = max{M} × max{τ }. And for all i,

Am(γ ) = (N′ − n)−1∑N′−n
i= 1 Am

i (γ ).
Finally, the average similarity Am(γ ) over all i ∈ [1, N′ − n]

and the Am+ 1(γ ) over all i ∈ [1, p ∗
(

N′ − n
)

] are used to gain
the MMSE, as shown in Equation (8).

MMSE(N′,M, τ , γ ) = −ln

[

Am + 1(γ )

Am(γ )

]

(8)

where γ is the tolerance level and N
′
is the length of the time

series y(τ )
k,j .

The embedding vector M =
[

m1,m2, . . . ,mp

]

∈ R
p and

the tolerance level γ in MMSE have the equivalent values with
parametersm and γ in MSE (Wei et al., 2012).

The three non-linear entropymethods are effective tomeasure
complexity of time series, specifically the SE for the univariate
vector, MSE for the univariate vector in multiple time-scale,
and MMSE for the multivariate matrix in multiple time-scale
respectively. Moreover, it is crucial to have the original time series
filtered as all entropy methods are extremely sensitive to random
noise. Therefore, our COP data was filtered by a low-pass filter
before the computation of entropy.

Incremental Time Series
The postural sway was analyzed in the A/P and theM/L direction,
COP (A/P) and COP (M/L) respectively. Additional to the
original COP data, its increments were calculated 2-fold: First
∆incx = [x(t + 1) − x(t − 1)], defined as the Increment;
second ∆diff x = [x(t + 1) − x(t)], defined as Difference. Since
mean velocity is a classical parameter of COP estimation, the
increments of original COP data, as its equivalent velocity, were
created from the original data to remove long-range correlations
and avoid potential masking of the complexity of the COP time
series.

Simulation
In the simulation, both the original and incremental time series
are used to evaluate differences bymeans of SE,MSE, andMMSE.
White noise and 1/f noise are prominent signals to test entropy
family measures because of their short-term and long-term
correlated properties (Richman andMoorman, 2000; Costa et al.,
2005; Ahmed and Mandic, 2011; Wei et al., 2012). To illustrate
the behavior of incremental time series and its influence on
entropy measures, we considered six time series with a length of
N = 20,000 (meeting the range minimum 10m × τmax whenm=

3 and τmax = 20) of each data vector corresponding to 80 s (near
to the sum of 30 s in trail and 60 s in rest) of data acquisition at
250 Hz: 1/f noise, 1/f noise Increment, 1/f noiseDifference, white
noise, white noise Increment, white noise Difference. Increment

and Difference are computed from both the 1/f noise and the
white noise data through ∆incx = [x (t+ 1) − x (t− 1)] and
∆diff x = [x(t + 1) − x(t)] respectively. MSE and MMSE were
calculated with m = 2 and 3, γ = 0.15∗SD (Costa et al., 2005)
and a scale factor of τ = 1 to 20 (Figure 2) (meeting the range
minimum, Richman and Moorman, 2000).

The results of the simulations show decreasing complexity
with increasing scale factor except for the 1/f noise series. To
understand the differences between m = 2 & 3 on the entropy
values, Table 1 shows individual differences as a function of the
scale factor for the six considered time series. The simulation
results show differences between scale factors 11 and 15 with an
absolute deviation of 0.01, indicating that SE is more sensitive
on a larger scale with a pattern length of m = 3 (Figure 2). The
MMSE analysis of bivariate time series shows similar patterns
but larger entropy values in the correlated bivariate time series
(Figure 3). When computing MSE and MMSE for short-term
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FIGURE 2 | Multiscale entropy (MSE) analysis of white noise, 1/f noise and their Increment and Difference using (A) m = 2, r = 0.15, and τ = 20 and (B)

m = 3, r = 0.15, and τ = 20. Each channel has 20 000 data points, and the plots represent an average of 20 independent groups and error bars the standard

deviation (SD).

TABLE 1 | Differences between the SE calculated with m = 2 and m = 3 for different scales and noises.

Scale factor 1/f noise White noise

Original Increment Difference Original Increment Difference

1 0.0010 0.0020 0.0010 0.0000 0.0010 0.0050

2 −0.0020 0.0010 0.0010 0.0010 0.0020 0.0070

3 0.0010 0.0000 −0.0015 0.0010 0.0060 0.0060

4 −0.0020 0.0050 0.0020 0.0010 −0.0010 0.0013

5 0.0020 0.0000 0.0020 0.0040 0.0000 −0.0036

6 −0.0020 −0.0050 0.0057 0.0000 0.0038 0.0010

7 −0.0030 0.0050 0.0045 0.0040 −0.0024 −0.0030

8 0.0020 0.0010 0.0025 0.0080 −0.0010 −0.0025

9 0.0050 0.0010 −0.0027 0.0030 0.0042 0.0056

10 −0.0030 0.0019 0.0000 0.0011 −0.0021 −0.0052

11 −0.0070 0.0028 0.0074 −0.0091 0.0028 0.0017

12 0.0000 −0.0039 −0.0011 −0.0010 0.0000 −0.0046

13 0.0080 −0.0064 0.0000 0.0050 0.0070 −0.0020

14 −0.0010 0.0038 0.0035 −0.0050 0.0018 0.0010

15 0.0140 0.0051 −0.0090 0.0030 −0.0040 −0.0024

16 0.0090 0.0059 −0.0080 0.0015 −0.0070 0.0093

17 −0.0060 0.0010 −0.0019 −0.0030 −0.0050 −0.0022

18 −0.0030 0.0030 −0.0045 −0.0013 0.0022 0.0020

19 0.0030 −0.0070 −0.0059 −0.0090 −0.0035 −0.0038

20 0.0000 0.0011 −0.0017 0.0010 −0.0016 −0.0020

correlated signals (white noise), a reduction in complexity occurs
with larger scale factors in contrast to long-term correlated
signals (1/f noise).

When computing MSE and MMSE for incremented time
series with white noise and 1/f noise, reductions of complexity
with increasing scales occur. The incremental time series removes
the long-term correlated components from the original time

series and represent short-term complexity. Compared to the
MSE, the MMSE analysis shows lower entropy values per scale
and seems to detect signal divergence faster and can, therefore,
be considered more suitable for complexity detection.

Based on the simulation results indicating that SE is more
sensitive on larger scales, while m was set to three, γ = 0.15∗SD
and a scale factor ranging from 1 to 20. A larger scale factor
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FIGURE 3 | Multivariate multiscale entropy (MMSE) analysis for uncorrelated bivariate 1/f noise, white noise and their Increment and Difference within

m = 2 (A) and 3 (B) respectively; and for (C) correlated bivariate 1/f noise, white noise and their Increment and Difference within m = 3.

provides a higher resolution of complexity in the time domain
and visuo-vestibular regulation is related to low frequencies
(0–0.5Hz) of the COP displacement (Dichgans et al., 1976;
Paillard et al., 2006).

Statistical Analysis
Friedman tests were used to examine the effect of condition
(i.e., EO, EC, PV) on all postural parameters. The complexity
index (CI), defined as the integral of the MSE or MMSE
curve, was used for the statistical analysis of the entropy
measures (MSE, MMSE). The normality of the data sets was
verified using the Kolmogorov-Smirnov test. Post-hoc pairwise
comparisons (between-conditions) were performedwhen needed
using Wilcoxon’s tests with a Bonferroni adjustment. The effect
size values were described by the magnitude of change expressed
as Cliff ’s delta (|r|). All tests were performed using IBM SPSS
Statistics version 16 with a level of significance set at p < 0.05.

RESULTS

The Kolmogorov-Smirnov tests indicated non-parametric
distribution of the data sets and therefore the data is reported
using median (Med) and inter-quartile range (IQR). For the
classical parameters, Friedman tests indicated significant
differences in path length, mean velocity and mean frequency
(A/P), depending on the condition (Table 2). The post-hoc
Wilcoxon’s analyses revealed a statistically significant difference
between the EO and EC conditions for path length, [EC
(Med = 230.95, IQR = 120.52) and EO (Med = 184.19, IQR =

53.62), z = 2.934, p ≤ 0.01], mean velocity [EC (Med = 7.7, IQR
= 4.02) and EO (Med = 6.14, IQR = 1.78), z = 2.934, p ≤ 0.01],
and mean frequency [EC (Med = 0.52, IQR = 0.31) and EO
(Med = 0.45, IQR = 0.30), z = 2.934, p ≤ 0.01]. The small effect
size calculation for the tree parameters with Cliff ’s delta values

(r < 0.35) suggests minimal practical significance. For the 95%
confidence ellipse, mean frequency (M/L), root-mean-square in
A/P, or M/L direction (Table 2) no differences were found.

The analysis for Original time series showed a significant
effect of condition on CI_MSE (A/P) and CI_MMSE (Table 2).
The post-hoc Wilcoxon’s analyses revealed a statistically
significant difference between the EO and PV conditions for
CI_MMSE, [EO (Med = 13.98, IQR = 1.15) and PV (Med =

13.58, IQR = 1.12), z = 2.401, p ≤ 0.05]. The large effect size
calculation with a Cliff ’s delta value (r > 0.80) suggests high
practical significance.

For the Incremented time series, significant differences
between conditions were found in three of the five parameters
(Table 2). The post-hocWilcoxon’s analyses revealed a statistically
significant difference between the EC and EO conditions for
CI_MSE (A/P) [EC (Med = 18.91, IQR = 1.14) and EO (Med
= 17.99, IQR = 1.73), z = 2.934, p ≤ 0.01], CI_MSE (M/L) [EC
(Med= 20.29, IQR= 1.37) and EO (Med= 19.00, IQR= 0.95), z
= 2.490, p≤ 0.05], and CI_MMSE [EC (Med= 9.03, IQR= 0.40)
and EO (Med = 8.46, IQR = 0.71), z = 2.934, p ≤ 0.01]. The
small effect size calculation for the tree parameters with Cliff ’s
delta values (r < 0.35) suggests minimal practical significance.

When comparing the EC and PV conditions, the post-hoc
Wilcoxon’s analyses revealed a statistically significant differences
for CI_MSE (A/P) [EC (Med = 18.91, IQR = 1.14) and PV (Med
= 18.29, IQR = 1.35), z = 2.401, p ≤ 0.05], CI_MSE (M/L) [EC
(Med= 20.29, IQR= 1.37) and PV (Med= 19.94, IQR= 0.84), z
= 2.701, p≤ 0.01], and CI_MMSE [EC (Med= 9.03, IQR= 0.40)
and PV (Med= 8.83, IQR= 0.43), z= 2.667, p≤ 0.01]. The large
effect size calculation for the three parameters with Cliff ’s delta
values (r > 0.95) suggests large practical significance.

When comparing the PV and EO conditions, the post-hoc
Wilcoxon’s analyses revealed statistically significant differences
for CI_MSE(A/P) [PV (Med = 18.29, IQR = 1.35) and EO (Med
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= 17.99, IQR = 1.73), z = 2.934, p ≤ 0.01], and CI_MMSE [PV
(Med = 7.7, IQR = 4.02) and EO (Med = 6.14, IQR = 1.78), z
= 2.578, p ≤ 0.05]. The medium effect size calculation for the
two parameters with Cliff ’s delta values (r > 0.65) suggests high
practical significance.

In the Difference time series, four of the five non-linear
parameters significantly changed between conditions (Table 1).
The post-hocWilcoxon’s analyses revealed statistically significant
differences between the EO and EC conditions for CI_MSE (A/P)
[EC (Med = 12, 29 IQR = 0.84) and EO (Med = 11.62, IQR =

1.14), z = 2.934, p ≤ 0.01], CI_MSE (M/L) [EC (Med = 13.20,
IQR = 0.99) and EO (Med = 12.03, IQR = 0.65), z = 2.534, p
≤ 0.05], and CI_MMSE [EC (Med = 5.24, IQR = 0.23) and EO
(Med = 5.00, IQR = 0.23), z = 2.934, p ≤ 0.01]. The small effect
size calculation for the tree parameters with Cliff ’s delta values (r
< 0.35) suggests minimal practical significance.

When comparing the EC and PV conditions, the post-hoc
Wilcoxon’s analyses revealed a statistically significant differences
for CI_MSE (M/L), [EC (Med= 13.20, IQR= 0.99) and PV (Med
= 12.88 IQR = 0.69), z = 2.667, p ≤ 0.01], and CI_MMSE [EC
(Med = 5.24, IQR = 0.23) and PV (Med = 5.15, IQR = 0.19),
z = 2.497, p ≤ 0.05]. The large effect size calculation for the
three parameters with Cliff ’s delta values (r > 0.90) suggests large
practical significance.

When comparing the PV and EO conditions, the post-hoc
Wilcoxon’s analyses revealed statistically significant differences
for CI_MSE (A/P), [PV (Med= 11.94, IQR= 0.85) and EO (Med
= 11.62, IQR = 1.14), z = 2.934, p ≤ 0.01], and CI_MMSE [PV
(Med= 5.15, IQR= 0.19) and EO (Med= 5.00, IQR= 0.23), z=
2.801, p ≤ 0.01]. The medium to large effect size calculation for
the two parameters with Cliff ’s delta values (r > 0.60) suggests
large practical significance.

DISCUSSION

In this experiment, classical parameters were tested against non-
linear complexity parameters to reveal differences between the
COP displacements during three standing conditions. Non-
linear entropy family methods resulted in better uncovering of
postural displacement differences when compared to the classical
posturographic methods. Only three of the seven classical
parameters [i.e., PL, MV, MF (A/P)] were able to differentiate
between conditions (EO, EC, PV). Amongst the five studied
entropy measures, only two showed significant differences
between conditions [i.e., CI_MSE (A/P) and CI_MMSE] using
the Original time series, and in the Incremented and Difference

time series CI_MSE (A/P), CI_MSE (M/L) and CI_MMSE
showed higher sensitivity to the condition effect. Between-
conditions differences in the Original time series were only
revealed for the CI_MMSE parameter. In the Increment and
Difference time series between-conditions differences were found
for CI_MSE (A/P), CI_MSE (M/L) and CI_MMSE parameters.
The most consistent parameter for the three time series is the
CI_MMSE and could therefore be considered as the most reliable
parameter in detecting between-conditions differences.

For visual feedback, the results show that the complexity
quantified by MSE, and MMSE statistic in Increment and

Difference is lower in the EC condition compared to EO and
PV. Even though the statistical analysis has not shown significant
differences on the COP displacement related to the effect of visual
feedback, the entropy values for SE (A/P) of theOriginal is lowest
in the EC condition. Higher entropy values are related to more
irregularity, something that may be associated with a functional
decline of the postural control system resulting in maladaptive
responses to perturbations and thereby destabilizing the balance
control (Vaillancourt and Newell, 2002; Schniepp et al., 2013).
This finding is consistent with previous research (Roerdink
et al., 2011) showing that physical and physiological visual
parameters affect postural control during quiet standing and
therefore the COP displacement (cf. Stins et al., 2009; Vuillerme
and Pinsault, 2009). The sample size and the choice of young
healthy participants that were recruited from the Sports Science
department may have influenced the results as they may have
higher postural capacities compared to age matched subjects.
Working with healthy young adults increases the difficulty to
distinguish between EO and EC compared to older adults (Prieto
et al., 1996). Taking this into account the relation between
COP regularity and the amount of attention invested in posture
(Donker et al., 2007; Stins et al., 2009), are in line with the findings
of our study. The COP regularity in the Original time series
showed no differences between conditions by means of sample
entropy while in the Difference time series such differences were
uncovered. This confirms previous work showing that a decrease
of the complexity of the physiological and behavioral systems is
observed when the kinesthetic cues are reduced (Newell et al.,
1997) but also that incremented time series provide short-term
correlated components containing more information about the
non-linear system (Ramdani et al., 2009).

Using entropy measures allows us to deal with highly irregular
and variable signals like postural sway (Prieto et al., 1996).
However, limitations of the particular parameters and properties
of the entropy measures have to be discussed. MSE is an entropy
measure for univariate time series and MMSE is extended
to multivariate cases. Even though the results of MSE and
multivariate MSE analysis are promising, some problems still
have to be resolved when working with postural data. Entropy
measures assess the complexity of physiological time series
signals rather than measure motor performance. The creation
of one complexity index summing all twenty scales needs to be
addressed in future research as it is currently unknown which
time-scale is more important or related to postural control. Data
length affects entropy measures but it depends on the experiment
and therefore a high sampling rate of 250Hzwas chosen to obtain
the necessary data length. The COP signal does not contain
high frequency signals and the use of a low-pass filter (cut-off
5 Hz) is common. This may create an oversampling issue and
the first several scales may not have physiological meaningful
information related to dynamical COP changes. Furthermore,
the coarse-graining procedure reduced the input data length to
half its original size for each successive data scale and therefore
potentially changed the intrinsic dynamical scales defined by the
signal-generating system.

The reduction of MSE with increasing time-scale is based on
the tolerance settings (i.e., constant fraction of the variance of the
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original time series) and the conventional γ∗SD tolerance could
be replaced by the variance of each coarse grained time series
(Humeau-Heurtier, 2015).

Previous research from our laboratory has shown those MSE
characteristics and a possible solution could be the use of
diverse empirical mode decomposition techniques (Shih et al.,
2015). Decomposing the Original time series into intrinsic
mode functions when testing different combinations of frequency
bands with relevant complexity indexes has been shown to be
efficient and promising in studies on elderly subjects exposed to
slight vibrations under their feet (Wei et al., 2012). Empirical
mode decomposition and Hilbert–Huang transformation can
also be used to observe the physiological signals in instantaneous
frequency and instantaneous amplitude through intrinsic mode
functions, and then transformed inversely into the time domain
to observe the changes in different conditions (Shih et al.,
2015). However, the Increment and Difference time series
approaches also seem appropriate as they removed trends
from the original time series and showed changes in the
COP displacements. Other approaches (Yeh et al., 2016) such
as the above-mentioned empirical mode decomposition also
provide useful data-driven scale factor and intrinsic entropy
calculation of complex time series showing the possibility to
explore the dynamical complexity of postural control in the
future by combining incremented time series and empirical mode
decomposition methods.

CONCLUSIONS

The current work supports the notion that some measures
of non-linear entropy discriminate postural displacement
better than classical measures when using incremented
time series. Future studies should look to extend applied
methods by examining other populations with impaired
motor control. We also suggest that future research should
consider empirical mode decomposition in combination
with incremented time series across different clinical
conditions to establish the reliability and validity of this new
approach.

AUTHOR CONTRIBUTIONS

CH, LM, PF, and BI designed and conducted the experiment, QW
and JS conducted the analysis and simulations, CH, QW, and JS
wrote the manuscript.

ACKNOWLEDGMENTS

This research was supported by the Innovation Center for Big
Data and Digital Convergence, Yuan Ze University, Taoyuan,
Chung-Li, Taiwan which is sponsored by Ministry of Education.
Also, it was supported by Ministry of Science and Technology
(Grant Number: NSC 102-2221-E-155-028-MY3).

REFERENCES

Ahmed,M.U., andMandic, D. P. (2011).Multivariatemultiscale entropy: a tool for

complexity analysis of multichannel data. Phys. Rev. E Stat. Nonlin. Soft Matter

Phys. 84(6 Pt 1):061918. doi: 10.1103/physreve.84.061918

Ahmed, M. U., and Mandic, D. P. (2012). Multivariate multiscale entropy analysis.

IEEE Signal. Process. Lett. 19, 91–94. doi: 10.1109/LSP.2011.2180713

Asch, S. E., andWitkin, H. A. (1948). Studies in space orientation. II. Perception of

the upright with displaced visual fields and with body tilted. J. Exp. Psychol. 38,

455–475. doi: 10.1037/h0054121

Bloem, B. R., Marinus, J., Almeida, Q., Dibble, L., Nieuwboer, A., Post, B.,

et al. (2016). Measurement instruments to assess posture, gait, and balance

in Parkinson’s disease: critique and recommendations. Mov. Disord. 31,

1342–1355. doi: 10.1002/mds.26572

Bronstein, A. M. (1986). Suppression of visually evoked postural responses. Exp.

Brain Res. 63, 655–658. doi: 10.1007/bf00237488

Cao, L. Y., Mees, A., and Judd, K. (1998). Dynamics from multivariate time series.

Phys. D. Nonlin. Phenomena 121, 75–88. doi: 10.1016/S0167-2789(98)00151-1

Carroll, J. P., and Freedman,W. (1993). Nonstationary properties of postural sway.

J. Biomech. 26, 409–416. doi: 10.1016/0021-9290(93)90004-X

Cavanaugh, J. T. (2005). Detecting altered postural control after cerebral

concussion in athletes with normal postural stability. Br. J. Sports Med. 39,

805–811. doi: 10.1136/bjsm.2004.015909

Cavanaugh, J. T., Mercer, V. S., and Stergiou, N. (2007). Approximate entropy

detects the effect of a secondary cognitive task on postural control in

healthy young adults: a methodological report. J. Neuroeng. Rehabil. 4:42.

doi: 10.1186/1743-0003-4-42

Collins, J. J., and De Luca, C. J. (1993). Open-loop and closed-loop control of

posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain

Res. 95, 308–318. doi: 10.1007/BF00229788

Costa, M., Goldberger, A. L., and Peng, C. K. (2005). Multiscale entropy

analysis of biological signals. Phys. Rev. E 71:021906. doi: 10.1103/physreve.71.

021906

Costa, M., Priplata, A. A., Lipsitz, L. A., Wu, Z., Huang, N. E., Goldberger, A.

L., et al. (2007). Noise and poise: enhancement of postural complexity in the

elderly with a stochastic-resonance–based therapy. Europhys. Lett. 77:68008.

doi: 10.1209/0295-5075/77/68008

Dichgans, J., Mauritz, K. H., Allum, J. H., and Brandt, T. (1976). Postural sway in

normals and atactic patients: analysis of the stabilising and destabilizing effects

of vision. Agressologie 17, 15–24.

Donker, S. F., Roerdink, M., Greven, A. J., and Beek, P. J. (2007). Regularity of

center-of-pressure trajectories depends on the amount of attention invested in

postural control. Exp. Brain Res. 181, 1–11. doi: 10.1007/s00221-007-0905-4

dos Santos, A. D. (2008). Multi-muscle Coordination in Postural Tasks. ProQuest

Dissertations & Theses Global, 304508614.

Doyle, T. L. A. (2004). Discriminating between elderly and young using a

fractal dimension analysis of centre of pressure. Int. J. Med. Sci. 11, 11–20.

doi: 10.7150/ijms.1.11

Doyle, T. L., Newton, R. U., and Burnett, A. F. (2005). Reliability of

traditional and fractal dimension measures of quiet stance center of

pressure in young, healthy people. Arch. Phys. Med. Rehabil. 86, 2034–2040.

doi: 10.1016/j.apmr.2005.05.014

Duarte, M., and Zatsiorsky, V. M. (2001). Long-range correlations in human

standing. Phys. Lett. A 283, 124–128. doi: 10.1016/S0375-9601(01)00188-8

Grassberger, P. (1991). “Information and complexity measures in dynamical

systems,” Information Dynamics, eds H. Atmanspacher and H. Scheingraber

(New York, NY: Plenum Press), 15–33.

Guerraz, M., Yardley, L., Bertholon, P., Pollak, L., Rudge, P., Gresty, M. A., et al.

(2001). Visual vertigo: symptom assessment, spatial orientation and postural

control. Brain 124, 1646–1656. doi: 10.1093/brain/124.8.1646

Huang, L., Zhuang, J., and Zhang, Y. (2013). The application of computer

musculoskeletal modeling and simulation to investigate compressive

tibiofemoral force and muscle functions in obese children. Comput. Math.

Methods Med. 2013, 1–10. doi: 10.1155/2013/698395

Humeau-Heurtier, A. (2015). The multiscale entropy algorithm and its variants: a

review. Entropy 17, 3110–3123. doi: 10.3390/e17053110

Frontiers in Human Neuroscience | www.frontiersin.org 9 April 2017 | Volume 11 | Article 206

https://doi.org/10.1103/physreve.84.061918
https://doi.org/10.1109/LSP.2011.2180713
https://doi.org/10.1037/h0054121
https://doi.org/10.1002/mds.26572
https://doi.org/10.1007/bf00237488
https://doi.org/10.1016/S0167-2789(98)00151-1
https://doi.org/10.1016/0021-9290(93)90004-X
https://doi.org/10.1136/bjsm.2004.015909
https://doi.org/10.1186/1743-0003-4-42
https://doi.org/10.1007/BF00229788
https://doi.org/10.1103/physreve.71.021906
https://doi.org/10.1209/0295-5075/77/68008
https://doi.org/10.1007/s00221-007-0905-4
https://doi.org/10.7150/ijms.1.11
https://doi.org/10.1016/j.apmr.2005.05.014
https://doi.org/10.1016/S0375-9601(01)00188-8
https://doi.org/10.1093/brain/124.8.1646
https://doi.org/10.1155/2013/698395
https://doi.org/10.3390/e17053110
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hansen et al. Non-linear Methods for Posture Evaluation

Isableu, B., Ohlmann, T., Cremieux, J., and Amblard, B. (1998). How

dynamic visual field dependence-independence interacts with the

visual contribution to postural control. Hum. Mov. Sci. 17, 367–391.

doi: 10.1016/S0167-9457(98)00005-0

Jeka, J., Oie, K. S., and Kiemel, T. (2000). Multisensory information for human

postural control: integrating touch and vision. Exp. Brain Res. 134, 107–125.

doi: 10.1007/s002210000412

Myklebust, J. B., Prieto, T., and Myklebust, B. (1995). Evaluation of nonlinear

dynamics in postural steadiness time series. Ann. Biomed. Eng. 23, 711–719.

doi: 10.1007/BF02584470

Newell, K. M., Slobounov, S. M., Slobounova, E. S., and Molenaar, P. C. M. (1997).

Stochastic processes in postural center-of-pressure profiles. Exp. Brain Res. 113,

158–164. doi: 10.1007/BF02454152

Oie, K. S., Kiemel, T., and Jeka, J. J. (2001). Human multisensory

fusion of vision and touch: detecting non-linearity with small

changes in the sensory environment. Neurosci. Lett. 315, 113–116.

doi: 10.1016/S0304-3940(01)02348-5

Paillard, T., Noe, F., Riviere, T., Marion, V., Montoya, R., and Dupui, P. (2006).

Postural performance and strategy in the unipedal stance of soccer players at

different levels of competition. J. Athl. Train. 41, 172–176.

Pascolo, P., Barazza, F., and Carniel, R. (2006). Considerations on the application

of the chaos paradigm to describe the postural sway. Chaos Solitons Fractals 27,

1339–1346. doi: 10.1016/j.chaos.2005.04.111

Pascolo, P. B., Marini, A., Carniel, R., and Barazza, F. (2005). Posture as a chaotic

system and an application to the Parkinson’s disease. Chaos Solitons Fractals 24,

1343–1346. doi: 10.1016/j.chaos.2004.09.062

Pincus, S. M., and Goldberger, A. L. (1994). Physiological time-series analysis: what

does regularity quantify? Am. J. Physiol. Heart Circ. Physiol. 266, 1643–1656.

Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., and Myklebust, B. M.

(1996). Measures of postural steadiness: differences between healthy young and

elderly adults. IEEE Trans. Biomed. Eng. 43, 956–966. doi: 10.1109/10.532130

Ramdani, S., Seigle, B., Lagarde, J., Bouchara, F., and Bernard, P. L. (2009). On the

use of sample entropy to analyze human postural sway data. Med. Eng. Phys.

31, 1023–1031. doi: 10.1016/j.medengphy.2009.06.004

Richman, J., and Moorman, J. (2000). Physiological time series analysis using

approximate entropy and sample entropy. Am. J. Physiol. 278, H2039–H2049.

Riley, M., Balasubramaniam, R., and Turvey, M. (1999). Recurrence

quantification analysis of postural fluctuations. Gait Posture 9, 65–78.

doi: 10.1016/S0966-6362(98)00044-7

Roerdink, M., De Haart, M., Daffertshofer, A., Donker, S. F., Geurts, A.

C. H., and Beek, P. J. (2006). Dynamical structure of center-of-pressure

trajectories in patients recovering from stroke. Exp. Brain Res. 174, 256–269.

doi: 10.1007/s00221-006-0441-7

Roerdink, M., Hlavackova, P., and Vuillerme, N. (2011). Center-of-pressure

regularity as a marker for attentional investment in postural control: a

comparison between sitting and standing postures.Hum.Mov. Sci. 30, 203–212.

doi: 10.1016/j.humov.2010.04.005

Sabatini, A. M. (2000). Analysis of postural sway using entropy measures of

signal complexity. Med. Biol. Eng. Comput. 38, 617–624. doi: 10.1007/BF023

44866

Schniepp, R., Wuehr, M., Pradhan, C., Novozhilov, S., Krafczyk, S., Brandt, T.,

et al. (2013). Nonlinear variability of body sway in patients with phobic postural

vertigo. Front. Neurol. 4:115. doi: 10.3389/fneur.2013.00115

Shih, M.-T., Doctor, F., Fan, S.-Z., Jen, K.-K., and Shieh, J.-S. (2015). Instantaneous

3D EEG signal analysis based on empirical mode decomposition and the

hilbert–huang transform applied to depth of anaesthesia. Entropy 17, 928–949.

doi: 10.3390/e17030928

Stins, J. F., Michielsen, M. E., Roerdink, M., and Beek, P. J. (2009). Sway regularity

reflects attentional involvement in postural control: effects of expertise, vision

and cognition. Gait Posture 30, 106–109. doi: 10.1016/j.gaitpost.2009.04.001

Vaillancourt, D. E., and Newell, K. M. (2002). Changing complexity in human

behavior and physiology through aging and disease. Neurobiol. Aging 23, 1–11.

doi: 10.1016/S0197-4580(01)00247-0

Vuillerme, N., and Nafati, G. (2007). How attentional focus on body sway

affects postural control during quiet standing. Psychol. Res. 71, 192–200.

doi: 10.1007/s00426-005-0018-2

Vuillerme, N., and Pinsault, N. (2009). Experimental neck muscle pain

impairs standing balance in humans. Exp. Brain Res. 192, 723–729.

doi: 10.1007/s00221-008-1639-7

Wei, Q., Liu, D. H., Wang, K. H., Liu, Q., Abbod, M., Jiang, B., et al.

(2012). Multivariate multiscale entropy applied to center of pressure signals

analysis: an effect of vibration stimulation of shoes. Entropy 14, 2157–2172.

doi: 10.3390/e14112157

Yamada, N. (1995). Chaotic swaying of the upright posture. Hum. Mov. Sci. 14,

711–726. doi: 10.1016/0167-9457(95)00032-1

Yeh, J. R., Peng, C. K., andHuang, N. E. (2016). Scale-dependent intrinsic entropies

of complex time series. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374:20150204.

doi: 10.1098/rsta.2015.0204

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Hansen, Wei, Shieh, Fourcade, Isableu and Majed. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 10 April 2017 | Volume 11 | Article 206

https://doi.org/10.1016/S0167-9457(98)00005-0
https://doi.org/10.1007/s002210000412
https://doi.org/10.1007/BF02584470
https://doi.org/10.1007/BF02454152
https://doi.org/10.1016/S0304-3940(01)02348-5
https://doi.org/10.1016/j.chaos.2005.04.111
https://doi.org/10.1016/j.chaos.2004.09.062
https://doi.org/10.1109/10.532130
https://doi.org/10.1016/j.medengphy.2009.06.004
https://doi.org/10.1016/S0966-6362(98)00044-7
https://doi.org/10.1007/s00221-006-0441-7
https://doi.org/10.1016/j.humov.2010.04.005
https://doi.org/10.1007/BF02344866
https://doi.org/10.3389/fneur.2013.00115
https://doi.org/10.3390/e17030928
https://doi.org/10.1016/j.gaitpost.2009.04.001
https://doi.org/10.1016/S0197-4580(01)00247-0
https://doi.org/10.1007/s00426-005-0018-2
https://doi.org/10.1007/s00221-008-1639-7
https://doi.org/10.3390/e14112157
https://doi.org/10.1016/0167-9457(95)00032-1
https://doi.org/10.1098/rsta.2015.0204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Sample Entropy, Univariate, and Multivariate Multi-Scale Entropy in Comparison with Classical Postural Sway Parameters in Young Healthy Adults
	Introduction
	Methods Experiments and Subjects
	Analysis
	Classical Methods
	Non-linear Methods
	Incremental Time Series
	Simulation
	Statistical Analysis

	Results
	Discussion
	Conclusions
	Author Contributions
	Acknowledgments
	References


