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A novel musical instrument and biofeedback device was created using
electroencephalogram (EEG) posterior dominant rhythm (PDR) or mu rhythm to
control a synthesized piano, which we call the Encephalophone. Alpha-frequency
(8-12 Hz) signal power from PDR in the visual cortex or from mu rhythm in the motor
cortex was used to create a power scale which was then converted into a musical
scale, which could be manipulated by the individual in real time. Subjects could then
generate different notes of the scale by activation (event-related synchronization) or
de-activation (event-related desynchronization) of the PDR or mu rhythms in visual or
motor cortex, respectively. Fifteen novice normal subjects were tested in their ability
to hit target notes presented within a 5-min trial period. All 15 subjects were able to
perform more accurately (average of 27.4 hits, 67.1% accuracy for visual cortex/PDR
signaling; average of 20.6 hits, 57.1% accuracy for mu signaling) than a random note
generation (19.03% accuracy). Moreover, PDR control was significantly more accurate
than mu control. This shows that novice healthy individuals can control music with
better accuracy than random, with no prior training on the device, and that PDR control
is more accurate than mu control for these novices. Individuals with more years of
musical training showed a moderate positive correlation with more PDR accuracy, but
not mu accuracy. The Encephalophone may have potential applications both as a
novel musical instrument without requiring movement, as well as a potential therapeutic
biofeedback device for patients suffering from motor deficits (e.g., amyotrophic lateral
sclerosis (ALS), brainstem stroke, traumatic amputation).

Keywords: biofeedback, electroencephalogram, music, brain-computer interface, rehabilitation

INTRODUCTION

Since early in the history of the use of electroencephalogram (EEG) for measurement of electrical
patterns of the human brain, efforts have been made to transform EEG electrical activity into sound.
These efforts not only created diagnostic alternatives to purely visual feedback, but also opened up
new possibilities for artistic expression, and created possibilities for therapeutic biofeedback.

The earliest example of converting EEG signal to sound appears in the literature
shortly after the invention of the EEG. Adrian and Matthews (1934), replicating the
earliest EEG descriptions of the posterior dominant rhythm (PDR; “the Berger rhythm”)
by Berger (1929), monitored their own EEG with sound (Adrian and Matthews, 1934).
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Conversion of EEG signals to not just sound, but musical
modalities, followed later: in 1965, the composer and
experimental musician Lucier (1965) created a performance
involving control of percussion instruments via strength of EEG
PDR, with the encouragement and participation of composer
John Cage. However, they experienced some difficulty in
achieving good control, and to overcome this employed a second
performer manually adjusting the gain from the EEG output
(Rosenboom, 1975).

Following in Lucier’s pathway 5 years later, David Rosenboom
in 1970 created a performance piece called “Ecology of the
Skin” for Automation House in New York, NY, USA. This
involved using EEG signal from 10 participants processed
through individualized electronic circuits to generate visual
and auditory performance (Rosenboom, 1975). More recently,
Brouse et al. (2006), created EEG waveform spectral analysis in
multiple frequency bands to passively control sound and music,
in a project for the eNTERFACE summer workshop.

Eduardo Miranda at the Interdisciplinary Centre for
Computer Music Research (ICCMR) at Plymouth University,
UK was part of that summer workshop project, and has gone
on to contribute significantly in this area of generating music
from EEG signal. In 2008, he used the changing patterns of
alpha and beta frequency rhythms in EEG to act as a switch
between different musical styles (Miranda and Soucaret, 2008),
and later used subject visual gaze direction to allow visual
evoked potentials of EEG to control various musical parameters
(Miranda et al, 2011). More recently, Miranda et al. (2011)
used a statistical analysis of subjective emotions and EEG in
an attempt to create an emotion sensor to subconsciously
allow users to select music which they associate with more
subjectively positive emotions (Eaton et al., 2014). Similarly,
Makeig et al. (2011) used EEG and non-EEG signal (scalp
muscle and eye movement) from one subject to drive the
use of subjective emotions to control a series of musical
intervals.

Pham et al. (2005) used slow cortical potentials of EEG
to drive control of either ascending or descending pre-set
pitch sequences; they used both auditory feedback and visual
feedback. While they used tone sequences for feedback, the
feedback did not represent a musical context. Using this
protocol, they observed significantly better results for visual
than auditory feedback. Hinterberger and Baier (2005) used
six different frequency bands of EEG signal to drive multiple
sound parameters in 10 subjects, some of whom were able to
control some sound patterns significantly when prompted with
a visual stimulus.

Some of the devices described above which use conscious
control can be considered Brain Computer Interfaces (BCls;
Wolpaw and Wolpaw, 2012). BCI research has progressed
significantly in advancing towards the goal of using non-invasive
EEG scalp electrodes to generate a direct interface from brain
signal to a computer to control such actions as moving a cursor
on a screen or a word speller (Sellers et al., 2014), driven by
signals such as alpha frequency event-related desynchronizations
and synchronizations (Roberts et al., 1999; Pfurtscheller et al.,
2000). Here, we sought to use the well-described methods of

using PDR and motor imagery EEG real-time control to create
a new scalar musical instrument, and to measure its accuracy for
novices.

In this article, we describe the creation of the
Encephalophone, a musical instrument and biofeedback
device that uses visual cortex PDR or motor cortex mu rhythm
(mu) to consciously and volitionally control the generation of
scalar music. PDR was used due to the simplicity of instructions
for novices, as instructions involve opening and closing the
eyes. Mu rhythm was used to generate an instrument that can
be controlled without movement (Yuan and He, 2014) for
potential applications with patients with motor disabilities.
Alpha frequency control using both PDR and mu rhythms
has been well described in the BCI literature (Roberts et al.,
1999; Pfurtscheller et al., 2000) for non-musical control. We
additionally describe experiments demonstrating accuracy
for novice users which is significantly higher than random in
controlling the instrument by conscious cognitive processes, and
show that PDR control was significantly more accurate than mu
control.

MATERIALS AND METHODS

Ethics Statement

The written informed consent was obtained from each subject
prior to testing, and subjects had the opportunity to withdraw
from the study at any time. IRB approval (application #49770) as
obtained from the Human Subjects Division of the University of
Woashington (Seattle, WA, USA).

Recruitment of Subjects

The subjects were recruited from email and fliers to
undergraduate and graduate students at a university setting.
Inclusion criterion was healthy adults, and exclusion criteria was
age less than 25 or greater than 65.

EEG Signal Collection
Figure 1 illustrates the experimental setup (Figure 1).
A Mitsar 201 EEG (Mitsar Co., Ltd., St. Petersburg, Russia;
distributed by Nova Tech, Inc., Mesa, AZ, USA) and 19-channel
ElectroCap electrode cap (Electro-Cap International Inc.,
Eaton, OH, USA) were used to collect EEG signal utilizing the
International 10-20 system of electrode placement (American
Electroencephalographic Society, 1994) from 15 healthy human
volunteer subjects.

Subjects were positioned in a relaxed, reclining position with
a headrest to minimize muscle artifacts, and were positioned
facing away from computer screens and other equipment
to eliminate any potential for visual feedback. EEG signal
at a sampling rate of 500 Hz was initially processed in
a HP Pavilion PC (Hewlett-Packard, Palo Alto, CA, USA)
with Mitsar EEG Acquisition software, where filters were
applied (100 Hz low-pass, 0.5 Hz high-pass, and 60 Hz notch
filters). Raw EEG signal was visually verified by a physician
clinical neurophysiologist for good signal quality and lack of
artifacts. EEG data was then streamed in real time to Matlab
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three times in a row within 9.5 sec
FIGURE 1 | Experimental setup. Electroencephalogram (EEG) signal from subject wearing electrode cap is sent from Mitsar 201 EEG amplifier to Computer
#1 where 8-12 Hz posterior dominant rhythm (PDR) or Mu power is converted to a value from 1 to 8. This value from 1 to 8 is sent via OSC to Computer #2 where it
is converted to a musical piano tone in the key of C (seven tones of C major scale and octave, from C4 to C5). Subjects generating tones attempt to match them
with a presented target tone.

(The MathWorks, Inc.,
Matlab APL

Matlab scripts for real-time signal processing were
created to apply a fourth order Butterworth filter at the
8-12 Hz band to generate an estimate of power for the
PDR in visual cortex from occipital electrode O1, or motor
cortex mu rhythm from electrode C3 (international 10-20
system) for right hand motor imagery, in real time. The
delay in the system from EEG signal acquisition to Matlab
processing was approximately 20 ms. The filter was applied
to incoming segments of 500 ms of data. The bandpass
filtered data was rectified and then averaged over the entire
segment length to produce a single power estimate for every
segment.

Natick, MA, USA) via the Mitsar

Calibration Period

A calibration was created for each individual subject and each
individual trial session of the Encephalophone. The 5 min long
calibration period consisted of 20 15 s long alternating cued
states (“on” or “off”). For visual cortex PDR, an auditory cue
of “on” cued the eyes closed, awake state, and “off” cued
the eyes open, awake state. For motor cortex mu rhythm, an

auditory cue of “on” cued the awake, resting state and “off” cued
the motor imagery (but not actual movement) state: subjects
were instructed to imagine right hand grasping and opening
at a rate of approximately 1 Hz as per prior motor imagery
BCI methods of Neuper et al. (2006). This calibration period
established the range of values of 8-12 Hz power for an individual
subject and individual trial session in the different cued states,
then divided these values into eight equal sized “bins”, or
ranges of values, based on the calibration period alpha power
histogram. After calibration, these eight possible values generate
the 8 scale degrees of the C major musical scale including the
octave (C4 to C5).

After the calibration period is used to calibrate the instrument
to each individual, the device enters the free-running period,
during which a value from 1 to 8 is generated every 500 ms in
real-time from the desired 8-12 Hz frequency power (PDR or
mu rhythm) of the user. Subjects were allowed brief (3 min)
free-running practice with note generation before accuracy
experiments.

This free-running stream of values from 1 to 8 in Matlab
is sent at a rate of one value per 500 ms (120 bpm musical
tempo for quarter notes) using Open Sound Control (OSC)
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along an Ethernet cable via a router to a second computer—an
Apple MacBook Pro (Apple, Inc., Austin, TX, USA)—where it
is received by Max/MSP music generation software (Cycling ’74,
Walnut, CA, USA). The streaming values from 1 to 8 are
used to generate the 8 scale degree notes in the C major
musical scale with a synthesized piano tone (eight notes
from C4 to C5).

Accuracy Experiments

For note accuracy experiments, the subject is presented with
a target note of either a high C (C5) or low C (C4). The
subject generates one note every 500 ms and attempts to
match the note (C4 or C5) or its nearest neighbor (D4 or
B4) three times consecutively. If the note is successfully
matched three times consecutively, a “hit” is scored and a
reward chord (C major) is played, then a new target note
is presented. If the subject does not hit the target note
three times consecutively within 9.5 s (19 notes), a “miss”
is scored and an error chord (tritone) is played, then a new
target note is presented. This results in a chance probability
of 19.03% to score a “hit” over the interval. A total of
300 s, or 5 min, is given for each trial, and the results
recorded.

Statistical Analysis

Statistical analysis was done in conjunction with consultation
from the Department of Biostatistics, University of Washington,
Seattle, WA, USA. Statistical analysis of p-values was performed
using the binomial cumulative distribution for individual
subjects. The significance of the difference between two means
was calculated using the Generalized Linear Mixed Model
(GLMM; Breslow and Clayton, 1993) for comparing the PDR
condition to the Mu condition. We used the GLLM test
because unlike other non-parametric tests (such as the Wilcoxon
signed-rank test), the GLLM tests binary data, clustered data
and tests the odds of a hit being significantly different
from a miss (rather than the odds that the distributions
are significantly different with the Wilcoxon signed-rank
test). Statistical analysis of p-values for skewness was done
using the student’s t-test with sample population standard

deviation.

RESULTS

Fifteen healthy adult volunteer subjects were trained and tested
for musical accuracy using the Encephalophone using both
PDR control and motor mu rhythm control (basic subject
demographics shown in Table 1). Subjects underwent a 5 min
calibration period, followed by a brief (3 min) free-run practice
period, then a 5 min accuracy trial for each of PDR and
mu control. Results from these musical accuracy experiments
were recorded for individual number of hits, trials and percent
accuracy for each 5 min trial using PDR control and mu control
(summary shown in Table 2).

Subjects using PDR control had an average of 27.4 hits
(standard deviation = 11.9, standard error = 3.2) in an average of

TABLE 1 | Subject demographics.

Years musical

Subject # Age Gender training
1 27 M 18
2 63 M 3
3 44 M 18
4 28 F 18
5 28 F 7
6 42 F 14
7 37 M 0
8 35 M 0
9 38 F 5
10 31 M 25
ihl 27 M 19
12 25 F 11
13 27 M 8
14 48 M 6
15 32 F 10
Average 35.5 10.80

38.7 trials, resulting in an average of 67.1% accuracy (Figure 2A,
standard deviation = 17.42%, standard error + 4.5%). Subjects
using mu control had an average of 20.6 hits (standard
deviation = 5.7, standard error & 1.5) in an average of 35.6 trials,
resulting in an average of 57.1% accuracy (Figure 2B, standard
deviation = 11.2%, standard error £ 3.0%). Each individual
subject scored significantly higher than random in accuracy for
both PDR and mu control (Figure 2): p values ranged from
6.3 x 1073 t0 2.8 x 1073. Additionally, PDR accuracies (average
67.1%) were significantly higher (p = 1.4 x 107*) than Mu
accuracies (average 57.1%).

In order to assess for individual subject bias skewed
towards particular notes, histograms of note generation during
each 5 min testing session were created, and skewness
calculated (Figure 3). If an individual exclusively generated
a high or low note, for example, this bias would result
in scoring a hit in 50% of note trials. Extreme skew bias
could occur, for example, if no alpha frequency signal was
recorded during calibration. Note that the task itself of hitting
one of two notes at the extremes of the note range may
generate skewness towards the extremes (notes 1 and 8).
There was a range of skew bias, with the most significant
skew bias towards low note generation (skewness +2.42,
p = 21 x 107%) with subject #13/PDR, and toward high
note generation (skewness —0.57, p = 6.8 x 107%) with
subject #10/PDR. In these two most biased cases, if we
look at their accuracy with the non-biased target note alone
(i.e,, throw out biased target note trials), they score 61.1%
(p = 1.10 x 107°%), and 67% (p = 1.80 x 107%) note
matching accuracy, respectively, significantly above random
chance (19.03%).

We also looked at the correlation between PDR hits and
accuracy, and mu hits and accuracy, with years of musical
training (Figure 4). There was a moderate positive relationship
between increased PDR hits and accuracy (correlation values
0.58 and 0.41, respectively)—but not mu hits and accuracy
(correlation values —0.16 and —0.11, respectively)—with
increasing years of musical training.
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TABLE 2 | Individual subject results from accuracy experiments.

Subject # PDR hits PDR trials PDR % p value Mu hits Mu trials Mu % p value
1 16 35 45.7 7.41E-05 17 35 48.6 1.69E-05
2 23 36 63.9 5.69E-10 32 41 78.0 3.11E-17
3 33 39 84.6 6.57E-20 25 39 64.1 1.08E-10
4 23 40 57.5 1.28E-08 27 39 69.2 1.20E-12
5 30 41 73.2 8.22E-15 19 35 54.3 6.36E-07
6 52 55 94.5 6.34E-36 28 38 73.7 3.47E-14
7 30 38 78.9 1.40E-16 16 33 48.5 2.81E-05
8 14 32 43.8 3.20E-04 17 33 51.5 5.72E-06
9 12 31 38.7 2.79E-03 27 40 67.5 3.28E-12
10 52 55 94.5 6.34E-36 19 34 55.9 3.32E-07
Ihl 34 41 82.9 7.95E-20 19 33 57.5 1.67E-07
12 19 33 57.6 1.67E-07 15 33 45.5 1.24E-04
13 24 27 88.9 1.71E-11 12 31 38.7 2.79E-08
14 25 41 61.0 5.65E-10 17 35 48.6 1.69E-05
15 23 37 62.2 1.32E-09 19 35 54.3 6.36E-07
Average 27.4 38.7 67.1 20.6 35.6 57.1

Random 19.03 19.08

Number of hits, number of trials, and percent (%) accuracy with p values for both PDR control and mu control.

DISCUSSION

This article describes the creation of the Encephalophone,
a musical instrument and biofeedback device, which uses
either PDR or mu rhythm EEG signal to control notes of
a musical scale in real time. We describe testing 15 normal
subjects novice to the device in experiments to test accuracy
in hitting a target note, and our results show each subject
scoring significantly higher than random, with the average
score much higher than random for both PDR and mu
control. Mu control average accuracy is comparable with that
previously shown (56%) by studies using motor imagery mu
control (Neuper et al., 2005). PDR control showed significantly
higher accuracy than mu control for these novices, as might
be expected given the more straightforward task of opening
and closing eyes—as opposed to increasing and decreasing
motor imagery. We additionally looked at skew bias for
individual notes for each subject, and found most subjects
without large skew bias. Even those subjects with larger biases
were able to score hits at both ends of the note range. We

additionally found a moderate positive correlation between
years of musical training and PDR accuracy, but not mu
accuracy.

These studies demonstrate that the Encephalophone allows
novices to have some cognitive volitional control of generation
of musical notes in real time, without movement. We believe
these results and the creation of this device is of significant
interest for several reasons. First, the Encephalophone represents
a novel musical instrument that uses EEG control to create
scalar music in real-time, and allows some basic accuracy
that has been experimentally tested here. Second, given the
known potential for significant improvement with training in
mu-based BCI devices (Neuper et al., 2006), novices such as
those tested here have the potential with continued training to
significantly improve accuracy and facility with the instrument.
The use of scalar musical tones—rather than non-musical sound
or visual biofeedback—may confer a training advantage: the
benefits of music for arousal motivation for both training
and therapeutics have been shown (Bergstrom et al., 2014).
Third, the use of a musical feedback-based EEG device with

A Accuracy - PDR B Accuracy - Mu
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FIGURE 2 | Percent accuracy for PDR and Mu control. Individual subjects were given 5 min to hit as many target notes as possible using either PDR control or
Mu control. Scatter plots of results of all subjects were generated (bars represent mean and standard deviation), with random (chance) control, for each of:
(A) Percent accuracy using PDR control (standard error & 4.7). (B) Percent accuracy using mu control (standard error + 3.0).
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responsiveness noticeable to the user may hold promise for  blindness), and particularly to those who played music before
patients—such as those with locked-in syndrome—who are their injury.

severely incapacitated and may be more likely to respond Previously, others have reported use of BCI to control
to auditory (and specifically musical) stimulus and feedback  not only visual output (e.g., cursor on a computer screen)
than to visual stimulus and feedback. This is particularly — but also sound, and reported better control and accuracy
so for those who may have visual impairment (e.g., cortical ~ with visual rather than (non-musical) auditory feedback
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(Nijboer et al., 2008). However, Bergstrom et al. (2014)
showed musical biofeedback to be better than either
simple passive music listening or non-musical sonification
biofeedback for control of physiological arousal state. Here
we report reasonable control with virtually no training,
using scalar musical tone feedback rather than non-musical
auditory feedback. Thus we hope that with further training
involving musical accompaniment between testing sessions,
the musical context provided will greatly improve learning
and accuracy of control. This will be tested in future
experiments with serial training, as well as testing with more
note target options (3 or 4 possible notes to match rather
than 2).

This device is being used as a novel improvisational
musical instrument in live performance, accompanied by small
ensembles of musicians. Future development will include using
multiple soloists performing with Encephalophones together,
in a call and response improvisation, as well as performers
improvising not only with musical scales, but also with timbre

or chordal improvisation. Furthermore, work in computer music
using conscious control of sound spatialization is being explored.

Diagnostically, the Encephalophone might prove useful in
auditory monitoring of clinical EEG applications, such as
auditory seizure detection, as described by Loui et al. (2014).
Therapeutically, we also plan on using the Encephalophone
in trials of cognitive rehabilitation and neurologic music
therapy with patients with motor disabilities (but with at least
one intact motor cortex). It has already been demonstrated
that neurologic music therapy improves executive function in
traumatic brain injury rehabilitation (Thaut et al., 2009). Other
patients who might thus benefit would include patients suffering
from amyotrophic lateral sclerosis (ALS), brainstem stroke, or
traumatic amputation (such as war veterans). The ability to
generate music using a portion of the brain that is no longer
able to control motor movement of limbs may be beneficial
for emotional and cognitive rehabilitation. Also, combining
the Encephalophone with physical therapy may improve motor
rehabilitation, and cortical “rewiring” of motor circuits may
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allow new motor output pathways for regaining some motor
control.
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