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Cognitive control includes maintenance of task-specific processes related to attention,
and non-specific regulation of motor threshold. Depending upon the nature of the
behavioral tasks, these mechanisms may predispose to different kinds of errors, with
either increased or decreased response time (RT) of erroneous responses relative to
correct responses. Specifically, slow responses are related to attentional lapses and
decision uncertainty, these conditions tending to delay RTs of both erroneous and
correct responses. Here we studied if RT may be a valid approximation distinguishing
trials with high and low levels of sustained attention and decision uncertainty. We
analyzed response-related and feedback-related modulations in theta, alpha and beta
band activity in the auditory version of the two-choice condensation task, which is highly
demanding for sustained attention while involves no inhibition of prepotent responses.
Depending upon response speed and accuracy, trials were divided into slow correct,
slow erroneous, fast correct and fast erroneous. We found that error-related frontal
midline theta (FMT) was present only on fast erroneous trials. The feedback-related FMT
was equally strong on slow erroneous and fast erroneous trials. Late post-response
posterior alpha suppression was stronger on erroneous slow trials. Feedback-related
frontal beta was present only on slow correct trials. The data obtained cumulatively
suggests that RT allows distinguishing the two types of trials, with fast trials related to
higher levels of attention and low uncertainty, and slow trials related to lower levels of
attention and higher uncertainty.

Keywords: cognitive control, attention, response time, error detection, theta oscillations, alpha oscillations, beta
oscillations

INTRODUCTION

Cognitive control is a functional set of processes that provides maintenance of adaptive
goal-directed behavior (Botvinick et al., 2001; Yeung, 2014). In perceptual decision tasks,
high performance depends on successful encoding of sensory information, followed by
activation of stimulus-to-response mapping representation, ultimately leading to appropriate
response selection. In such tasks, cognitive control is responsible for maintenance of
task-specific processes related to sustained attention (which enhances sensory encoding and
activation of appropriate stimulus-to-response mappings), as well as for non-specific regulation
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of motor threshold (which increases the chances that correct
motor programs will win the competition against incorrect
ones; Ridderinkhof, 2002; Dudschig and Jentzsch, 2009; King
et al., 2010; Danielmeier and Ullsperger, 2011; Cohen, 2014).
In line with this distinction, performance errors may have
two different mechanisms: some errors may result from
inappropriate action impulses that were not inhibited due
to lowered motor threshold, while others may result from
lapses in sustained attention that deteriorate stimulus encoding
and subsequent activation of stimulus-to-response mapping
(van Driel et al., 2012). Response time (RT) of erroneous
responses tends to be shorter than correct RT in the first
case (‘‘error speeding’’) and longer—in the second case
(‘‘error slowing’’).

The nature of the task may predispose to one or the other
error type, with either ‘‘error speeding’’, or ‘‘error slowing’’,
respectively. Erroneous RT tends to be shorter if a task is simple
and/or it requires fast rather than accurate responses (Ratcliff
and McKoon, 2008). Most tasks used in cognitive control studies
(such as Simon task, flanker task and SART) require overriding
or inhibiting a prepotent response, making these tasks very
sensitive to the level of motor inhibition (Ridderinkhof, 2002;
Ridderinkhof et al., 2004b; Dudschig and Jentzsch, 2009; van
Driel et al., 2012). Errors in such tasks are mostly failures to
inhibit fast automatic responses.

On the contrary, increased error RT is typically observed
in complex or accuracy-demanding attentional tasks (Wilding,
1971; Luce, 1986; Dyson and Quinlan, 2003; Ratcliff and
McKoon, 2008; O’Connell et al., 2009; Cohen and van Gaal,
2013). Slower RTs have been specifically associated with
attentional lapses (Weissman et al., 2006; van Driel et al., 2012)
and uncertainty (Pailing and Segalowitz, 2004;Wessel et al., 2011;
Navarro-Cebrian et al., 2013). Apparently, decreased attention
compromises stimulus encoding and subsequent task-specific
processing, ultimately leading to the situation in which both
correct and erroneous motor programs are almost equally
activated, so that the response selection process takes longer time.
Further, in the text, we will refer to this situation as ‘‘decision
uncertainty’’.

Importantly, correct responses may also differ in nature
following a dichotomy similar to that known for erroneous
responses. For example, some of the correct responsesmay in fact
be preceded by subthreshold attempts to commit an erroneous
response, resulting in increased RT on such ‘‘mixed correct’’
trials compared with ‘‘pure correct’’ trials (Cohen and van Gaal,
2014)—thus, again, providing evidence that decision uncertainty
leads to delayed behavioral responses.

Performance monitoring, including error detection, is an
essential component of the cognitive control framework.
Importantly, error detection may be either internal (driven
by endogenous processes) or external (driven by a feedback
stimulus; Holroyd et al., 2004). Internal error detection is likely
to occur in such conditions that information about perceived
stimulus and task-specific stimulus-to-response mapping is of
sufficient quality, so that information processing continuing
beyond the moment of response initiation can result in an
internal inference that another response should have been

selected. On the contrary, after an erroneous response performed
in the state of high decision uncertainty, there is not enough
information to find out whether the response committed
was correct or not; thus, only an external error detection is
possible in this case—driven by an external feedback stimulus
(Holroyd et al., 2004). We will refer to the latter situation
as ‘‘outcome uncertainty’’. Importantly, the same logic can be
applied not only to error detection but also to correctness
detection.

Outcome detection and ensuing cognitive control
adjustments can be reflected in electroencephalographic
(EEG) oscillations. A negative trial outcome (including both
response-related internal error detection and feedback-related
external error detection) is known to evoke increased frontal
midline theta (FMT) oscillations in respective time windows
(Yeung et al., 2004; Cohen et al., 2007, 2009; Cavanagh et al.,
2009; Christie and Tata, 2009; Kolev et al., 2009; van de Vijver
et al., 2011; Cavanagh and Frank, 2014; Novikov et al., 2015a).
Suppression of alpha oscillations over posterior cortical areas
presumably reflects adjustments of attention in attentional tasks
(Carp and Compton, 2009; Mazaheri et al., 2009; van Driel et al.,
2012) as well as an attentional enhancement during feedback
expectation (Bastiaansen et al., 1999, 2002; Pornpattananangkul
and Nusslock, 2016). Prefrontal activation in beta range can be
observed in response to a positive feedback, supposedly signaling
the importance of maintaining currently active task rules (van de
Vijver et al., 2011).

The two types of errors viewed above may occur intermixed
(van Driel et al., 2012). The two types of correct responses
also go intermixed within an experiment (Cohen and van Gaal,
2014). Since RT differs between the types of responses outlined
above, we expected that RT might be a valid approximation
distinguishing trials with high and low levels of uncertainty
caused by spontaneous lapses of attention.

The body of literature cited above suggests that fast errors
are mostly premature responses resulting from failures to
keep a sufficient motor threshold, leading to a state of low
outcome uncertainty, which allows internal error detection
soon after the response commission (i.e., before the feedback
signal, if feedback is presented with a sufficient delay after
the response). In such conditions, an external feedback error
signal may be less informative—because it is predictable. On the
contrary, slow trials are supposedly executed under a low level
of sustained attention and the ensuing state of high decision
uncertainty. Thus, slow errors mostly result from compromised
task-specific processing. Consequently, on such trials, responses
are followed by a state of high outcome uncertainty, so evaluation
of trial outcome should mostly depend upon an external
feedback signal—with negative feedback providing external
error detection, and positive feedback providing an external
reinforcing signal.

Thus, we predicted stronger error-related FMT on fast-RT
trials (presumably, reflecting internal error detection) and
stronger feedback-related FMT on slow-RT trials (presumably,
reflecting external error detection). Since slow trials may be
associated with lowered attentional level (Weissman et al.,
2006; van Driel et al., 2012), we expected greater posterior
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alpha suppression specifically on erroneous slow trials—related
to adaptive reconfiguration of attention and attentional
enhancements related to feedback expectation in conditions of
greatest outcome uncertainty. Additionally, we predicted that
only on slow trials an increase in prefrontal beta oscillations in
response to a positive feedback would be observed (van de Vijver
et al., 2011; Cunillera et al., 2012).

In the current study, we focused on the within-subject analysis
with distinction between fast and slow behavioral responses
(relative to individual RT medians). We used an auditory
version of the condensation task (Posner, 1964; Garner, 1974;
Gottwald and Garner, 1975). This task is highly demanding
for sustained attention while in contrast with many tasks used
within the cognitive control paradigm (such as the Simon task,
flanker task and SART) it involves no apparent inhibition of
prepotent responses. It is characterized by substantially longer
RTs compared to the Simon task, flanker task and SART,
hinting at higher cognitive processing load needed to follow
the complex conjunction-based stimulus-to-response mapping
implemented within this task, making this task difficult to
perform (Posner, 1964; Garner, 1974; Gottwald and Garner,
1975). Additionally, difficulty of the task may be expected to
increase the importance of feedback signals, since even after
extensive learning participants’ performance accuracy reaches a
plateau of 85%–90% and does not improve any further (Lazarev
et al., 2014). Both types of errors as defined by van Driel et al.
(2012) can presumably be observed during the condensation
task (Novikov et al., 2015a,b). Although ranges of correct and
erroneous RTs substantially overlap, average RTs on erroneous
trials are greater than average RTs on correct trials, thus
hinting that a substantial fraction of errors is committed due to
attentional lapses (Weissman et al., 2006; van Driel et al., 2012)
and uncertainty (Pailing and Segalowitz, 2004;Wessel et al., 2011;
Navarro-Cebrian et al., 2013). Thus, an attentional nature of
the task specifically provides tools to compare trials with high
and low levels of attention. The condensation task proved to be
a valid experimental tool for studying EEG oscillations in the
framework of cognitive control paradigm (Novikov et al., 2015a).
In the current study, feedback was given with a sufficient delay
after response commission, which allowedmeasuring both error-
related and feedback-related brain events.

We found that error-related FMT was evident only on fast
trials. We did not find the expected difference in the feedback-
related FMT between slow and fast trials. Late post-response
posterior alpha suppression was strongest on erroneous slow
trials. Feedback-related prefrontal beta was present only on slow
correct trials. Thus, the evidence obtained generally suggests that
RT allows distinguishing the two types of trials, with fast trials
related to higher levels of attention and low uncertainty, and slow
trials related to lower levels of attention and higher uncertainty.

MATERIALS AND METHODS

Participants and Experimental Conditions
Forty-nine healthy right-handed volunteers participated in
the present study; their mean age was 23.5 ± 0.5 years

(mean ± standard deviation), 31 females, and 18 males. All
volunteers had normal or corrected-to-normal vision and normal
hearing; they reported no history of auditory, neurological,
or mental disorders. The experiments were carried out in
accordance with the Declaration of Helsinki and its amendments
and were approved by the ethics committee of the National
Research University ‘‘Higher School of Economics (HSE)’’.
Informed consent was signed by each participant before the
experiment. All experiments were conducted in a sound-
attenuated chamber.

Stimuli
Auditory stimuli were presented using E-Prime software
(Psychology Software Tools, Inc., Sharpsburg, PA , USA) through
a high-quality stereo headset with in-ear design at a sound
pressure level of 90 dB (the sound pressure level at participants’
tympanic membrane could be a little lower depending on
individuals’ external acoustic meatus anatomy that could prevent
ideal sealing of the earpiece against the external acoustic
meatus walls).

We used four pre-recorded auditory stimuli that were
characterized by one of the two timbers (‘‘violin’’ or
‘‘calliope’’) and one of the two pitches (‘‘low’’ 440 Hz, A4,
or ‘‘high’’ 523.25 Hz, C5). The four stimuli were named
in the instruction presented to the participants as ‘‘violin
low’’, ‘‘calliope low’’, ‘‘violin high’’, and ‘‘calliope high’’
(Figure 1, insert).

The tones were synthesized using Microsoft ‘‘GS Wavetable
SW Synth’’ integrated into Microsoft DirectX (Microsoft
Corporation, Redmond, WA, USA). For each tone, only a
stationary plateau part was taken from the original digital
recordings of sufficient length. The resulting duration of all
auditory stimuli was 100 ms. Artificial rise and fall periods (each
10 ms in duration) were created by linearly decreasing amplitude
represented in dB scale in a rising and falling fashion respectively.
Mean square amplitudes of all auditory stimuli recordings were
digitally equalized. Digital sound editing was done using Anvil
Studio (Willow Software, Lake Forest Park, WA, USA), Audacity
(Free Software Foundation, Boston, MA, USA), and MATLAB
(MathWorks Inc., Natick, MA, USA).

Visual feedback stimuli were used: a positive visual feedback
was a large black contour thumbs-up sign on a gray background,
and a negative visual feedback was a thumbs-down sign,
which was produced by rotating the thumbs-up sign by 180◦

(Figure 1).

Design and Procedure
An auditory two-choice version of the condensation task
(Posner, 1964; Garner, 1974; Gottwald and Garner, 1975) was
used; a similar task was successfully employed in previous EEG
studies of attention and cognitive control (Chernyshev et al.,
2015; Novikov et al., 2015a).

The experiment included six identical blocks; after the
end of each block, participants were offered a short rest.
During each of the blocks, 100 auditory stimuli were presented;
the four stimuli were presented with equal probabilities
(25:25:25:25) interleaved in a quasi-random order, with random
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FIGURE 1 | A schematic illustration of the experimental behavioral task. See text for details.

stimulus onset asynchrony (SOA) of 4000 ± 500 ms (uniform
distribution).

Participants made responses to stimuli by pressing one or the
other of the two specified buttons of a small hand-held gamepad
with their thumb (Figure 1); they were instructed to hold the
gamepad in their dominant (right) hand.

A schematic representation of a trial, as well as the
stimulus-to-response mapping table are shown in Figure 1.
The stimulus-to-response mapping table specifies the
conjunction contingencies between the two stimulus features
(‘‘violin’’/‘‘calliope’’ and ‘‘high’’/‘‘low’’) comprising the set of
the four stimuli, and the response required to the left and right
buttons of the gamepad. The nature of the condensation task
is such that it cannot be performed successfully via processing
any single feature alone: it requires a mental conjunction of two
features dimensions (Posner, 1964; Garner, 1974; Gottwald and
Garner, 1975).

Visual feedback was presented in all six experimental blocks,
525 ms after participants’ responses; duration of the feedback
stimulus was 700 ms. After correct responses, participants
were presented with a positive visual feedback; after erroneous
responses they were presented with a negative visual feedback
(Figure 1). The monitor screen was filled with a uniform gray
background continuously between feedback presentations.

Feedback was presented only after responses with RTs longer
than 300 ms. If RT exceeded 1700 ms, feedback stimuli were
additionally supplemented with a word ‘‘Faster’’ on the monitor
screen; both types of trials (‘‘urged’’ responses and trials with
abnormal RTs) were later excluded from the EEG analysis, since

feedback was absent or modified on such trials compared with
regular trials.

The participants were offered to familiarize with a table
similar to that included in Figure 1 (insert), which was given
to them printed out in a large font on a sheet of paper for free
viewing, and then removed before the start of EEG recording.
Before the start of the experimental blocks, the participants were
also familiarized with the auditory stimuli: the experimenter
manually presented them to the participants and named them
orally, and then the participants were blind-tested with the
stimuli. During this test, all of the participants easily named all
of the stimuli correctly, and all of them stated confidently that
they could clearly feel the difference between all of the stimuli and
knew which button corresponded to each stimulus. The meaning
of the feedback stimuli was explained in the instruction given to
the participants before the start of the experiment.

The instruction also informed the participants that they were
to press one of the two buttons as specified in the table, but it did
not tell them to respond as fast as possible, nor did it force them
to make random choices if they were not sure which response
was correct.

Behavioral Data Analysis
The first experimental block was intended for participants to
get used to the task; it was demonstrated that under a similar
condensation task participants reach plateau performance
accuracy within the first experimental block (Lazarev et al., 2014).
We included only the data from blocks 2–6 into all the analyses
reported here.
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At this stage, responses with RT shorter than 300 ms were
excluded from the analysis because: (1) feedback was not given
after such early responses; and (2) considering very large RTs
characteristic of the condensation task (Lazarev et al., 2014;
Novikov et al., 2015a,b), at least part of such responses could be
in fact delayed responses belonging to the previous trial rather
than to the current trial. Such responses were very rare (<0.3%
of trials).

We calculated percentages of response types and average
RTs for each subject using all corresponding trials (in the rare
events of multiple button presses, only the first button press was
accounted for). Two participants, who performed at lower than
50% level of accuracy, were excluded from this and all of the
following analyses.

For each participant, median RT was calculated for all
responses pooled together; this measure was used in all further
analyses to account for the response speed.

All behavioral data analyses were performed withinMATLAB
(MathWorks Inc., Natick, MA, USA) using custom-made scripts.
Comparisons were made using two-tailed paired t-tests.

Electrophysiological Recording and EEG
Preprocessing
The EEG was recorded using an NVX-52 system (Medical
Computer Systems, Moscow, Russia) with Neocortex Pro
software (Neurobotics, Moscow, Russia) from 27 electrodes in
accordance with the modified international 10%-10% system and
one electrooculogram electrode, with a linked earlobe reference.
The band-pass filter was 0.1–200 Hz, and sampling rate was
1000 Hz. Electrode-to-skin impedance was kept below 10 kΩ for
all channels.

EEG analysis was performed within MATLAB (MathWorks
Inc., Natick, MA, USA) using custom-written scripts and
built-in functions of EEGLAB toolbox (Delorme and Makeig,
2004). High-amplitude artifacts exceeding 300 µV were rejected
from the data. Signals in bad channels were replaced by
spherical interpolations over the neighborhood electrodes.
Independent component analysis (ICA) was performed,
and components related to eye movements were manually
selected and rejected from the data. Finally, we substituted
signals in channels contaminated with EMG by spherical
interpolation over the neighborhood electrodes; we selected
for this procedure those channels, in which the spectral
power in 25–45 Hz range exceeded 1.5 standard deviations
above the mean value taken over the total number of
channels × blocks × subjects in the experimental sample
(about 2% of channels × blocks × subjects).

In order to reduce volume conduction effects, current source
density (CSD) transformation was applied to EEG data using
open-source CSD toolbox (Kayser and Tenke, 2006a). CSD
transformation can be applied to low-resolution EEG data
(Kayser and Tenke, 2006b).

Response-locked epochs for each condition were extracted
from the data (−2000 to 2000 ms relative to the response).
Epochs were included into the EEG analysis only if they met the
following conditions:

1. The RT was within 300–1700 ms range. Thus, ‘‘urged’’
responses and trials with abnormal RTs were excluded from
the EEG analysis;

2. A single button press was committed during the trial. Thus, we
excluded trials with multiple correcting responses that were
occasionally performed by some participants and that could
contaminate post-response EEG data;

3. The trial was preceded and succeeded by correct trials. Thus,
only correct trials committed within sequences of correct
trials and only single errors committed between correct trials
were included into analysis. This was done in order to
exclude post-error and pre-error effects influencing the trials
that immediately follow or immediately precede erroneous
responses.

Classifying Trials into Four Experimental
Conditions
Responses were classified as correct ones (a correct button was
pressed) and errors (the other button was pressed). For each
participant individually, median RT was calculated, and trials
were additionally classified as ‘‘slow’’ or ‘‘fast’’ if RT was greater
or shorter than the individual RTmedian correspondingly. Thus,
four conditions were used in the further statistical analyses: slow
correct, slow erroneous, fast correct and fast erroneous trials.

Since all participants committed less erroneous responses
than correct responses, for the following EEG analysis we did
a trial number matching procedure that equalized numbers of
trials across conditions. This was needed to equalize the variance
of mean non-phase-locked power estimate, thus avoiding the
potentially huge bias in estimation of the mean difference in non-
phase-locked power between conditions.

The trial number matching procedure was applied across
all the four conditions specified above, independently within
each participant’s dataset. All valid trials were retained within
the least frequent condition, and the number of trials for other
conditions was reduced to this number. For correct vs. erroneous
contrasts (slow correct vs. slow erroneous, and fast correct vs.
fast erroneous trials), trial number matching procedure involved
an RT-matching procedure as follows. We used all trials from
a condition that was less frequent throughout the experiment
(erroneous trials), and for each of these trials we selected a
matching trial from the other condition (correct trials) with the
closest RT (each trial could be taken only once). This procedure
equalized mean RTs within each pair under comparison, thus
allowing us to compare correct trials with erroneous trials on
compatible timelines. For slow vs. fast contrasts (slow correct
vs. fast correct, and slow erroneous vs. fast erroneous trials), we
excluded random trials from conditions with greater numbers
of trials. Thus, within each individual participants’ dataset we
produced a data subset with equalized numbers of trials across
all four conditions (which was necessarily the smallest number
across the four conditions).

After all the steps described above, we included into the
further analyses only the EEG datasets that contained no less than
five artifact-free trials in each of the conditions. Thus, all of the
EEG analysis reported here was performed in 26 participants.
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For each participant each condition included 12.2 ± 5.8 trials
(mean ± standard deviation), the range of individual values
being 5–25 trials.

Time-Frequency Decomposition
CSD signal in each channel was translated into time-frequency
domain using wavelet transformation using sliding time
windows at 20 ms steps. We used complex Morlet wavelets with
the frequencies ranging from 2 Hz to 40 Hz in steps of 1 Hz; the
number of cycles was linearly increased from 2 (on the lowest
frequency) to 37.5 (on the highest frequency), thus providing an
equal trade-off between time and frequency resolutions over the
whole frequency range.

For each time-frequency bin and each electrode, we calculated
non-phase-locked spectral power averaged over subsets of trials
used for the analysis. First, we calculated the mean total power by
averaging squared norms of complex amplitudes over the trials.
Next, we calculated phase-locked power by averaging complex-
valued amplitudes over the trials, and then taking squared
norm of this sum. Non-phase-locked power was calculated as
the difference between the total power and the phase-locked
power.

Finally, we performed baseline normalization of non-phase-
locked power, thus obtaining event-related spectral perturbation
(ERSP). Baseline was calculated as an averaged spectral power
over the −500 to 0 ms pre-stimulus time window (separately
for each location and each frequency). We used a common
baseline for the four conditions under comparison because we
aimed to focus on post-stimulus effects and to get rid of possible
pre-stimulus variation effects. The normalization was performed
using the formula:

10 log10(power/baseline),

so that the event-related changes in non-phase-locked spectral
power relative to baseline were expressed in decibels.

ROI Definition
The current study primarily aimed at testing specific predictions
concerning error-related and feedback-related events. Thus,
we defined the following a priori ROIs based on previous
research.

ROI 1—error-related and feedback-related FMT oscillations
(Yeung et al., 2004; Cohen et al., 2007, 2009; Cavanagh et al.,
2009; Christie and Tata, 2009; van deVijver et al., 2011; Cavanagh
and Frank, 2014; Novikov et al., 2015a): 4–7 Hz, frontal midline
electrodes centered on Fcz (Fz, Fcz, Cz), 100–300 ms after
response and 200–500 ms after feedback onset correspondingly.

ROI 2—posterior alpha oscillations related to error-related
attentional reconfiguration (Klimesch, 1999; Carp and Compton,
2009; Mazaheri et al., 2009; van Driel et al., 2012; Novikov
et al., 2015a) and to attentional enhancement during feedback
expectation (Bastiaansen et al., 1999, 2002; Pornpattananangkul
and Nusslock, 2016): 8–13 Hz, parieto-occipital electrodes (Pz,
O1, Oz, O2), 400–700 ms after response.

ROI 3—feedback-related frontal beta oscillations (Cohen
et al., 2007; Marco-Pallares et al., 2008; van de Vijver

et al., 2011; Cunillera et al., 2012): 15–25 Hz, electrodes
overlaying prefrontal areas (F3, Fz, F4), 200–500 ms after
feedback onset.

Statistical EEG Data Analysis and
Illustrations
Within each ROI, ERSP values were averaged across locations,
time windows and frequency ranges specified above. We used
a two-factor analysis of variance (ANOVA) with repeated
measures, with factors speed (two levels: slow and fast)
and accuracy (two levels: correct and erroneous). Post hoc
comparisons were made with Fisher’s least significant difference
(LSD) test.

In order to illustrate validity of our selection of frequency
bands and time windows, we did additional analyses within
spatial regions corresponding to ROIs specified above. In these
analyses, we explored timecourses, as well as time-frequency
patterns of the effects under study. We used two types of paired
comparisons in these analyses. First, for each condition, we
compared ERSP values with zero, thus testing whether activity
in temporal or time-frequency bins differed from the respective
baseline values. Second, we compared ERSP values between
correct trials and erroneous trials (to show whether activity
depended upon trial outcome); this was done separately for slow
and fast subsets of trials.

For each of the paired comparisons described above,
we applied permutational statistical testing based on the
threshold-free cluster enhancement (TFCE; Smith and Nichols,
2009). First, we calculated paired t-statistics for each data
bin, thus producing a map of t-scores (one-dimensional for
timecourse analyses and two-dimensional for time-frequency
analyses). Next, we applied to this map the TFCE algorithm.
After that, we shuffled the initial data (by reversing the
sign of ERSP values in the analyses aiming at comparing
the activity of interest vs. baseline, or by flipping condition
labels in the cross-condition analyses) for random subset
of subjects. In both cases, this was done for all data bins
within a participant’s dataset simultaneously, so the inherent
dependence of adjacent data bins was not broken by the
shuffling procedure. Next, we calculated the TFCE-transformed
map on the shuffled data; this was repeated 1000 times.
Positive and negative t-scores were transformed to TFCE
scores using two independent runs of algorithm. At each
permutation step, we obtained the maximal (positive) and the
minimal (negative) TFCE-score over the entire map, and then
we constructed two distributions: one for the maximal and
the other for the minimal values. Finally, for each bin of
the non-shuffled TFCE matrix (independently), we calculated
the quantiles of ‘‘minimal’’ and ‘‘maximal’’ distributions the
value in this bin falls into, thus obtaining permutation-
based p-value for this bin. All results reported here were
considered significant at p < 0.05. In order to improve signal-
to-noise ratio, we did this analysis after averaging data within
each of the consecutive five time points using a rectangular
time window, thus increasing the step of data representation
from 20 ms to 100 ms.
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RESULTS

Behavioral Data
Two participants were excluded from the analysis due to
insufficient behavioral performance, and 21 participants were
excluded from the analysis due to insufficient number of
valid erroneous trials remaining after the rigorous procedures
applied as described above. Thus, the results reported here
include 26 participants. These participants made on average
76.3 ± 12.5% (mean ± standard deviation) of correct responses,
and 22.9 ± 12.1% of errors. Average RT was 1082 ± 173 ms
on correct trials, and 1164 ± 225 ms on erroneous trials. RT
on erroneous trials was significantly larger than on correct trials
(t(25) = −83.1, p< 0.001).

Average overall individualmedian RTwas 1096± 195ms; this
measure was used to classify responses into slow and fast trials on
within-subject basis.

FMT Oscillations at Mid-Frontal ROI 1
The results of non-phase-locked FMT oscillations analysis within
frontal midline ROI 1 are shown in Figure 2.

For the non-phase-locked theta power averaged across
100–300 ms post-RT window, the main effect of accuracy was
significant (F(1,25) = 4.97, p = 0.04, partial η2 = 0.166). There was
also a significant interaction between factors speed and accuracy
(F(1,25) = 5.20, p = 0.03, partial η2 = 0.172). Post hoc tests revealed
that theta power was significantly higher on fast erroneous trials
compared with slow erroneous, slow correct and fast correct
trials (p< 0.05; Figure 2A, middle panel).

Analysis of non-phase-locked theta power averaged across
200–500 ms after feedback onset (725–1025 ms after the
behavioral response) revealed that the main effect of accuracy
was highly significant (F(1,25) = 69.33, p << 0.001, partial
η2 = 0.735). The main effect of speed and interaction between
factors speed and accuracy were not significant (p > 0.05). Post
hoc analysis revealed that theta power was significantly higher on
slow erroneous trials compared with slow correct and fast correct
trials, and on fast erroneous trials compared with slow correct
and fast correct trials (p< 0.001; Figure 2A, right panel).

Figure 2B represents timecourses of non-phase-locked theta
power. The error-related and feedback-related effects described
above are evident in the timecourses. Timecourses also reveal that
feedback-related theta on slow erroneous trials had an apparently
earlier and stronger onset. After the response, differential
effect was significant on fast trials, while during the feedback
the differential effect was significant both on slow- and fast
trials.

Figure 2C illustrates corresponding time-frequency plots.
Inspection of these figures confirms that error-related theta
activity was statistically significant only on fast trials (Figure 2C,
right panels) but not on slow trials (Figure 2C, left panels).
Feedback-related theta was present both on slow and fast trials
(Figure 2C, left and right panels).

Visual inspection of timecourses and time-frequency plots
suggests that before commission of a response theta activity was
higher on slow trials. Although it was not the main focus of this
study, we applied ANOVA to the theta power averaged over the

pre-RT window of −300 to −100 ms, and found the main factor
speed to be highly significant (F(1,25) = 13.12, p = 0.001, partial
η2 = 0.344; Figure 2A, left panel).

Alpha Oscillations at Posterior ROI 2
The results of non-phase-locked alpha oscillations analysis
within posterior ROI 2 are shown in Figure 3.

For the non-phase-locked alpha power averaged across
400–700 ms post-RT window, the main effects of speed and
accuracy where both non-significant (p > 0.05). Yet interaction
between factors speed and accuracy was significant (F(1,25) = 4.51,
p = 0.04, partial η2 = 0.153). Post hoc comparisons revealed
that alpha power was significantly lower on slow erroneous
trials compared with fast erroneous trials and slow correct trials
(p< 0.05; Figure 3A, left panel).

Figure 3B represents timecourses of non-phase-locked alpha
theta power. Visual inspection of the timecourses confirms that
during a late post-response and early-feedback-related time alpha
suppression was stronger on slow erroneous trials compared with
other conditions. Differential effect was significant only for slow
trials.

Figure 3C illustrates corresponding time-frequency plots. As
can be seen in the timecourses, alpha suppression was stronger
on slow erroneous trials than on other types of trials within a
prolonged timewindow starting from approximately 300–400ms
and ending around 900–1000 ms.

Time-frequency plots also confirm that that there was a
significant difference in alpha power between slow erroneous and
slow correct trials starting about 400 ms and extending towards
the end of the analysis period (Figure 3C, left panels), while no
such difference existed on fast trials (Figure 3C, right panels).

Visual inspection of time courses and time-frequency plots
shows that, during a later part of feedback period alpha power
was stronger suppressed on erroneous trials than on correct
trials—both for slow and fast responses. Although this was not
the primary aim of the current study, we applied ANOVA to
the alpha power averaged within the feedback time window of
200–500 ms after the feedback onset (i.e., 725–1025 ms after the
behavioral response). The main effect of accuracy was significant
(F(1,25) = 9.80, p = 0.004, partial η2 = 0.282; Figure 3A, right
panel).

Beta Oscillations at Frontal ROI 3
The results of non-phase-locked beta oscillations analysis within
prefrontal ROI 3 are shown in Figure 4.

For the non-phase-locked beta power averaged across the
feedback time window of 200–500 ms after the feedback onset
(i.e., 725–1025 ms after the behavioral response), significant
were the main effect of speed (F(1,25) = 8.50, p = 0.007, partial
η2 = 0.254), the main effect of accuracy (F(1,25) = 5.29, p = 0.03,
partial η2 = 0.175), as well as their interaction (F(1,25) = 7.03,
p = 0.01, partial η2 = 0.219). Post hoc analysis revealed that beta
power was significantly higher on slow correct trials compared
with fast correct trials, slow erroneous trials and fast erroneous
trials (p ≤ 0.002; Figure 4A).

Figure 4B represents timecourses of non-phase-locked beta
power. Visual inspection of the timecourses confirms that
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FIGURE 2 | Non-phase-locked frontal midline theta (FMT) oscillatory activity at mid-frontal ROI 1 on fast and slow trials. (A) Graphs representing
averaged event-related spectral perturbation (ERSP) data on slow correct, slow erroneous, fast correct and fast erroneous trials. Panels represent “pre-response”,
“error-related” and “feedback-related” time windows correspondingly; data are plotted as mean ± standard error of mean. (B) Timecourses of ERSP modulations
relative to response. (Top subpanel: slow correct, slow erroneous, fast correct and fast erroneous trials. Bottom subpanel: difference between slow erroneous and
slow correct, and between fast erroneous and fast correct trials). Black contours overlaid on timecourse lines indicate statistical significance (p < 0.05, permutation
statistics). “RESP”—behavioral response, “FB”—feedback. Time is shown relative to the behavioral response. (C) Time-frequency plots of oscillatory activity relative
to response. Left panels: ERSP distribution on slow trials. Right panels: ERSP distribution on fast trials. Horizontal dashed lines over ERSP plots indicate theta
frequency range. Within each panel: “Corr.”: dynamics of ERSP on correct trials; “Err.”: dynamics of ERSP on erroneous trials; “Err.–Corr.”: dynamics of ERSP
difference between erroneous and correct trials. Black contours show significant time-frequency areas (p < 0.05, permutation statistics). “RESP”—behavioral
response, “FB”—feedback. Time is shown relative to the behavioral response.
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FIGURE 3 | Non-phase-locked alpha oscillatory activity at posterior ROI 2 on fast and slow trials. (A) Graphs representing averaged ERSP data on slow
correct, slow erroneous, fast correct and fast erroneous trials. Panels represent “late post-response” and “feedback-related” time windows correspondingly; data are
plotted as mean ± standard error of mean. (B) Timecourses of ERSP modulations relative to response. Conventions as in Figure 2; (C) Time-frequency plots of
oscillatory activity relative to response. Horizontal dashed lines over ERSP plots indicate alpha frequency range. Other conventions as in Figure 2.
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FIGURE 4 | Non-phase-locked beta oscillatory activity at prefrontal ROI 3 on fast and slow trials. (A) Graphs representing averaged ERSP data on slow
correct, slow erroneous, fast correct and fast erroneous trials. Panel represents feedback-related time window; data are plotted as mean ± standard error of mean.
(B) Timecourses of ERSP modulations relative to response. Conventions as in Figure 2; (C) Time-frequency plots of oscillatory activity relative to response.
Horizontal dashed lines over ERSP plots indicate beta frequency range. Other conventions as in Figure 2.
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feedback-related beta activation was significantly stronger on
slow correct trials compared with fast correct, slow erroneous,
and fast erroneous trials. Differential effect was significant only
for slow trials.

Figure 4C illustrates corresponding time-frequency plots.
The effect of feedback-related beta activation can also be seen
on time-frequency plots. On slow correct trials, there was a
significant prolonged feedback-related activation in beta range
that started approximately at the feedback onset and lasted to the
end of the analysis period (Figure 4C, left panels). The difference
between slow erroneous and slow correct trials also revealed a
significant prolonged feedback-related effect in beta range that
possibly started around the time of feedback onset and lasted to
the end of the feedback presentation. In contrast, no such effects
were present on fast trials (Figure 4C, right panels).

DISCUSSION

Summary of Results
In the present study, we examined the dynamics of oscillatory
activity in theta, alpha and beta bands in relation to correct
and erroneous behavioral responses during performance of the
auditory condensation task. We focused on the distinction
between fast and slow behavioral responses.

In line with our predictions, we found that error-related FMT
was present only on fast trials, but not on slow trials. Yet we
did not find a statistical evidence of the expected difference in
the feedback-related FMT power between slow and fast trials.
As we expected, late post-response posterior alpha suppression
was strongest on erroneous slow trials. Also, in line with our
predictions, feedback-related prefrontal beta was present only on
slow correct trials.

Behavioral Performance
The behavioral task used in the present study was sufficiently
demanding on the participants: they committed on average
22.9% of errors. RT was very long in this task: 1082 ms on correct
trials, and 1164 ms on erroneous trials. This clearly differs the
condensation task from many behavioral tasks typically used
within the cognitive control paradigm, such as Simon task,
flanker task and SART (Ridderinkhof, 2002; Ridderinkhof et al.,
2004a; Dudschig and Jentzsch, 2009; van Driel et al., 2012).

Average RTs in the present study were even longer, than
in another version of the auditory condensation task used
in our previous study (864 ms and 976 ms correspondingly;
Novikov et al., 2015a). Percentage of errors was also higher in
the present study (22.9%) than in the previous one (10.2%).
Although the behavioral procedures were very similar between
the two studies, in the present study we used a new set of
auditory stimuli. Importantly, in the present study, the difference
in pitch between ‘‘low’’ and ‘‘high’’ stimuli was smaller than
in the previous one (yet it should be emphasized that it was
about an order of magnitude above a typical differential pitch
threshold). Supposedly, the task in the present study imposed
even higher attentional load on the participants, than the one in
our previous study.

In the present study, RTs of erroneous responses were
significantly longer than correct RTs. Error slowing is typically
observed in complex attentional tasks (Wilding, 1971; Luce,
1986; Dyson and Quinlan, 2003; Ratcliff and McKoon, 2008;
O’Connell et al., 2009; Cohen and van Gaal, 2013). Moreover,
error slowing is characteristic of attentional lapses (Weissman
et al., 2006; vanDriel et al., 2012) and of conditions of uncertainty
(Pailing and Segalowitz, 2004; Wessel et al., 2011; Navarro-
Cebrian et al., 2013). On the contrary, error speeding is typical
of tasks that depend upon proper regulation of motor threshold
(Ridderinkhof, 2002; Ratcliff and McKoon, 2008; Dudschig and
Jentzsch, 2009), and errors in such tasks mostly result from
inappropriate action impulses, that could not be blocked by an
insufficiently low motor threshold (van Driel et al., 2012).

We can conclude that behavioral data obtained show that the
task used in the present studywas attentionally demanding. Thus,
unlike the tasks with strong dependence on motor threshold, the
current task allowed us to study errors related to attention.

FMT Oscillations
As can be seen in Figure 2, FMT power was elevated
before the response commission. Such activity is believed to
reflect integration of task-related processes (stimulus processing,
memory encoding and retrieval, maintenance of task rule
representations, activation of motor programs, etc.) through
top-down control mechanisms, as well as conflict detection
and resolution; FMT was shown to have sources in the medial
prefrontal cortex (Womelsdorf et al., 2010; Cavanagh and Frank,
2014).

In the pre-RT window, FMT activity was significantly
stronger on slow trials compared with fast ones. Slow responses
are supposedly committed in the state of high decision
uncertainty, when the need to choose one correct response
between the two competing yet almost equally activated motor
programs supposedly invokes stronger activation of task-related
neural processes and their coordination with cognitive control
mechanisms; this set of brain processes is reflected in stronger
FMT activation (Cavanagh et al., 2009; Cavanagh and Frank,
2014). On the contrary, fast responses are supposedly committed
in the state of low decision uncertainty (i.e., they involve no
prolonged competition between motor programs, since one
of the programs quickly surpasses the low motor threshold),
thus no such strong activation of processes related to cognitive
control occurs before the response. This is compatible with our
assumption that response speed may be related to the level of
decision uncertainty (Wilding, 1971; Luce, 1986; Dyson and
Quinlan, 2003; Ratcliff andMcKoon, 2008; O’Connell et al., 2009;
Cohen and van Gaal, 2013).

In the post-RT window, we observed enhanced theta power
after erroneous responses compared to correct responses (the
main effect of accuracy was significant). This effect was
repeatedly replicated in literature and it is thought to reflect error
detection process (Luu and Tucker, 2001; van Driel et al., 2012;
Navarro-Cebrian et al., 2013; Novikov et al., 2015a). Analysis of
EEG oscillations in relation to error-related negativity revealed
that theta oscillations may be associated with error detection
at the level of movement monitoring; the effect was mostly
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pronounced for the total theta power rather than for phase-
locked theta power, thus hinting that an increase in theta power
rather than in synchronization (phase-locking) is responsible
for this effect (Yordanova et al., 2004; Kolev et al., 2009).
Multiple studies reported that theta increase after incorrect
responses originates in the medial prefrontal cortex and acts
as a signal of need for increasing the level of cognitive control
(Ridderinkhof et al., 2004a; Debener et al., 2005; Cohen et al.,
2008; Doñamayor et al., 2012). Moreover, Cavanagh and Frank
(2014) suggested that enhanced theta synchronization between
the medial prefrontal cortex and other parts of the brain after
error commission reflects implementation of higher cognitive
control for regulation of future actions.

As we expected, we found a statistically significant interaction
between speed and accuracy during a post-RT window: theta
power was significantly higher after fast erroneous responses
compared with other conditions, supporting the hypothesis that
the two types of incorrect responses differ as far as the internal
error detection concerns. Fast errors were followed by an increase
in FMT that could indicate internal error detection. On the
contrary, the effect was totally absent after slow erroneous
responses. Therefore, internal error detection occurs only after
fast errors, which are followed by the state of low outcome
uncertainty, and it is absent after slow errors, which are followed
by the state of higher outcome uncertainty.

This logic is compatible with the notion that two different
types of errors may occur due to disruption of two different
processes involved in successful response completion, namely
failures of motor control and attentional lapses (van Driel
et al., 2012). Likewise, the study of Navarro-Cebrian et al.
(2013) demonstrated enhanced theta power after aware errors
(which were committed faster than correct responses) and no
such enhancement after responses with self-reported outcome
uncertainty (which were committed much slower than all other
responses).

During the feedback time window, FMT activity was
significantly stronger on erroneous trials compared with correct
ones. Generally, such an effect is considered to reflect detection
of a mismatch between an expected and an actual outcome
(Cohen et al., 2007, 2009; Cavanagh et al., 2010; van de Vijver
et al., 2011). The feedback-related FMT effect can be viewed as
an external error detection leading to an adaptive increase in
cognitive control. Thus, in line with our previous report using a
different version of the condensation task (Novikov et al., 2015a),
the data obtained show that the auditory condensation task
evokes the typical FMT effects, which were previously observed
in substantially different behavioral tasks—such as Simon task,
flanker task and SART (Ridderinkhof, 2002; Ridderinkhof et al.,
2004a; Dudschig and Jentzsch, 2009; van Driel et al., 2012).

According to our predictions, the effect of feedback-related
theta power activation should have been stronger on slow
erroneous trials, because after fast errors the internal error
detection may have already occurred before the feedback
onset (525 ms in our experiment), making feedback less
informative—as compared with the case of slow errors followed
by the state of high outcome uncertainty. Indeed, visual
inspection of the timecourses and time-frequency plots in

Figures 2B,C reveals somewhat earlier and stronger FMT
onset on slow erroneous trials compared with fast erroneous
trials. However, according to ANOVA results, the feedback-
related FMT did not statistically differ between slow and fast
trials. Thus, regarding processes which FMT reflects, external
feedback seems to be informative on both certain and uncertain
erroneous trials. This may seem to contradict the report of
Holroyd et al. (2004): yet the level of certainty under the
task in that study could be higher compared with conditions
of much less straightforward stimulus-to-response mapping
of the condensation task used in our study. Additionally,
since the task used in this study was quite challenging and
required significant effort and motivation on the part of
the participants, it is possible that negative feedback was
always perceived by them as a salient negative signal—no
matter whether it could be predicted internally on a particular
trial or not.

Posterior Alpha Oscillations
As can be seen in Figure 3, alpha power was significantly
suppressed during post-response and feedback time windows.
It is believed that alpha suppression is a sign of cortical
disinhibition, which is required for a variety of cognitive
processes recruited during performance of tasks demanding
top-down control (Klimesch et al., 2007). Numerous studies link
alpha suppression to an adaptive increase in attentional level
required for optimal task performance (Carp and Compton,
2009; Compton et al., 2011; Cohen and Ridderinkhof, 2013).

We found a significant differential effect at a late post-RT
interval, starting around 400 ms after the behavioral response
and continuing beyond the feedback onset: depression of
posterior alpha oscillations was stronger on slow erroneous trials
compared with correct trials. Similar effects on erroneous trials
were reported in previous studies, and they were interpreted as
an adaptive enhancement of sustained attention resulting from
error detection (Carp and Compton, 2009; Mazaheri et al., 2009;
Novikov et al., 2015a). Thus, together with our previous report
using a similar version of the condensation task (Novikov et al.,
2015a), our results confirm effects obtained in other previous
studies.

If alpha suppression is indeed caused by an internal detection
of an error that has just been committed, one could expect that
this effect would be stronger on fast erroneous trials, during
which, according to our results, the internal error detection
(accompanied by corresponding error-related theta oscillations)
was much more evident than during slow erroneous trials. Yet
our findings revealed an opposite pattern: we observed the
most significant posterior alpha suppression specifically on slow
erroneous trials. This observation does not seem to agree with
the notion that error detection manifests itself as an increase in
theta power (Luu and Tucker, 2001; Yeung et al., 2004; Cohen,
2011) and that post-error depression of alpha oscillations comes
as a consequence of such an increase in theta power (Mazaheri
et al., 2009). Thus, the mechanism of internal error detection is
an unlikely explanation of the current finding.

According to our hypothesis, slow behavioral responses may
be a consequence of lowered level of attention, while fast
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responses may be a consequence of lowered motor threshold.
Speculatively, the current finding could be interpreted as an
adaptive attentional enhancement that follows attentional lapses
on slow trials, while on fast trials there is no need in such an
attentional enhancement because attention is not compromised.
Lowered level of attention is related to deterioration in specific
task information processing, leading to decision uncertainty.
Following this logic, we can hypothesize that either attentional
lapses or the ensuing state of uncertainty may be detected, this
detection leading to adaptive attentional reconfiguration. If this
is true, the following question arises: why stronger alpha-band
suppression occurs specifically on slow erroneous trials rather
than on both types of slow trials.

As a tentative explanation, we can consider a continuum
of attentional lapses of varying deepness. The deeper the loss
of attention is, the greater the uncertainty is—both decision
uncertainty and trial outcome uncertainty—due to compromised
task-specific information processing. Thus, apparently, the
likelihood to commit an error is greater. The deeper an
attentional lapse is, the stronger influence on parietal cortex
is needed to recover lost attention. Thus, on slow trials, there
may be a tendency towards coincidence between increased
chance of error commission and stronger signal for attentional
reconfiguration (triggered by detection of an attentional lapse
and/or a state of uncertainty). This probabilistic coincidence
seems to be a likely explanation of the results obtained.

According to van Driel et al. (2012), adaptive processes
invoked by attentional lapses themselves are related to the
increases in post-error alpha desynchronization and are not
related to theta power modulations. Thus, our results may
confirm and extend the view of two separate task monitoring
mechanisms reflected in two different oscillation bands—theta
and alpha. Meanwhile, it is not clear, whether the increased
alpha suppression observed in the current study reflects detection
of attentional lapses, and/or uncertainty itself, and/or adaptive
adjustments induced by this detection.

Since the alpha suppression effect apparently started before
feedback onset and continued through the early period of
feedback processing, one can propose a further refinement to
the interpretation of the posterior alpha power modulations
within this time interval. Since slow errors supposedly occur
in conditions of greatest uncertainty, feedback signal is the
only source of information to resolve the trial outcome.
Thus, we can expect the enhancement of attention specifically
related to anticipation of the visual feedback (in addition to
a probable general increase in attention adaptively addressed
to future trials). Indeed, feedback anticipation was linked to
posterior alpha suppression in a number of reports (Bastiaansen
et al., 1999, 2002; Pornpattananangkul and Nusslock, 2016).
According to the same logic, alpha suppression after feedback
onset may be related to enhanced attention during feedback
processing. Alpha oscillations are known to be suppressed by
feedback presentation (Papo et al., 2007; Luft et al., 2014),
although the effect is usually manifested during a later period
of feedback processing. The difference in timing of the effect
may be explained by the nature of the condensation task
that demands greater attentional involvement in comparison

with many behavioral tasks commonly used, thus leading
to earlier attention-related alpha suppression. Additionally,
the anticipatory adaptive attentional enhancement occurring
specifically on slow erroneous trials may lead to an increased
processing of the visual feedback, thus also resulting in stronger
alpha suppression in the posterior cortex (Pfurtscheller et al.,
1994). Stimulus-related alpha depression in the occipital cortex
is known to be stronger when the stimulus is attended
compared with the ignored condition (Zumer et al., 2014).
Thus, the effect observed may be a cumulative result of several
related mechanisms, all of which seem to be a result of
the process of detection of attentional lapses and/or outcome
uncertainty.

Within the later time window related to feedback processing,
alpha suppression manifested a different pattern: it was stronger
for errors compared with correct responses. It seems that
negative feedback leading to external error detection itself
results in the enhancement of attention. Other studies also
demonstrated an effect of negative feedback-related alpha
suppression and interprete it as enhanced arousal, alertness and
attention induced by external error detection (Papo et al., 2007;
Jung et al., 2010; Luft et al., 2014).

Frontal Beta Oscillations
Strong modulations of beta power over the prefrontal cortex
(Figure 4) were clearly visible in the current study, which
was based on the condensation task known to be cognitively
demanding (Chernyshev et al., 2015). A number of previous
reports demonstrated modulation of beta-band activity in the
prefrontal areas during action planning (Siegel et al., 2011),
implementation of cognitive control (Zhang et al., 2015),
working memory load (Babiloni et al., 2004) and feedback
processing (Cohen et al., 2007; Marco-Pallares et al., 2008;
van de Vijver et al., 2011; Cunillera et al., 2012). Using
combined EEG-fMRI analysis,Mas-Herrero et al. (2015) revealed
that beta oscillations reflect involvement of frontal, striatal
and hippocampal structures related to memory during reward
processing.

In our study, we observed a significant increase in beta
power on correct trials during presentation of the positive
feedback stimulus over the prefrontal ROI, as previously reported
by Cunillera et al. (2012). Our results generally stay in line
with other reports that showed enhanced beta-band oscillations
in the prefrontal cortex induced by positive feedback during
reinforcement learning (Cohen et al., 2007; van de Vijver et al.,
2011) and gambling tasks (Marco-Pallares et al., 2008).

We found that the effect of beta power increase clearly differs
between fast and slow correct responses. On slow correct trials,
the increase was prominent and statistically significant, lasting
through the whole feedback presentation and beyond it. On
the contrary, on fast correct trials, beta power slightly rose
and then receded shortly after the feedback onset. The most
significant increase in beta power was observed around 250 ms
after feedback onset, and it lasted through the whole presentation
period. Such modulations were observed exclusively for slow
correct responses, making this condition stand apart from all
other conditions.
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We believe that slow responses are followed by the state
of high outcome uncertainty, which precludes any immediate
internal error detection, thus making the sign of the external
feedback unexpected and informative it terms of trial outcome
detection. Similarly, previous studies suggested that beta
oscillations increase after processing of unexpected feedback as
a response to feedback valence (Marco-Pallarés et al., 2015).

Moreover, the lack of immediate internal detection makes
external feedback the only reliable source of information about
the accuracy of the current trial. Therefore, feedback processing
is crucial in order to optimize future behavior through learning
mechanisms. In our study, enhanced beta oscillations after the
unexpected positive feedback may reflect recruitment of reward
processing and reinforcement mechanisms. This is compatible
with a view proposed by van de Vijver et al. (2011) that beta-band
oscillations might be responsible for the global synchronization
of neural assemblies in order to strengthen the current response.
Accordingly, we observed the most prominent beta oscillations
after slow correct responses, which were committed under the
state of high decision uncertainty and followed by high outcome
uncertainty, making feedback necessary to detect whether
response was correct, and, if so, to reinforce maintenance of
current task rules. Likewise, Engel and Fries (2010) proposed
that beta band modulations are associated with maintenance
of the status quo, the ability to sustain the current cognitive
state.

CONCLUSION

We hypothesized that RT might be a valid approximation
distinguishing trials that differ in the levels of sustained attention
and decision uncertainty.

Fast errors, which are supposed to be premature responses
(van Driel et al., 2012), can be detected internally, because
information processing may continue to progress normally after
the moment of motor program initiation—the effect, which is
well described in literature in association with a corresponding
FMT activation (Yeung et al., 2004; Cavanagh et al., 2009;
Cavanagh and Frank, 2014). On the contrary, internal error
detection is much less likely to occur after slow errors, which are
related to attentional lapses (van Driel et al., 2012), supposedly
due to outcome uncertainty, because specific processing of
task-related information is compromised and there is not enough
evidence to decide whether an error was made. The results
obtained in the current study indeed provided evidence of error-
related FMT oscillations only on fast trials, thus staying in line
with our predictions.

We expected that feedback might be more informative
in situations of higher outcome uncertainty after slow responses,
when only an external feedback signal can provide proper trial
outcome evaluation. In fact, we did not find a statistically
compelling evidence that feedback-related FMT oscillations were
stronger on slow trials than on fast trials. Yet we found a
strong evidence of feedback-related prefrontal beta oscillations
occurring only on slow trials but not on fast trials. Thus, in terms
of mismatch between the actual and the expected outcomes, both
trial types revealed strong processing of the negative feedback

signal (Cohen et al., 2007, 2009; Cavanagh et al., 2010; van de
Vijver et al., 2011)—revealing that the negative feedback was
perceived as a salient negative signal even if it could be predicted
internally. However, in terms of feedback being a positive
reinforcer—as evidenced by frontal beta activation (Cohen et al.,
2007; Marco-Pallares et al., 2008; van de Vijver et al., 2011;
Cunillera et al., 2012), our findings stay well in agreement with
our predictions.

Additionally, pre-response FMT oscillations were stronger
before slow responses thus revealing stronger activations of
brain processes related to cognitive control. This agrees with
our assumption that response speed may be related to the level
of decision uncertainty (Wilding, 1971; Luce, 1986; Dyson and
Quinlan, 2003; Ratcliff andMcKoon, 2008; O’Connell et al., 2009;
Cohen and van Gaal, 2013). Late post-response posterior alpha
power was most strongly reduced on slow erroneous trials, thus
also staying in line with our predictions and confirming that
slow responses are related to the states of decreased attention
and higher decision and outcome uncertainty. These findings
are in agreement with a large body of literature (Luu et al.,
2004; Pailing and Segalowitz, 2004;Weissman et al., 2006;Wessel
et al., 2011; van Driel et al., 2012; Navarro-Cebrian et al.,
2013).

In summary, our findings demonstrate that slow and fast
responses differ in the nature of cognitive phenomena involved
such as performance monitoring, attention, decision uncertainty
and reinforcement. Additionally, the current study demonstrates
that using attentional tasks may be an effective tool for
investigation into the nature of cognitive control and related
phenomena.
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