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Background: Video gaming is an increasingly popular activity in contemporary society,
especially among young people, and video games are increasing in popularity not only
as a research tool but also as a field of study. Many studies have focused on the neural
and behavioral effects of video games, providing a great deal of video game derived brain
correlates in recent decades. There is a great amount of information, obtained through
a myriad of methods, providing neural correlates of video games.

Objectives: We aim to understand the relationship between the use of video games
and their neural correlates, taking into account the whole variety of cognitive factors that
they encompass.

Methods: A systematic review was conducted using standardized search operators
that included the presence of video games and neuro-imaging techniques or references
to structural or functional brain changes. Separate categories were made for studies
featuring Internet Gaming Disorder and studies focused on the violent content of video
games.

Results: A total of 116 articles were considered for the final selection. One hundred
provided functional data and 22 measured structural brain changes. One-third of the
studies covered video game addiction, and 14% focused on video game related violence.

Conclusions: Despite the innate heterogeneity of the field of study, it has been possible
to establish a series of links between the neural and cognitive aspects, particularly
regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward
processing. However, many aspects could be improved. The lack of standardization
in the different aspects of video game related research, such as the participants’
characteristics, the features of each video game genre and the diverse study goals could
contribute to discrepancies in many related studies.

Keywords: addiction, cognitive improvement, functional changes, internet gaming disorder, neural correlates,
neuroimaging, structural changes, video games

INTRODUCTION

Nowadays, video gaming is a highly popular and prevalent entertainment option, its use is no
longer limited to children and adolescents. Demographic data on video gaming shows that the
mean age of video game players (VGPs) (31 years old, as of 2014) has been on the rise in recent
decades (Entertainment Software Association, 2014), and it is a common activity among young
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adults. Moreover, the increasing ubiquity of digital technologies,
such as smart-phones and tablet computers, has exposed most
of the population to entertainment software in the form of
casual video games (VGs) or gamified applications. Therefore,
an important segment of society, over 30% in tablet computers
and 70% in smart phones, has been exposed to these technologies
and can be considered now, in some form, casual gamers (Casual
Games Association, 2013).

It is not uncommon to hear both positive and negative health
claims related to VGs in the mass media. Most of the time, these
are unverified and sensationalist statements, based on “expert”
opinions, but lacking evidence behind them. On the other
side, as VGs become more complex (due to improvements in
computer hardware), they cater to audiences other than children,
appealing to older audiences, and VGs have gained prevalence as
a mainstream entertainment option. Consequently, the number
of people who spend hours daily playing these kinds of games is
increasing.

There is interest in knowing the possible effects of long-
term exposure to VGs, and whether these effects are generally
positive (in the shape of cognitive, emotional, motivation, and
social benefits) (e.g., Granic et al., 2014) or negative (exposure
to graphic violence, contribution to obesity, addiction, cardio-
metabolic deficiencies, etc.) (e.g., Ivarsson et al., 2013; Turel
et al., 2016). Moreover, VGs possess a series of intrinsic features
which make them suitable for use in experimental procedures:
they seem to increase participants’ motivation better than tasks
traditionally used in neuropsychology (e.g., Lohse et al., 2013)
and, in the case of purpose-made VGs, they offer a higher degree
of control over the in-game variables.

For all the reasons mentioned above, VGs have recently
sparked more scientific interest. The number of publications that
study or use some form of gaming has been increasing, since
2005, at a constant rate of 20% per year. While during the 90’
around 15 VG-related articles were published per year, in 2015
that number was over 350 (see Figure 1).

However, the concept of VG is extremely heterogeneous and
within the category we find a myriad of hardly comparable
genres. The behavioral effects and the neural correlates derived
from the use of VGs depend both on the nature of the

VG, the exposition to the game (hours of game play, age of
onset, etc.) (Kithn and Gallinat, 2014), and, to a large extent,
the individual characteristics of each participant (Vo et al,
2011).

Furthermore, due to the popularity of VG genres where
graphic violence is prevalent (shooters, survival horror, fantasy),
many studies have chosen to focus on this variable. Therefore,
there is a reasonable amount of scientific literature devoted
to the study of violent behaviors and violence desensitization
as a consequence of violence in VGs (e.g., Wang et al., 2009;
Engelhardt et al., 2011). Lastly, in particular since the emergence
of online VG play, there are concerns about the addictive
properties of VGs, akin to gambling and substance abuse,
consequently making it another recurrent topic in the literature
(e.g., Young, 1998).

For the time being, this whole body of knowledge is a complex
combination of techniques, goals and results. On one hand, there
are articles which study the effects of VG exposure over the
nervous system and over cognition (e.g., Green and Seitz, 2015);
it seems that there is solid evidence that exposure to certain
kinds of VGs can have an influence on behavioral aspects, and
therefore, we should be able to appreciate changes in the neural
bases (Bavelier et al., 2012a). Actually, assessing the cognitive
and behavioral implications of VG exposure has already been the
object of study in recent systematic reviews and meta-analysis
that used neuropsychological tasks to measure the influence
of these games in healthy individuals. This is highly relevant
since they evaluate the possible transfer effects of VG training
to wider cognitive domains, providing a global perspective on
how experimental and quasi-experimental designs differ in the
size of the effect depending on the cognitive function (Powers
et al., 2013), and how aging interferes with cognitive training
by means of computerized tasks (Lampit et al., 2014) and VGs
(Toril et al, 2014; Wang et al, 2016). Knowledge obtained
about transfer effects is very important since it allows us to
establish a link between VGs and cognition, indirectly helping us
understand its neural basis, which in this case acts as a bridge
between them. From an applied perspective, this knowledge
can be used to design more effective rehabilitation programs,
especially those focusing on older populations, keeping the most
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FIGURE 1 | Increasing trend in VG-related articles. Since 2005, the average annual growth is around 20%. (Source: MEDLINE).
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useful components and reducing those which are shown to have
less benefits.

On the other hand, VGs have been used as a research tool to
study the nervous system. In this group of studies, it is common
to find exposure to VGs as the independent variable, especially in
most studies that use unmodified commercial VGs. However, it is
not unusual to employ custom designed VGs, such as the widely
used Space Fortress, where in-game variables can be fine-tuned
to elicit certain mental processes in consonance with the research
hypothesis (e.g., Smith et al., 1999; Anderson et al., 2011; Prakash
etal., 2012; Anderson et al., 2015). Nevertheless, in both cases, the
study of the VG exposure over the nervous system and the use of
VGs as a research tool, VGs are used to obtain information about
the underlying neural processes relevant to our research interest.

As yet there is no systematic review on this topic. The
aim of this article is to gather all the scientific information
referring to neural correlates of VGs and synthesize the most
important findings. All articles mentioning functional and
structural changes in the brain due to video gaming will be
analyzed and information about the most relevant brain regions
for each kind of study will be extracted; the main objective of
many VG-related articles is not to study their neural correlates
directly. Studies focusing on the addictive consequences or the
effects of violence will be categorized independently.

Our final goal is to highlight the neural correlates of video
gaming by making a comprehensive compilation and reviewing
all relevant scientific publications that make reference to the
underlying neural substrate related to VG play. This is the first
effort in this direction that integrates data regarding VGs, neural
correlates and cognitive functions that is not limited to action-
VGs or cognitive training programs, the most frequently found
research topics.

METHODS

In order to structure reliably the gathered information in
this systematic review, the guidelines and recommendations
contained in the PRISMA statement (Liberati et al., 2009) have
been followed.

Eligibility Criteria

All articles which included neural correlates (both functional
and structural) and included VG play in the research protocol
or studied the effects of exposure to VGs were included
in the review. Both experimental and correlational studies
were included. No restrictions regarding publication date were
applied.

Healthy participants of any age and gender were considered.
Studies include both naive and experienced VG participants.
Participants that reported gaming addiction or met criteria for
internet gaming disorder (IGD) were also included in the review
owing to the interest in observing neural correlates in these
extreme cases. Other pathologies were excluded in order to avoid
confounding variables.

Articles employing several methodologies were included.
These can be organized into three main groups: studies where
naive participants were trained in the use of a VG against

a control group, studies comparing experienced players vs.
non-gamers or low-experience players, and studies comparing
differential characteristics of two VG or two VG genres.

The primary outcome measures were any kind of structural
and functional data obtained using neuroimaging techniques
including computerized tomography (CT) scan, structural
magnetic resonance imaging (MRI), functional MRI (fMRI),
positron emission tomography (PET), single-photon emission
computed tomography (SPECT), magneto encephalography
(MEG), transcranial direct current stimulation (tDCS),
electroencephalogram (EEG), event-related potentials (ERP),
event-related spectral perturbation (ERSP), steady state
visually evoked potential (SSVEP), Doppler, and near-infrared
spectroscopy (NIRS), following or related to VG use.

Information Sources

Academic articles were located using two electronic databases:
MEDLINE and Web of Science, and by scanning reference lists
in other studies in the same field. Only the results from these two
databases are reported since results from other sources (Scopus,
Google Scholar) did not provide any relevant new results. The
search was not limited by year of publication and only articles
published in English, Spanish, or French were considered for
inclusion. The first studies relevant to the topic are from 1992,
while the most recent studies included in this review were
published in February 2016.

Search

A systematic search was performed using a series of keywords
which were expected to appear in the title or abstract of any
study containing neural correlates of VGs. These keywords were
grouped in two main categories. First of all, a group of keywords
trying to identify articles which used VG as a technique or as
a study goal. These keywords included search terms related to
“video games” proper (in different orthographic variants), types
of players (casual, core, and hardcore gamers) and references
to serious gaming. In second place, two groups of keywords
were used to detect articles which studied the neural basis: (1)
keywords related to anatomical features, such as structural or
functional changes, gray, or white matter (WM) volumes, cortical
features, and connectivity and (2) keywords which mentioned the
neuroimaging technique used to obtain that data, such as EEG,
MRI, PET, or NIRS. (See Appendix)

Study Selection
Due to the large amount of results obtained by the previous
search terms, strict exclusion criteria were applied to limit
the final selection of studies. The same criteria were applied
in a standardized way by two independent reviewers, and
disagreements between reviewers were resolved by consensus.
Due to high variability in the terminology and the diversity of
keywords used in the search, a large number of false positive
studies (65% of items found) appeared during the review process
(see Figure 2).

By performing a search using standardized terms, a list of
studies from the two databases was extracted. A large number of
studies (62% of those that met the inclusion criteria) were found
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(n=116)
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Irrelevant role of video game: 69
Absence of neural correlates: 70
Review article: 22
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Pharmacological test: 2
Language: 18

|

Structural changes (n=22)* '
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)

Functional changes (n=100)* |

l v l

Excessive gaming (n=8)*
- Addiction (n=5)
- Pro/Expert gamers (n=4)

Healthy participants (n=14)

Healthy participants (n=51)

Excessive gaming (n=34)*
- Addiction (n=26)
- Pro/Expert gamers (n=8)

Violent content (n=16)

FIGURE 2 | Study selection diagram flow. *Articles in these sections may not be mutually exclusive.

to be duplicates in both databases, so a careful comparison was
made in order to merge the references.

No unpublished relevant studies were considered. Studies
relevant to the topic but not published in peer-reviewed journals,
such as conference posters and abstracts were considered.

Data Collection Process

All the relevant information was classified in a spreadsheet,
according to the variables listed below. Variables related to
violence and abuse of VGs were also categorized, since a
significant portion of the studies focused on these behaviors.
A small number of articles (n = 7) were found in sources
other than the two databases, mainly through references in other
articles.

For each study, the following data was extracted: (1)
characteristics of the sample, including sample size, average
age and range, inclusion and exclusion criteria, and gaming
experience; (2) aim of the study, specially noting if it is focused
on gaming abuse or exposure to violent content; (3) name and
genre of the VG used during the study, if applicable; (4) study

design; (5) main neuroimaging technique applied in the study,
and whether the technique was applied while participants played;
(6) functional and structural neural correlates observed in the
study. Studies were then classified in several groups as to whether
they provided structural or functional data, and whether they
addressed violent or addictive aspects.

Moreover, in order to understand the outcomes derived from
the neural correlates, most of the studies establish a connection
between these correlates and their cognitive correspondence,
either by directly measuring the outcomes using cognitive tasks
and questionnaires, or by interpreting their results based on
existing literature.

In the discussion section of this review, we attempted to
summarize the main findings by associating the neural changes
to their cognitive and behavioral correspondences. Whereas, in
many cases the original articles provided their own explanation
for the phenomena, we also worked on integrating the general
trends from a cognitive perspective. We therefore indicate
which studies provide and interpret empirical cognitive or/and
behavioral data (non-marked), those which discuss cognitive
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or/and behavioral implications without assessing them (marked
with *), and those which did not provide any cognitive nor
behavioral information (marked with **).

RESULTS

Study Selection

The combined search of MEDLINE and Web of Science provided
a total of 306 unique citations. Of these, 205 studies were
discarded because they did not seem to meet the inclusion criteria
after reviewing the abstract. The main reasons for exclusion were:
being a review article (n = 22), absence of neural correlates (n =
70), presence of pathology in the participants (n = 65), not being
related to VGs or using simple computerized tasks which could
not be considered VGs (n = 69), testing of new technologies in
which the brain correlates were a mere by-product (n = 25),
articles focused on motor functions (n = 15), pharmacological
studies (n = 2), and finally, articles in languages other than
English, Spanish, or French (n = 18). Excluded articles often
met more than one exclusion criteria. As mentioned in the
eligibility criteria, an exception were those articles in which the
pathology consisted of gaming overuse or addiction and articles
which featured psychopathology and included groups of healthy
participants from whom neural data was provided.

Fifteen extra articles that met the inclusion criteria were found
after examining the contents and following the references in
the previously selected studies. As expected, articles written in
English comprised the vast majority; among the rest (8.9%),
10 of them (4.9%) were discarded from the review solely
for language reasons. No unpublished relevant studies were
considered. Studies relevant to the topic but not published in
peer-reviewed journals, such as conference posters and abstracts
were considered. Ultimately, a total of 116 studies were identified
for inclusion in the review (see flow diagram in Figure 2).

Most studies (n = 100; 86.2%) provided functional data,
while only 22 (18.9%) of them studied structural changes in
the brain. A few (n = 6; 5.2%) provided both structural and
functional data. A significant number of the studies focused their
attention on excessive playing or VG addiction. That was the
case for 39 (33.6%) of the reviewed articles, so we considered
it appropriate to analyze them in their own category. Likewise,
16 studies (13.8%) focusing on the violent component of VGs
were also placed in their own category. These categories were
not always exclusive, but there was only one case where the two
criteria were met. (See Table 1 for a breakdown by category).

Characteristics of Included Studies

Based on their methodology, studies in this review could be
classified as experimental (n = 54; 46.6%), randomly assigning
the participant sample to the experimental groups, and quasi-
experimental (n = 62; 53.4%), where the groups were usually
constructed according to the participants’ characteristics. While
studies involving excessive gaming almost always followed
a quasi-experimental design comparing experienced gamers
against low-experience VG players, articles studying normal
gaming and the effects of violence exposure used both
experimental and quasi-experimental designs. A fraction of

TABLE 1 | Article breakdown by category.

Structural Functional Both Total
All 22 100 6 116
Healthy (Non excessive, non-violent) 14 51 3 62
Excessive gaming 8 34 3 39
Excessive gaming, IGD 5 26 2 29
Excessive gaming, Non-IGD 3 8 1 10
Violence 0 16 0 16
Violence + Excessive gaming 0 1 0 1

Only structural Only functional
16 94

IGD, Internet Gaming Disorder.

the studies (n = 15; 13%), both experimental and quasi-
experimental, compared the results to a baseline using a pretest-
posttest design. That was the case for most studies involving a
training period with VGs.

The cumulative sample included in this review exceeds
3,880 participants. The exact number cannot be known since
participants could have been reused for further experiments and
in some cases the sample size was not available. Most studies used
adolescents or young adults as the primary experimental group,
since that is the main demographic target for video gaming. In
many cases, only male participants were accepted. In the cases
where VG experience was compared, the criteria varied greatly.
For the low video gaming groups, VG usage ranged from <5
h/week to none at all. For the usual to excessive VG groups, it
could typically start at 10 h/week. In some cases, where the level
of addiction mattered, the score in an addiction scale was used
instead.

In more than half of the studies (n = 67; 57.8%) participants
actually played a VG as part of the experimental procedure. In
the rest, either neural correlates were measured in a resting-state
condition or VG related cues were presented to the participants
during the image acquisition.

Structural changes in the gray matter (GM) were measured
in the form of volumetric changes, whereas WM was assessed
using tractography techniques. Functional changes were typically
measured comparing activation rates for different brain regions.
Nearly half (n = 55; 47.4%) of the assessed studies used fMRI
as the neuroimaging technique of choice, while other functional
techniques remained in a distant second place. Functional
connectivity was assessed in several studies employing resting-
state measures. EEG in its multiple forms was also widely used
(n = 32; 27.6%) to obtain functional data, either to measure
activation differences across regions or in the form of event
related potentials. (See Table 2 for a breakdown by neuroimaging
technique).

The high variability in the study designs, participants and
objectives meant we focused on describing the studies, their
results, their applicability, and their limitations on a qualitative
synthesis rather than meta-analysis.

Structural Data
Data regarding structural changes following VG use was available
from 22 studies, fourteen of which provided structural data for
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more than 800 participants that had a normal VG use and
included both VGPs and non-VGPs (see Table 3). The remaining
eight studies examined aspects concerning the excessive or
professional use of VG (see Table 4).

In studies dealing with healthy, non-addicted participants,
eight studies used MRI to provide structural information for
the GM, while six focused on the WM using diffusion tension
imaging (DTTI).

Three studies compared lifetime VG experience prior to the
study, while the rest used a training paradigm where participants
were exposed to a VG during the experimental sessions prior to
the neuroimaging procedure and compared to a baseline. Seven
studies provided WM integrity data using the DTI technique
while the rest analyzed cortical thickness variations using regular
structural MRI.

The most researched areas in studies examining volumetric
differences found relevant changes in prefrontal regions, mainly
the dorsolateral prefrontal cortex (dIPFC) and surrounding areas,
superior and posterior parietal regions, the anterior cingulate
cortex (ACC), the cerebellum, the insula, and subcortical nuclei,
as well as the striatum and the hippocampus. In addition to
this, structural connectivity studies observed changes in virtually
all parts of the brain, such as in fibers connecting to the
visual, temporal and prefrontal cortices, the corpus callosum, the
hippocampus, the thalamus, association fibers like the external
capsule, and fibers connecting the basal ganglia.

Functional Data

A 100 articles provided functional data combined with VG use.
Of these, around half (n = 51) were studies which did not
include violence or addiction elements (See Table 5). A third
(n = 34) corresponded to articles aiming at understanding the
neural bases of IGD (See Table 6), often drawing parallels with
other behavioral addictions and trying to find biomarkers for
VG addiction. The rest (n = 16) were devoted to study the
effects of violence exposure in VGs (See Table 7). In total, these
studies provided functional data for 3,229 experimental subjects,
including control groups. Note that there is some overlap with
the structural section, since a few (n = 6) studies provided both
structural and functional data.

The rich diversity of methodologies and research goals means
that the study of functional brain correlates covers practically
all regions of the brain. The most studied areas are found in
frontal and prefrontal regions and are concerned with high-order
cognitive processes and motor/premotor functions. Activity
changes in parietal regions, like the posterior and superior
parietal lobe, relevant for diverse functions such as sensory
integration and visual and attentional processing, are also a
common find. The anterior and posterior cingulate cortices,
together with other limbic areas, such as the amygdala, and
the entorhinal cortex, display activity changes possibly as a
consequence of learning and emotion processing and memory.
Structures in the basal nuclei also have a prominent role,
particularly the striatum, in studies related to VG addiction.
Finally, we must not overlook a series of brain regions which
do not appear as frequently, such as occipital and temporal
cortices, the cerebellum, the thalamus, and the hippocampus,

TABLE 2 | Neuroimaging techniques used in the reviewed studies.

Technique N %
Electrophysiological methods 32 27.6
EEG (standard) 13 1.2
ERP 16 13.8
ERSP 1 0.9
SSVEP 2 1.7
MRI 70 60.3
MRI (structural) 15 12.9
MRI 55 47.4
NIRS 8 6.9
SPECT 2 1.7
PET 2 1.7
Doppler 1 0.9

EEG, Electroencephalography; ERR Event-related potentials;, ERSE, Event-related
spectral Dynamics; fMRI, Functional magnetic resonance imaging;, MRI, Magnetic
resonance imaging;, NIRS, Near-infrared spectroscopy; PET, Positon emission
tomography; SPECT, Single-photon emission computed tomography;, SSVER
Steady-state visual evoked potential.

where distinctive activity patterns have also been observed as a
result of VG play.

DISCUSSION

Due to the given amount of data provided in the reviewed
articles, we decided to categorize all the information based
on the cognitive functions which are associated with the
neurophysiological correlates, rather than focusing on the main
research goal for each study. Thus, the discussion has been
grouped into six main sections: attention, visuospatial skills,
cognitive workload, cognitive control, skill acquisition, and
reward processing. These cognitive processes are not clearly
independent since they present some degree of overlap. This is
particularly relevant in the cases of cognitive workload, which
may be linked to virtually any cognitive function, and attention,
which is also closely related to cognitive control, among other
functions. Nevertheless, after analyzing the literature, virtually
all the articles included in this review focused on one or more
of the mentioned cognitive functions in order to explain their
findings. Thus, the proposed categories have sufficient presence
in the literature to justify their use as separate domains for
the study of cognition. While they should not be understood
as independent aspects of cognition, the chosen categorization
will allow a link between the underlying neural correlates and
corresponding behavior to be easily established.

Within each one of the sections, structural and functional
correlates are discussed according to their contributions to
cognitive functioning, including possible inconsistencies between
studies and the presence of transfer effects. Owing to the close
link between VG violence, limbic and reward systems, and
the possible abnormal reward mechanisms in addicted players,
studies previously classified with violence in VGs and VG
addiction are predominantly discussed in the reward processing
section.
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Attention
Attentional resources are one of the main cognitive domains

in which VGs are involved and one of the most researched.
The involvement of attentional networks during gameplay is
closely related with other brain regions responsible for cognitive
control, especially when more complex operations toward a
specific goal are required. Many brain regions are involved in
attention, particularly nodes in the dorsal frontoparietal system,
mediating top-down attentional processes in goal-oriented
behavior, but also nodes in the ventral network, responsible
for bottom-up sensory stimulation (e.g., Vossel et al.,, 2014)
dealing with those salient stimuli to which the player must pay
attention.

There is evidence that VGPs display enhanced performance in
a range of top-down attentional control areas, such as selective
attention, divided attention, and sustained attention (Bavelier
et al, 2012b). The ACC is an area that consistently shows
functional activity during VG play due to its involvement as
the main hub in top-down attentional processes (selective or
focused attention) and goal-oriented behavior (e.g., Anderson
et al., 2011*; Bavelier et al., 2012b).

Non-VGPs, compared to VGPs, showed greater frontoparietal
recruitment, a source of selective attention, as task demands
increased, showing that habitual gamers have more efficient top-
down resource allocation during attentional demanding tasks
(Bavelier et al., 2012a). That resource optimization effect can also
be observed in attentional control areas, such as the right middle
frontal gyrus (MFQG), right superior frontal gyrus (SFG), and the
ventromedial prefrontal cortex (vmPFC) (Prakash et al., 2012*).
Functional connectivity changes in the attentional ventral stream,
particularly in occipitotemporal WM, responsible for bottom-up
reorienting toward novel stimuli, have also been observed as a
result of VG training and were linked to cognitive improvement
(Strenziok et al., 2014*). Integration between attentional and
sensoriomotor functions has been observed in expert VGPs in
the form of increased structural GM and functional connectivity
in anterior and posterior insular sub regions where long-term
exposure to attentional VG demands coordinated with the fine
skills involved in using the VG controller may have resulted
in plastic changes in these two regions that are respectively
involved in attentional and sensoriomotor networks (Gong et al.,
2015%).

Using electrophysiological techniques, it seems that VG play
correlates with an increment of the frontal midline theta rhythm,
associated with focused attention (Pellouchoud et al., 1999*), and
increases with VG practice (Sheikholeslami et al., 2007**; Smith
et al., 1999), both in an action and a puzzle VG, attributable
to ACC activity. Likewise, amplitudes in the P200 (Wu et al.,
2012), an early visual stimuli perceptual component, and P300
components (Mishra et al., 2011; Wu et al., 2012), which involved
in early stages of decision-making, were also linked to top-
down spatial selective attention improvements after training
and lifetime exposure to action VG. Action VGPs and non-
action VGPs seem to respond differently in the way they deploy
attention to central and peripheral targets in visual attention
tasks, as measured by the N2pc component (West et al., 2015),
which is also linked to selective attention.

If we consider different VG genres, it seems that action VGs
are better at improving selective attention than other slow-paced
VGs such as role-playing games (RPG) (Krishnan et al., 2013),
puzzle (Green and Bavelier, 2003), or strategy VGs (Tsai et al,,
2013) which require high planning skills and other forms of
proactive cognitive control. This is probably due to the extensive
use of attentional systems, paired with precise timings that action
VGs require. While these improved attentional skills are typically
observed in habitual VGPs, it is possible to achieve long-lasting
improvements as a result of a single VG training procedure
(Anguera et al.,, 2013).

Visuospatial Skills

Visuospatial skills encompass processes that allow us to perceive,
recognize, and manipulate visual stimuli, including visuomotor
coordination and navigational skills, and VGs are predominantly
interactive visual tasks.

The areas implicated in visuospatial processing have
traditionally been classified along a visual ventral stream
(responsible for object recognition) and a visual dorsal stream
(responsible for spatial location). Both depart from the visual
cortex, in the occipital lobe, and reach the posterior parietal
cortex (dorsal stream) and the inferior temporal cortex (ventral
stream). More recent proposals have refined that model,
broadening the traditional conceptualization of the two-stream
model (for further details see Kravitz et al., 2011). Among other
nodes, the role of the hippocampus stands out for its function in
higher order visual processing and memory (Kravitz et al., 2011;
Lee A. C. H. et al,, 2012).

Neural correlates related to visuospatial skills have been
detected in relationship with structural volume enlargements of
the right hippocampus (HC), both in long-term gamers and
experimentally after a VG training period (Kithn et al., 2013;
Kithn and Gallinat, 2014*). Increased hippocampal volumes were
also found by Szab¢ et al. (2014**), although the authors do not
attribute that effect to the VG training. The entorhinal cortex,
associated with navigational skills (Schmidt-Hieber and Héusser,
2013), which together with the HC is involved in spatial memory
(Miller et al., 2015), was also correlated with lifetime experience
in logic/puzzle and platform VG (Kithn and Gallinat, 2014*).

Decreased activation in occipitoparietal regions, associated
with the dorsal visuospatial stream (Goodale and Milner, 1992),
has also been linked to improved visuomotor task performance,
suggesting a reduction of the cognitive costs as a consequence
of the VG training, dependent on the training strategy used in
the VG (Lee H. et al., 2012). Earlier N100 latencies in the visual
pathways are another feature found in long-term VGPs, which
may contribute to faster response times in visual tasks after years
of practice (Latham et al., 2013).

Reduced WM integrity in interhemispheric parietal networks
for spatially-guided behavior could be another symptom for a
decreased reliance on specific visuospatial networks after VG
training as performance improved (Strenziok et al, 2013%).
However, other studies found that increased WM integrity in
visual and motor pathways was directly responsible for better
visuomotor performance in long term VGPs (Zhang et al,
2015%). Despite these connectivity changes, brain functional
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differences between VGPs and non-VGPs do not always reflect
performance in visuospatial skills, which were best predicted by
non-visual areas (Kim Y. H. et al., 2015%).

Cognitive Workload

Brain activation patterns depend on the cognitive demands of
the environment and also on the associated level of workload
(Vogan et al., 2016), which is directly related to the allocation of
resources to the working memory and its associated attentional
processes (Barrouillet et al., 2007). When we manipulate this
variable and observe its neural correlates, it is likely that we
are seeing the result of neural recruitment mechanisms as the
cognitive demands increase (Bavelier et al., 2012a). VGs have
often been employed to obtain cerebral measures of cognitive
workload, given the ability to adjust many of their features,
particularly in a purpose-made VG, such as the popular Space
Fortress. Due to the nature of this task, it is likely that functional
changes related to the manipulation of cognitive load appear
along the attentional networks and in specific key nodes related
to executive functions, mainly in prefrontal and parietal cortices.

Cognitive workload is not a unitary concept; some studies
have been able to identify different activation patterns by
manipulating the difficulty of a task (e.g., Anderson et al., 2011*).
Namely, the number of stimuli appearing simultaneously on the
screen and the complexity of each stimulus seem to elicit different
responses from the brain. For instance, in the context of an air
traffic control simulator, when directly manipulating the task
difficulty by increasing the number of planes that a participant
had to attend, the theta band power increased (Brookings et al.,
1996). Theta band power also displayed higher power compared
to a resting condition, and gradually increased during gameplay
(Sheikholeslami et al., 2007**). The theta band seems to be
directly related to the level of cognitive demand in a wide range
of cognitive abilities, such as attention, memory, and visuospatial
processes, although this finding is not universal and decreased
theta band power has been observed as a feature of sustained
attention. So it appears that it is both related to task complexity
and levels of arousal and fatigue. On the other hand, beta band
power seemed to be more associated with the complexity of
the task, especially in frontal and central areas, likely indicating
a qualitative change in the cognitive strategy followed by the
participant or the type of processing done by the brain (Brookings
et al., 1996).

Assessing cognitive workload with ERP shows that during
VG play, amplitudes tend to correlate negatively with game
difficulty in expert VGPs, with most ERP (P200, N200) having
its maximum amplitude in frontoparietal locations, with the
exception of the P300, being larger in parietal regions (Allison
and Polich, 2008). This is consistent with previous literature
about cognitive workload related to attention and working
memory demands and ERP peak amplitude decrements (Watter
etal., 2001).

Frontoparietal activity, linked to attentional processes, also
exhibits recruitment effects as game difficulty increases, which
also affects reaction times, making them slower (Bavelier et al.,
2012a). As mentioned above, comparing habitual VGPs with
non-VGPs, it appears that the former show less recruitment

of frontoparietal networks when compared to the non-gamers,
which could be attributed to their VG experience and the
optimization of their attentional resources (Bavelier et al.,
2012a). Increased blood flow in prefrontal areas like dIPFC
was also associated with increasing cognitive demands related
to attention, verbal and spatial working memory and decision
making (Izzetoglu et al., 2004%).

The intensity of the events displayed in the VG was also
linked with certain electrophysiological correlates. High intensity
events, such as the death of the VG character, were associated
with increased beta and gamma power when compared with
general gameplay (McMahan et al., 2015).

Cognitive Control

During the course of a VG, the player can encounter many
situations in which he has to use one of several possible actions.
For instance, while playing a game, the player might be required
to interrupt and quickly implement an alternate strategy, or
manipulate a number of elements in a certain way in order to
solve a puzzle and progress in the storyline. All these abilities can
be characterized under the “umbrella” of cognitive control, which
includes reactive and proactive inhibition, task switching and
working memory (Obeso et al., 2013). These cognitive control
aspects are key to overcoming the obstacles found the VG. In fact,
they are frequently used in parallel (Nachev et al., 2008) in order
to engage in goal-directed behavior. These processes have their
neural substrate in the prefrontal cortex, supported by posterior
parietal areas and the basal ganglia (Alvarez and Emory, 2006).
Therefore, most changes regarding cognitive control observed
after VG play will likely be detected in these regions.

Indeed, prefrontal regions are one of the brain areas in which
GM volumetric changes have been observed as a result of a
cognitive training with a VG, which is remarkable if we consider
that the common VG training period spans from a few weeks to a
couple of months. These regions, such as the dIPFC, determinant
for cognitive control (Smith and Jonides, 1999), show volumetric
changes that seem to correlate with VG performance and
experience, likely as a result of the continuous executive demands
found in a VG, such as attentional control and working memory
(Basak et al, 2011). These volumetric changes even result
in correlations with transfer effects in cognitive control tasks
(Hyun et al, 2013). Volumetric-behavioral correlations work
both ways, since individuals with decreased orbitofrontal cortex
(OFC) volumes as a consequence of VG addiction show poorer
performance in similar tasks (Yuan et al., 2013a).

During VG play, these prefrontal regions increase their
activation in response to the cognitive demands (game difficulty)
and display a positive correlation with performance measures
(Izzetoglu et al.,, 2004*). Still, prefrontal activity is not only
affected by the complexity of the task, but also by the nature of
the task and the individual differences of the participants (Biswal
et al., 2010). Some research groups have found deactivation
of dorsal prefrontal regions during gameplay. A possible
explanation for this phenomenon could be the interference effect
of attentional resources during visual stimuli, since activity in the
dIPFC remained stable while passively watching a VG, but not
while actively playing it (Matsuda and Hiraki, 2004*). Likewise,
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the same team also found that finger movement while handling
the game controller did not seem to contribute as a source
of prefrontal deactivation. Further studies also noted that the
observed prefrontal deactivation was not affected by age or
performance level (Matsuda and Hiraki, 2006*), although some
authors have challenged that finding, claiming that prefrontal
activation during video gaming was age-dependent, where most
adults tended to show increased prefrontal activity while it was
attenuated in some of the children. So prefrontal activation
could be a result of age, game performance, level of interest and
attention dedicated to the VG (Nagamitsu et al., 2006™*).

It has been possible to establish a causal relationship
between dIPFC activation and cognitive control using non-
invasive stimulation methods. Stimulating the left dIPFC using
tDCS results in a perceptible improvement in multitasking
performance in a three-dimensional VG (Hsu et al., 2015).

Changes in functional activity after a training period in other
executive-related nodes, such as the superior parietal lobe (SPL)
have also been associated with working memory improvements
(Nikolaidis et al., 2014).

Connectivity-wise, Martinez et al. (2013) found resting-state
functional connectivity changes in widespread regions (frontal,
parietal, and temporal areas) as a result of a VG training program,
which were attributed to the interaction of cognitive control and
memory retrieval and encoding.

Despite the observed structural and functional changes in
prefrontal areas, executive functions trained in a VG show poor
transfer effects as measured with cognitive tasks (Colom et al.,
2012; Kuhn et al, 2013). Others, showing neural correlates
related to executive functions, visuospatial navigation and fine
motor skills, failed to observe far transfer effects even after a
50h training period, as measured by neuropsychological tests
(Kithn et al., 2013). By studying lifelong experts or professional
gamers, some studies have detected structural GM changes
that correlated with improved executive performance, involving
posterior parietal (Tanaka et al., 2013), and prefrontal (Hyun
et al, 2013) regions. Regarding structural connectivity, WM
integrity changes in thalamic areas correlated with improved
working memory, but integrity of occipitotemporal fibers had the
opposite effect (Strenziok et al., 2014). VG experience also seems
to consolidate the connectivity between executive regions (dIPFC
and the posterior parietal cortex -PPC-) and the salience network,
composed by the anterior insula and the ACC, and responsible
for bottom-up attentional processes (Gong et al., 2016).

Different VG genres seem to affect which cognitive skills
will be trained. Training older adults in a strategy VG seemed
to improve verbal memory span (McGarry et al, 2013), but
not problem solving or working memory, while using a 2D
action VG improved everyday problem solving and reasoning.
Transfer effects were even more relevant in the case of a brain
training/puzzle VG, where working memory improvements were
also observed (Strenziok et al., 2014). Using a younger sample,
working memory improvements were detected after training
with a 2D action VG (Space Fortress, Nikolaidis et al., 2014).
Nevertheless, training periods found in scientific literature vary
greatly and it is difficult to ascertain if a lack of transferred skills
cannot be due to a short training period.

Regarding electrophysiological methods,
electroencephalography studies have shown functional
correlations with alpha oscillations in the frontal cortex
that could reflect cognitive control engagement in the training
VG (Mathewson et al., 2012).

Skill Acquisition

Several studies have attempted to determine which regions
could act as predictors for skill acquisition. Since this is a
domain in which multiple cognitive functions are involved,
volumetric and functional changes will appear in a wide range of
cortical regions. Most of the learning in VGs is non-declarative,
including visuospatial processing, visuomotor integration, and
motor planning and execution. Improvements in these areas will
generally lead to decreased cortical activation in the involved
areas due to the optimization of resources, whereas this is not
the case for striatal and medial prefrontal areas, which display
a distinctive pattern of activation and typically increase their
activity due to skill acquisition (Gobel et al., 2011).

Striatal volumes were determined as predictors for skill
acquisition, although structural changes in the hippocampal
formation were not (Erickson et al, 2010). Particularly, the
anterior half of the dorsal striatum was the region which more
accurately predicted skill acquisition in a complex VG (Vo
et al., 2011). Other areas identified as predictors were the medial
portion of the Brodmann area 6, located in the frontal cortex
and associated with motor control in cognitive operations and
response inhibition and the cerebellum, likely associated with
motor skill acquisition (Basak et al., 2011). The same authors
also considered the post-central gyrus, a somatosensory area that
could be related to a feedback mechanism between prefrontal and
motor regions, while the volume of the right central portion of
the ACC also correlated with skill acquisition and is responsible
for monitoring conflict. Finally, dIPFC volumes, with a central
role on the executive functions, also showed correlation with VG
performance over time (Basak et al., 2011).

On a functional level, Koepp et al. (1998**) was the first team
to identify a relationship between striatum activity, associated
with learning and the reward system, and performance level in
a VG. The study by Anderson et al. (2015) also support the
notion that the striatum, particularly the right dorsal striatum,
composed of the caudate nucleus and the claustrum, is a key area
in skill acquisition. However, the same team was able to predict
learning rates more accurately by comparing whole sequential
brain activation patterns to an artificial intelligence model.

Learning gains seemed to be best predicted by individual
differences in phasic activation in those regions which
had the highest tonic activation (Anderson et al, 2011%).
Differences related to learning rates were also observed in the
activation of the default mode network, especially when different
training strategies were employed by the participants. Using
electrophysiological methods, the best predictors were the alpha
rhythms (Smith et al.,, 1999), particularly frontal regions, and
alpha and delta ERSP, which are associated with cognitive control
(task switching and inhibition) and attentional control networks
(Mathewson et al., 2012). Frontal midline theta rhythms, linked
with focused concentration and conscious control over attention,
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seemed to increase over the course of the training sessions with a
VG (Smith et al., 1999).

Reward Processing

Addiction

VG addiction is understood as an impulse-control disorder with
psychological consequences, not unlike other addictive disorders,
especially non-substance addictions such as pathological
gambling (Young, 1998). Internet Gaming Disorder (IGD) has
been recently proposed for inclusion as a psychiatric diagnosis
under the non-substance addiction category in the Diagnostic
and Statistical Manual for Mental Disorders 5th ed. (DSM-5)
(American Psychiatric Association, 2013), with its diagnostic
criteria being adapted from those of pathological gambling.
Efforts in order to find a consensus regarding its assessment are
still ongoing (Petry et al., 2014). In some cases, VG addiction
is included as a subset within the broader definition of Internet
addiction, although this categorization is not always consistent,
since many VGs in which addiction is studied do not have an
online component. Several instruments have been developed to
assess gaming addictions: the Internet Addiction Test (IAT) by
Young (1998) and the Chen Internet Addiction Scale (CIAS)
(Chen et al., 2004) being the most used in research and clinical
practice.

Within the VG literature, there is a great deal of interest in
knowing the neurobiological basis of VG addiction and whether
it can be related to other behavioral addictions by observing
abnormal reward processing patterns. This seems to be the
case, since many regions involved in the reward system have
been found affected in people with VG addiction (e.g., Liu
et al, 2010*; Hou et al., 2012*; Hahn et al., 2014). Among
the complex set of structures that are involved in the reward
system, the cortico-ventral basal ganglia circuit is the center of
the network responsible for assessing the possible outcomes of
a given behavior, especially in those situations where, during a
goal-oriented behavior, complex choices must be made and the
value and risk of secondary rewards must be weighed (Haber,
2011).

Differential structural and functional changes in addicted
individuals can be found throughout the reward system. The
main components of this circuit are the OFC, the ACC, the
ventral striatum, ventral pallidum, and midbrain dopaminergic
neurons (Haber, 2011), but many other regions seem to be
involved in the wider context of addiction.

By exposing the participants to gaming cues, it is possible
to elicit a craving response and study which regions show
stronger correlation in IGD patients compared to controls.
The model proposed by Volkow et al. (2010) involves several
regions, which are mentioned consistently across studies, to
explain the complexity of the craving. First, the precuneus, which
showed higher activation in addicted individuals (Ko et al,
2013*), is an area associated with attention, visual processes, and
memory retrieval and integrates these components, linking visual
information (the gaming cues) to internal information. Regions
commonly associated with memory and emotional functions
are also involved: the HC, the parahippocampus and the
amygdala seem responsible for providing emotional memories

and contextual information for the cues (Ding et al., 2013%),
regions where subjects showed higher activation (O’Brien et al.,
1998). Central key regions of the reward system, like the limbic
system and the posterior cingulate have a role in integrating the
motivational information and provide expectation and reward
significance for gaming behaviors (O’Doherty, 2004). The OFC
and the ACC are responsible for the desire for gaming and
providing a motivational value of the cue-inducing stimuli
(Heinz et al., 2009), contributing to the activation and intensity of
the reward-seeking behavior (Kalivas and Volkow, 2005; Brody
et al., 2007; Feng et al., 2013%). In the last step, prefrontal
executive areas such as the dIPFC have also shown involvement
during craving responses (Han et al., 2010a*; Ko et al., 2013%),
and are linked to the formation of behavioral plans as a conscious
anticipation of VG play. All these frontal regions[dIPFC, OFC,
ACC, and the supplementary motor area (SMA)] tend to show
reduced GM volumes in participants with IGD (Jin et al.,
2016%).

Striatal volumes, particularly the ventral striatum, responsible
for a key role in reward prediction, were reduced in people with
excessive internet gaming compared to healthy controls (Hou
et al., 2012*) and in the insula, with its role in conscious urges
to abuse drugs (Naqvi and Bechara, 2009).

Overall, these features are characteristic of reward deficiencies
that entail dysfunctions in the dopaminergic system, a shared
neurobiological abnormality with other addictive disorders (Ko
et al., 2009*, 2013*; Cilia et al., 2010; Park et al., 2010; Kim et al.,
2011).

Several regions seem to be related to the intensity of the
addiction. In a resting state paradigm, connectivity between the
left SPL, including the posterior cingulate cortex (PCC), and the
right precuneus, thalamus, caudate nucleus, nucleus accumbens
(NAcc), SMA and lingual gyrus (regions largely associated with
the reward system) correlated with the CIAS score, while at
the same time, functional connectivity with the cerebellum and
the superior parietal cortex (SPC) correlated negatively with
that score (Ding et al.,, 2013*). The distinctive activation and
connectivity patterns related to the PCC (Liu et al., 2010%), an
important node in the DMN and reward system (Kim H. et al.,
2015), could be used as a biomarker for addiction severity, both in
behavioral and substance dependence. As the addiction severity
increases, changing from a voluntary to a compulsive substance
use, there is a transition from prefrontal to striatal control, and
also from a ventral to a dorsal striatal control over behavior
(Everitt and Robbins, 2005), Matching evidence in the form
of weaker functional connectivity involving the dorsal-caudal
putamen has been found in IGD patients (Hong et al., 2015%).

It is important to note that, even controlling the amount of
time playing VGs, professional and expert gamers display very
different neural patterns compared to addicted VGPs. Gamers
falling into the addiction category show increased impulsiveness
and perseverative errors that are not present in professional
gamers and, on a neural level, they differ in GM volumes in
the left cingulate gyrus (increased in pro-gamers) and thalamus
(decreased in pro-gamers), which together may be indicative of
an unbalanced reward system (Sanchez-Gonzilez et al., 2005;
Han et al., 2012b).
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Exposure to Violent Content

Many articles use violent VGs in their designs as a way to
study the effects of violence exposure, emotional regulation
and long-term desensitization. Exposure to violent content has
been associated with reduced dIPFC activity and interference
in executive tasks (inhibition, go/no-go task) (Hummer et al.,
2010), which cannot be interpreted without studying the link
with the limbic and reward systems. It is likely that repeated
exposure to violent content will trigger desensitization processes
that affect regions linked to emotional and attentional processing,
particularly a frontoparietal network encompassing the left
OFC, right precuneus and bilateral inferior parietal lobes
(Strenziok et al., 2011). It is hypothesized that this desensitization
may result in diminished emotional responses toward violent
situations, preventing empathy and lowering the threshold for
non-adaptive behaviors linked to aggressiveness (Montag et al.,
2012).

Limbic areas are associated with violence interactions, shown
by the activation changes detected in the ACC and the amygdala
in the presence of violent content (Mathiak and Weber,
2006*; Weber et al.,, 2006*). Lateral (especially left) prefrontal
regions might be involved as well, integrating emotion and
cognition and therefore working as a defense mechanism against
negative emotions by down-regulating limbic activity (Montag
et al, 2012). Wang et al. (2009) also provided evidence of
that regulation mechanism by observing differing functional
correlations between the left dIPFC and the ACC, and medial
prefrontal regions & the amygdala during an executive task after
a short-term exposure to a violent VG.

The reward circuit also seems to be implicated in the presence
of violent content. Activation decreases in the OFC and caudate
appeared in the absence of an expected reward. However, it
does not seem that violence events were intrinsically rewarding
(Mathiak et al. (2011%). Zvyagintsev et al. (2016*) found that
resting-state functional connectivity was reduced within sensory-
motor, reward, default mode and right frontotemporal networks
after playing a violent VG, which could be linked to short-term
effects on aggressiveness.

Gender differences in neural correlates were observed in one
study (Chou et al., 2013*) after being exposed to violent content,
with reduced blood flow in the dorsal ACC after playing a violent
VG in males, but not females, possibly as a result of the role of the
ACC in regulating aggressive behavior in males.

The effect of certain personality traits, particularly empathy,
have been assessed using violent VG exposure (Lianekhammy
and Werner-Wilson, 2015%). However, while empathy scores
correlated with neural activity (frontal asymmetry during EEG),
they were not affected by the presence of violent content.
Markey and Markey (2010) found that some personality profiles,
especially those with high neuroticism and low conscientiousness
and agreeableness, are more prone to be affected by the exposure
to violent VGs.

VG player’s perspective may also be determinant to the level
of moral engagement; while ERP N100 amplitudes were greater
during a first person violent event, if the player was using a distant
perspective, general alpha power was greater, which is indicative
of lower arousal levels (Petras et al., 2015).

Montag et al. (2012), observed that regular gamers have been
habituated to violence exposure and show less lateral prefrontal
activation, linked to limbic down-regulation, compared to non-
gamers. However, gamers have not lost the ability to distinguish
real from virtual violence, as Regenbogen et al. (2010*) found,
although that also depended on each person’s learning history.

While attenuated P300 amplitudes have been linked to
violence desensitization, both in short and long term exposure
(Bartholow et al., 2006), these amplitudes did not increase using
a pro-social VG (Liu Y. et al,, 2015). Engelhardt et al. (2011),
experimentally linked the lower P300 amplitudes to violence
desensitization and their effects on aggression. Bailey et al.
(2010) also supported the link between violent VG exposure
and desensitization to violent stimuli, associating it with early
processing differences in attentional orienting.

Flow

Flow and boredom states during VG play have also been the
subject of research using neural correlates. The concept of
flow, described by Csikszentmihalyi (1990), is understood as
a mind state of being completely focused on a task that is
intrinsically motivating. Among other characteristics, the state
of flow implies a balance between the task difficulty and the
person’s skills, the absence of ambiguity in the goals of the
task, and is commonly accompanied by a loss of awareness
of time. Considering that the concept of flow is a complex
construct which itself cannot be directly measured, it is necessary
to operationalize its components. Some authors have identified
some of these components as sustained attention (focus), direct
feedback, balance between skill and difficulty, clear goals and
control over the activity (Klasen et al., 2012*) and it has been
theorized to be firmly linked to attentional and reward processes
(Weber et al., 2009).

VGs provide the appropriate context in which flow states
are encouraged to occur, since feedback is offered continuously
and the level of difficulty is programmed to raise progressively,
in order to match the improving skills of the player (Hunicke,
2005; Byrne, 2006). Therefore, VGs are perfect candidates
to operationalize the components involved in the flow
theory.

During gameplay in an action VG, Klasen et al. (2012*) could
not relate the feedback component to any meaningful neural
activity, but the four remaining flow-contributing factors showed
joint activation of somatosensory networks. Furthermore, motor
regions were implicated in the difficulty, sustained attention
and control components. Together, the authors identify this
sensorimotor activity as a reflection of the simulated physical
activity present in the VG, which can contribute to the state
of flow. The rest of the components elicited activity in several
different regions. The reward system was involved in the
skill-difficulty balance factor, observed by activation in the
ventral striatum and other basal nuclei, rewarding the player
in successful in-game events. In addition to activity in reward
regions, this factor also correlated with simultaneous activity in
a motor network comprised of the cerebellum and premotor
areas. The factor comprising concentration and focusing during
the VG was associated with changes in attentional networks
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and the visual system, as players switched away from spatial
orientation to processing the numerous elements of the VG in
high focus settings. Goal-oriented behavior showed decreased
activity in the precuneus and regions of the ACC, while activity
in bilateral intraparietal sulcus and right fusiform face area
(associated with face processing) increased, which the authors
explain as a result of a shift from navigation in a known
environment to seeking new game content (Klasen et al,
2012%).

When manipulating the VG settings to elicit states or
boredom, operationalized as the absence of goal-oriented
behavior, one of the main aspects of flow, affective states appear.
While the lack of goal-directed behavior resulted in an increase
of positive affect, the neural correlates were characterized by
lower activation in the amygdala and the insula (Mathiak
et al., 2013). However, a different neural circuit was responsible
when negative affect increased, characterized by activation in
the ventromedial prefrontal cortex and deactivation of the HC
and the precuneus, that seemed to counteract the state of
boredom, possibly by planning future actions during inactive
periods (Mathiak et al., 2013). Involvement of frontal regions
was also observed by Yoshida et al. (2014) related to flow and
boredom states. During the state of flow, activity in bilateral
ventrolateral prefrontal cortex (VIPFC) [comprising the inferior
frontal gyrus (IFG) and lateral OFC] increased, and it decreased
when participants were subject to a boredom state. The OFC
is linked to reward and emotion processing (Carrington and
Bailey, 2009), and monitoring punishment (Kringelbach and
Rolls, 2004). However, this study employed boredom differently,
using a low difficulty level in the VG instead of the suppressing
goal-directed behavior.

Brain-computer interfaces, using electrophysiological
methods to measure brain activity, have been able to differentiate
states of flow and boredom, created by adjusting the level of
difficulty of a VG. The EEG frequencies that were able to discern
between flow states were in the alpha, low-beta and mid-beta
bands, measured in frontal (F7 and F8) and temporal (T5 and
T6) locations (Berta et al., 2013).

Gender Differences

Although some studies have already discussed the presence
of gender differences in cognitive processes related to VG
playing, the lack of studies dealing with this topic and providing
neural data are notable. The most relevant study of gender
differences (Feng et al., 2007*) found that a 10-h training in
an action VG (but not in a non-action VG) was enough to
compensate for baseline gender differences in spatial attention,
and to reduce the gap in mental rotation skills. Whether the
initial difference was innate or a product of lesser exposure to
this kind of activities in women is a matter of debate (Dye
and Bavelier, 2010). Actually, one of the reasons men do not
improve as much as women could be explained by a ceiling
effect due to previous exposure to VGs. On the other hand,
women with less experience in these activities are able to achieve
equal performances in visuospatial skills that reach the same
ceiling effect with a short training period. In this respect, Dye
and Bavelier comment on the possible effects of lifetime VG

exposure since the gender gap in attentional and non-attentional
skills is smaller or non-existent during childhood compared
to adult life, and the greater development of these skills in
male individuals is partially due to games targeting a male
audience.

Other authors (Ko et al, 2005) have focused on other
psychosocial factors to explain gender differences in online VG
addictions. Considering most online VGPs are men and this
difference is also observed in addiction cases, they studied the
possible factors and observed that lower self-esteem and lower
daily life satisfaction are determinant in men, but not women.
They attribute these differences to the reasons on why they
play VGs: while men declared to play to pursue feelings of
achievement and social-bonding, it was not the case for women.
This aspect is not new to VG addiction and is shared aspect
with other addictions. It is likely that VGs are used as a way to
cope with these problems, leading up to the development of the
addiction.

LIMITATIONS

The study of neural correlates of VGs entails a number of
inherent difficulties. The main limitation encountered during
the development of this review was the dual nature of studies
with regard to VGs as a research tool or as an object
of study. The lack of standardization in study objectives is
another limitation that should be addressed. Despite the recent
popularity of VG-related studies, there are a multitude of similar
research lines that offer hardly comparable results, making
it difficult to draw general conclusions. We aimed to unify
all sorts of studies in order to interpret and generalize the
results.

First of all, we compared a large number of studies that not
only used completely different techniques, but also had very
heterogeneous research goals. We grouped them together with
the aim of extracting all the available neuroimaging information,
but it is likely that some information that would have been
relevant for us was missed in the studies because their research
objectives differed greatly from our own. In fact, in certain cases,
VGs were almost irrelevant to the aim of the study and were only
used as a substitute for a cognitive task, so the provided results
may not directly reflect the VG neural correlates. Similarly, VGs
were sometimes used as tools to provide violence exposure or to
study the effects of behavioral addictions without the VG being
the central object of study.

Another issue was the lack of a proper classification for VG
genres. While the most common division is between action
and non-action VGs, it would be interesting to establish which
variables determine this classification. For instance, both first
person shooters and fighting games could be considered action
VGs. Both demand quick response times and high attentional
resources, but first person shooter games require much higher
visuospatial skills while fighting games do not. Consequently,
efforts should be made to determine which aspects of each VG
genre are related with each cognitive process and its associated
neural correlates.
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Apart from these aspects, comparisons between gamers and
non-gamers are common in VG literature. Nevertheless, there is
no consensus on the inclusion requirements for each group and
it seems that no scientific criterion has been used to establish a
cut-off line. Current dedication to VGs, measured in hours per
week, seems to be the most common classification method. Non-
gamer groups sometimes are so strict as to exclude any gaming
experience, but on other occasions, for the same category, several
weekly VG hours are tolerated. This is problematic since, in some
cases, cognitive changes have been found after just a few weeks of
VG training. However, in most cases, the onset age of active VG
play, which is a particularly relevant aspect (Hartanto et al., 2016),
is not taken into account. Another relevant variable, which tends
to be forgotten, is lifetime VG experience, usually measured in
hours. Moreover, despite the clearly different outcomes caused by
different VG genres, this variable is not included when describing
a participant’s VG experience. Therefore, VG experience should
be measured taking into account all the variables mentioned
above: onset age, lifetime VG experience (in hours), current VG
dedication (hours per week) and VG genres.

With regard to this review, it was really difficult to extract all
the relevant information because of the limitations of the existing
literature about the topic. But we did our best to clarify the results
and to extract valuable conclusions.

Another limitation was the link between neural changes and
cognitive functions. The neural correlates of VGs are the focus of
this review, and we found it essential to complement this data
by discussing their cognitive implications. In most cases these
implications were directly assessed by the individual studies, but
in some cases they were extrapolated based on previous literature.
Furthermore, even when functional or structural changes are
detected, they do not always reflect cognitive changes. This
may be due to a lack of sensitivity in the cognitive and
behavioral tasks employed. In order to detect both neural and
cognitive changes, specific research designs, with sufficiently
sensitive measurements of the three dimensions (functional,
structural, and cognitive) are needed. Ideally, to determine when
each change starts to appear as a result of VG exposure, an
experimental design, including a VG training period, should be
used. In this design, the neural and cognitive data would be
assessed along a series of time points until the three types of
changes were detected. An exhaustive discussion of the cognitive
implications of VGs is beyond our scope since there are already
other works that deal with this particular issue (Powers et al.,
2013; Lampit et al, 2014; Toril et al, 2014; Wang et al,
2016).

Efforts should be made to systematize VG-related research,
establishing VG training protocols and determining the effects of
lifetime VG exposure, in order that more comparable results can
be obtained and to improve the generalizability of results.

CONCLUSIONS

The current work has allowed us to integrate the great deal of data
that has been generated during recent years about a topic that has
not stopped growing, making it easier to compare the results of
multiple research groups. VG use has an effect in a variety of brain

functions and, ultimately, in behavioral changes and in cognitive
performance.

The attentional benefits resulting from the use of VG seem
to be the most evidence-supported aspect, as many studies by
Bavelier and Green have shown (Green and Bavelier, 2003,
2004, 2006, 2007, 2012; Dye et al., 2009; Hubert-Wallander
et al., 2011; Bavelier et al., 2012b). Improvements in bottom-up
and top-down attention, optimization of attentional resources,
integration between attentional and sensorimotor areas, and
improvements in selective and peripheral visual attention have
been featured in a large number of studies.

Visuospatial skills are also an important topic of study in VG
research, where optimization of cognitive costs in visuomotor
task performance is commonly observed. Some regions show
volumetric increases as a result of VG experience, particularly the
HC and the entorhinal cortex, which are thought to be directly
related to visuospatial and navigational skills. Optimization of
these abilities, just like in attention and overall skill acquisition, is
usually detected in functional neuroimaging studies as decreased
activation in their associated pathways (in this case, in regions
linked to the dorsal visual stream). It is likely that the exposure to
a task first leads to an increase of activity in the associated regions,
but ultimately, as the performance improves after repeated
exposures, less cortical resources are needed for the same task.

Likewise, although not always consistent, even short VG
training paradigms showed improvements in cognitive control
related functions, particularly working memory, linked to
changes in prefrontal areas like the dIPFC and the OFC. How to
achieve far transfer in these functions remains one of the most
interesting questions regarding cognitive control. Despite VGs
being good candidates for cognitive training, it is still not well-
known what the optimum training parameters for observing the
first effects are. It seems intuitive that longer training periods
will have a greater chance of inducing far transfer, but how long
should they be? We also commented on how VG genre can have
differential effects on cognitive control, so we cannot expect to
observe these effects without first controlling this variable, since
different VG genres often have little in common with each other.

Cognitive workload studies have offered the possibility of
observing neural recruitment phenomena to compensate for the
difficulty and complexity of a cognitive task and a number of
studies have pointed to the importance of frontoparietal activity
for this purpose.

It has been also possible to link skill acquisition rates with
certain cerebral structures. Several brain regions are key in this
regard, mainly the dIPFC, striatum, SMA, premotor area, and
cerebellum. Moreover, as suggested by Anderson et al. (2015),
models of whole-brain activation patterns can also be used as an
efficient tool for predicting skill acquisition.

The role of the reward system is always present when we talk
about VGs, due to the way they are designed. Addiction has a
heavy impact throughout the neural reward system, including
components like the OFC, the ACC, the ventral striatum, ventral
pallidum, and midbrain dopaminergic neurons, together with
diverse regions that have support roles in addiction. The role
of structures that link addiction to its emotional components,
such as the amygdala and the HC should not be underestimated.
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Limbic regions work together with the PCC to integrate the
motivational information with the expectation of reward.

Exposure to violent content has implications regarding the
reward circuits and also emotional and executive processing.
Reduced functional connectivity within sensory-motor, reward,
default mode and right frontotemporal networks are displayed
after playing a violent VG. The limbic system, interacting
with the lateral prefrontal cortex, has a role in down-
regulating the reaction to negative emotions, like those found
in violent contexts, which may lead to short-term violence
desensitization.

Despite the difficulties in locating the main components of
flow in the brain, it seems that several networks are involved in
this experience. General activation of somatosensory networks
is observed while being in this state, whereas activation in
motor regions is only linked to three components of flow:
skill-difficulty balance, sustained attention and control over
the activity. The reward system has key implications in the
experience of flow, showing that the ventral striatum and other
basal ganglia are directly linked to the skill-difficulty balance in
a task. When seeking new content in order to avoid boredom,
the bilateral intraparietal sulcus and the right fusiform face
area seem to be the most implicated regions. During a flow-
evoking task, the absence of boredom is shown by activity in
the IFC, the OFC, and the vmPFC. Flow is also linked to
emotional responses, and both positive and negative affect during
a VG have shown changes in the amygdala, insula, vmPFC and
the HC.

It is also worth commenting on the negative effects of VGs.
While much has been written about the possible benefits of VG
playing, finding articles highlighting the negative outcomes in
non-addicted or expert VGPs is much less common. To our
knowledge, only four studies pointed out neural correlates which
predicted hindered performance in a range of cognitive domains.
VG use has been linked with reduced recruitment in the ACC,
associated with proactive cognitive control and possibly related to
reduced attentional skills (Bailey et al., 2010). Likewise, exposure
to violent content in VG is associated with lower activity in the
dIPFC, interfering with inhibitory control. The same team (Bailey
and West, 2013) observed how VG play had beneficial effects on
visuospatial cognition, but in turn had negative effects on social
information processing. Lastly, VG exposition has been linked to
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delayed microstructure development in extensive brain regions
and lower verbal IQ (Takeuchi et al., 2016).

Finally, although this review is focused on the neural
correlates of VG, not their cognitive or behavioral effects, we
believe in the importance of integrating all these aspects, since
raw neuroimaging data often offer little information without
linking it to its underlying cognitive processes. Despite the fact
that this integration is increasingly common in the literature, this
is not always the case and it is an aspect that could be addressed
in future studies.
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