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Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16

Hz) measured by electroencephalography (EEG) mostly during non-rapid eye movement

(NREM) stage 2 sleep. These oscillations are of great biological and clinical interests

because they potentially play an important role in identifying and characterizing the

processes of various neurological disorders. Conventionally, sleep spindles are identified

by expert sleep clinicians via visual inspection of EEG signals. The process is laborious

and the results are inconsistent among different experts. To resolve the problem,

numerous computerized methods have been developed to automate the process of

sleep spindle identification. Still, the performance of these automated sleep spindle

detection methods varies inconsistently from study to study. There are two reasons:

(1) the lack of common benchmark databases, and (2) the lack of commonly accepted

evaluation metrics. In this study, we focus on tackling the second problem by proposing

to evaluate the performance of a spindle detector in amulti-objective optimization context

and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will

improve automatic sleep spindle detection. We use a popular multi-objective evolutionary

algorithm (MOEA), the Strength Pareto Evolutionary Algorithm (SPEA2), to optimize six

existing frequency-based sleep spindle detection algorithms. They include three Fourier,

one continuous wavelet transform (CWT), and two Hilbert-Huang transform (HHT) based

algorithms.We also explore three hybrid approaches. Trained and tested on open-access

DREAMS andMASS databases, two new hybrid methods of combining Fourier with HHT

algorithms show significant performance improvement with F1-scores of 0.726–0.737.

Keywords: sleep spindles, automatic detection, Hilbert-Huang transform, performance assessment, multi-

objective evolutionary algorithm, Pareto front

INTRODUCTION

Sleep spindles are brief (at least 0.5 s), distinct bursts of brain activity in the sigma frequency range
(11–16 Hz) as measured by electroencephalography (EEG). They are characterized by the waxing
and waning shape of a spindle. Along with K-complexes they are key EEG features used to define
non-rapid eye movement (NREM) stage 2 sleep in sleep scoring according to AASM (Iber et al.,
2007) guidelines. These oscillations are also of great biological and clinical interests because they
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potentially play an important role in identifying and
characterizing the processes of aging, learning, memory
consolidation, as well as various neurological disorders. For
example, spindle density (events per minute), amplitude,
and duration decrease with age (Crowley et al., 2002; Martin
et al., 2013). Recent evidence also suggests that spindle
density, frequency, and activity have been correlated with both
intelligence and general mental ability (Bódizs et al., 2005;
Fogel et al., 2007; Schabus et al., 2008; Geiger et al., 2011;
Gruber et al., 2013). In addition, increased sleep spindle density
following learning improves memory consolidation (Eschenko
et al., 2006; Tamminen et al., 2010; Bergmann et al., 2012). On
the other hand, the sleep spindle deficiency in schizophrenia
subjects may reflect dysfunction in thalamic-reticular and
thalamocortical mechanisms (Ferrarelli et al., 2007). Some sleep
spindle abnormalities implicating thalamocortical network
dysfunction are also observed in schizophrenia (Wamsley et al.,
2012). Furthermore, sleep spindle alterations are associated with
later development of dementia in Parkinson’s disease, and thus
may serve as an additional biomarker of cognitive decline in
these patients (Latreille et al., 2015). For the aforementioned
reasons, detecting sleep spindles, and scoring their properties
have become an important task in both research and clinical
settings.

Sleep spindles are conventionally identified through visual
inspection of the EEG data by expert sleep clinicians. Although
such practice is the gold standard for spindle detection, it
is a laborious, subjective process, and the results are rather
inconsistent among different experts (O’Reilly and Nielsen,
2015). Because of the rapidly growing biological and clinical
interests in sleep spindles, many automated detection methods
of sleep spindles have been developed to improve the process.
There are several basic methodological strategies for automating
spindle detection, each of which has given rise to many closely
related spindle detectors. One of the first automated sleep
spindle detectors based on a bandpass filtering and amplitude
thresholding approach was published by Schimicek et al.
(1994). Thereafter, Fourier-based bandpass filtering has become
the foundation of numerous new algorithms for frequency-
based discrimination (Mölle et al., 2002; Ferrarelli et al., 2007;
Huupponen et al., 2007; Bódizs et al., 2009; Wendt et al., 2012;
Martin et al., 2013). Some algorithms replace the bandpass
filtering with wavelet transformation (Sitnikova et al., 2009;
Wamsley et al., 2012; Adamczyk et al., 2015; Lajnef et al., 2015;
Tsanas and Clifford, 2015). Alternatively, Causa et al. (2010)
propose using Hilbert-Huang transform (HHT) for determining
sleep spindle’s instantaneous frequency and amplitude (Huang
et al., 1998). Although there are more and more open-access
automated sleep spindle detectors becoming available in the
literature (O’Reilly, 2013; Warby et al., 2014), the performance of
these open-access spindle detectors remains equally inconsistent
from study to study because of: (1) the lack of common
benchmark databases, and (2) the lack of commonly accepted
evaluationmetrics. The first problem has been addressed recently
and in response, there are two publicly available databases: the
DREAMS database (Devuyst, 2013) and the Montreal Archive of
Sleep Study (MASS) database (O’Reilly et al., 2014). The second

problem has also received quite a lot of attention and resulted in
several fruitful papers in the literature (Huupponen et al., 2007;
Devuyst et al., 2011; Warby et al., 2014; O’Reilly and Nielsen,
2015). However, we think that the second problem remains
ambivalent as the gold standard may vary greatly from expert
to expert (or institute to institute) even for the same dataset
(Tables 1, 2; Devuyst et al., 2011; Warby et al., 2014; O’Reilly
and Nielsen, 2015). To resolve this dilemma, we suggest that
commonly acceptable evaluationmetrics should be gold standard
adaptive. This adaptive capability is crucial because abnormal
spindles in general play a more important role in a real clinical
setting. Therefore, an ideal detector should excel in the ability
to find the clinically significant sleep spindles specified by a gold
standard of the user’s choice.

In this paper, we have focused on tackling the second problem
by proposing to evaluate the performance of a spindle detector
in a multi-objective optimization context with the resultant
Pareto fronts as the basis for deriving more commonly accepted
performance evaluation metrics such as precision (P), recall (R),
and F1-scores. In a nutshell, the performance of any type of
detector can be characterized by two competing objectives: low
false negative (FN) and low false positive (FP) rates (Huang et al.,
2010). As a sleep spindle detector generally has several operating
parameters such as upper/lower frequency, amplitude, and
duration criteria, these parameters can be adjusted and optimized
according to a given training dataset with a specific gold standard.
Among all possible combinations of operating parameter values,
the commonly accepted optimal solutions of such a multi-
objective problem are a set of Pareto optimal solutions known
as the Pareto front in objective space (Figure 1A; Knowles and
Corne, 2000; Zitzler et al., 2001a; Messac et al., 2003). Although
no close form solutions are available for most spindle detectors,
these types of optimization problems can be solved by using
multi-objective evolutionary algorithms (MOEA). MOEA is a
mature technique that is applied in many fields (Doncieux et al.,
2011) and efficient MOEAs now exist, as for instance NSGA-II
(Deb et al., 2002) and ε-MOEA (Deb et al., 2005). Compared
with any empirical chosen operating point shown in Figure 1,
the Pareto optimal solutions of FN and FP and their derived
PR- and F1-curves are much more informative in evaluating and
comparing automatic spindle detectors. We hypothesize that the
Pareto optimal operating parameters solved by using MOEA will
improve automatic sleep spindle detection. The rationale and
derivation are given in the Methods section.

Here we used the Strength Pareto Evolutionary Algorithm
(SPEA2) (Zitzler et al., 2001a,b), another popular MOEA, to
optimize six existing frequency-based sleep spindle detection
algorithms. They included three Fourier (Mölle et al., 2002;
Ferrarelli et al., 2007; Martin et al., 2013), one continuous wavelet
transform (CWT) (Tsanas and Clifford, 2015), and two Hilbert-
Huang transform (HHT) based algorithms (Causa et al., 2010;
Huang et al., 2015). We also explored three hybrid approaches
in combining Fourier- or CWT- with HHT-based methods for
improvement. The experiment was conducted by using both
hold-out and cross-validation strategies such that hold-out was
used to assess overfitting by our SPEA2 implementations and
cross-validation was used to assess spindle detectors. The sleep
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TABLE 1 | Summary of sleep spindle numbers in DREAMS database with 4 different gold standards.

GS\Subj Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8 Total

Scorer 1 52 60 5 44 56 72 18 48 355

Scorer 2 115 52 44 25 86 87 – – 409

Intersection 33 35 5 6 39 42 – – 160

Union 134 77 44 63 103 117 18 48 604

GS stands for gold standard.

TABLE 2 | Summary of MASS SS2 database with gold standards by

Scorers 1 and 2, and their overlapping information by intersection and

union operations.

Subj\GS Scorer 1 Scorer 2 Intersection Union

Subj 1 1,040 2,389 1,025 2,404

Subj 2 1,142 2,191 1,120 2,212

Subj 3 143 596 134 605

Subj 4 250 – – –

Subj 5 341 1,186 331 1,194

Subj 6 150 829 139 838

Subj 7 905 1,572 820 1,655

Subj 8 384 – – –

Subj 9 810 1,643 781 1,671

Subj 10 790 1,909 769 1,930

Subj 11 605 1,521 594 1,529

Subj 12 705 1,188 653 1,236

Subj 13 692 1,427 658 1,458

Subj 14 708 1,601 681 1,626

Subj 15 97 – – –

Subj 16 445 – – –

Subj 17 469 1,189 453 1,205

Subj 18 1,156 1,662 1,045 1,773

Subj 19 315 1,048 311 1,052

Total 11,147 21,951 9,514 22,388

spindle data and experimental methods are delineated in the
following section.

MATERIALS AND METHODS

Data
Two publicly available databases were used to evaluate 6
simplex and 3 hybrid automated sleep spindle detection
algorithms. The first sleep EEG database was from the DREAMS
Spindles Database of University of MONS—TCTS Laboratory
and Université Libre de Bruxelles—CHU de Charleroi Sleep
Laboratory (Devuyst, 2013). It consists of eight patients (4
men and 4 women aged between 31 and 53) with different
pathologies (Devuyst et al., 2011). A segment of 30 min of the
central EEG channel (C3-A1 or Cz-A1) from these 8 individual
patients are publicly available on the DREAMS Database website
where the sampling frequency is 200 Hz (6 patients), 100 Hz

(1 patient), and 50 Hz (1 patient) respectively. Sleep spindles
of these 30-min-long EEG signals are annotated independently
by two experts. The second expert annotated only six out of
eight datasets and the spindles are uniformly assigned 1-s-long
duration. In order to build a common ground truth frommultiple
raters, there are several different approaches such as treating
individual rater separately (O’Reilly and Nielsen, 2015), the total
agreement (intersection operation; Devuyst et al., 2011), and
partial agreement (union operation; Warby et al., 2014; Tsanas
and Clifford, 2015). For forming (total/partial) agreement sets,
we took the same approach proposed by Tsanas and Clifford
(2015) specifically for the DREAMS database. In the case of
overlapped spindles, we only kept the annotations by expert 1
for their better duration assessment. In total, the number of
identified spindles was 355 (from 8 subjects) by scorer 1, 409
(from 6 subjects) by scorer 2, 160 by both, and 604 by either,
respectively. The details are summarized in Table 1. Note that the
authors of the DREAMS database did not specify which scoring
rules the experts used for scoring spindles.

The second EEG sleep database was a subset (denoted as
SS2) of the MASS database. The MASS database consists of
200 polysomnographic (PSG) recordings gathered from eight
research protocols conducted between 2001 and 2013 in three
different laboratories at the Center for Advanced Research in
Sleep Medicine (CARSM), Montreal, Canada (O’Reilly et al.,
2014). The MASS SS2 consists of 19 complete-night PSG
recordings sampled at 256 Hz from young healthy subjects. For
this subset, sleep spindles are scored by two experts on NREM
stage 2 sleep epochs and on channel C3 with linked-ear reference.
The first scorer used traditional AASM scoring rules. The second
scorer used both broad-band EEG signals (0.35–35 Hz band)
and sigma filtered signals (11–17 Hz band) to facilitate the
identification of short duration, small amplitude or obscured (by
delta waves or K-complexes) spindles. Also, no minimal spindle
duration was used by the second scorer and four datasets (out
of the 19) were not scored due to poor quality sleep or signal
(O’Reilly and Nielsen, 2015). In total, the number of identified
spindles was 11,147 (from 19 subjects) by scorer 1, 21,951 (from
15 subjects) by scorer 2, 9,514 by both, and 22,388 by either,
respectively. The details are summarized in Table 2. Note that
the total/partial (intersection/union) agreement in Table 2 is
solely given as supplementary information to describe inter-
rater agreement. The intersection and union operations were
carried out based on each sample point (by-sample) and then
the resultant spindle points were regrouped into individual sleep
spindles (by-event) without duration checking.
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Performance Evaluation
The performance of a diagnostic test is generally characterized
by sensitivity and specificity. However, sleep spindles are sparse
events such that their lengths sum up to 8.2 (mean) ± 4.9
(standard deviation) and 29.4 ± 11.2 min per whole night
sleep according to scorers 1’s and 2’s annotations of the MASS
SS2 database respectively. The performance evaluation using
specificity measurement will be high and therefore provide
unrealistically positive results. To avoid this pitfall, Warby et al.
(2014) propose using precision, recall, and F1-score for the
evaluation of infrequent, discrete events such as sleep spindles in
the EEG signal. Let TP denote the amount of true positives, FN
false negatives and FP false positives, precision, P, and recall, R,
are defined as:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

Taking the weighted harmonic average of precision and recall
leads to the F-score,

Fβ =
(

1+ β2
) PR

R+ β2P
=

(

1+ β2
)

TP
(

1+ β2
)

TP + β2FN + FP
(3)

If we assume a uniform prior (β = 1), then

F1 =
2PR

P + R
. (4)

Although P, R, and F1 are commonly used evaluation metrics
for the assessment of spindle detector performance, so far their
potentials have not been fully explored yet. In the original work
of Warby et al. (2014), spindle detectors were only tested with
default operating parameters. This view is too narrow as a
detector generally has several adjustable operating parameters
that allow the user to optimize its performance between two
competing objectives: minimizing FN and minimizing FP. For
example, we can take the root mean square (RMS) algorithm of
Martin et al. (2013) and test it out on the DREAMS database,
the default operating parameter with a threshold of 0.95 (95
percentile) and a duration between 0.3 and 3 s. The result
is simply a point (red circle) among many other possible
performances (black crosses) on the objective space as shown in
Figures 1A,B. O’Reilly and Nielsen (2015) took a step forward
by making the threshold an adjustable parameter within a range
between 0.7 and 0.995. The resultant FN-FP pairs, PR-curve and
F1-curve (blue dots in Figures 1B–D) provide a broader view to
evaluate the detector’s performance. In this study, we extended
the idea of O’Reilly and Nielsen (2015) even further by making
adjustable more operating parameters (such as the upper and

FIGURE 1 | Pareto fronts and proposed performance metrics for detector d3, trained results by using DREAMS database with the union gold standard

(Table 1). (A) 100 randomly chosen operating parameter values (crosses) and the Pareto front (green dots) solved by SPEA2. (B) The performance of d3 with a single

set of values (red circle) and with an adjustable threshold (blue dots). (C) PR-curve as performance metrics derived from FN and FP in (B). (D) Derived F1-curve.

Frontiers in Human Neuroscience | www.frontiersin.org 4 May 2017 | Volume 11 | Article 261

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Liu et al. Improving Automatic Sleep Spindle Detection

lower duration criteria) and derived the performance metrics
from the Pareto optimal solutions (green dots in Figure 1) in the
multi-objective optimization context. Figure 1 demonstrates that
results from a detector can be improved substantially in a multi-
objective context by allowing the operating parameters to adapt
to a training gold standard and that its Pareto optimal solutions
enable us to define some useful performance metrics uniquely.
The following section summarizes the proposed performance
metrics more formally.

Pareto Front-Derived Performance Metrics
In a multi-objective context, the performance of a sleep spindle
detector is described by a pair of raw numbers: FN and FP. The
number of detections on the C3 channel of EEG signals that do
not have an appropriate overlap rate (Rov) with any true sleep
spindle (SS) is defined as FP; similarly, the number of true sleep
spindles that are not detected by automatic detectors is defined
as FN. Note that FN and FP were defined in the event-by-event
analysis context (Warby et al., 2014) throughout this study. Note
also that a true positive event-detection (D) was scored based on
an overlap rate,

Rov =
SS∩D

SS∪D
> 0.2. (5)

We followed these scoring rules to make our results comparable
to the work byWarby et al. (2014) because the first three Fourier-
based detectors evaluated in this study were derived directly from
their work.

In mathematical terms, let FN and FP be described
as functions of an operating parameter set x: FP(x) and
FN(x). For example, x includes threshold, lower duration,
and upper duration for the RMS algorithm illustrated in
Figure 1. Figure 1A shows a random selection x’s of 100
possible operating parameter combinations with their results
[FN(x), FP(x)] scattered around the objective space. The optimal
solutions of such a detector involve minimizing both FN and
FP rates simultaneously. Since low FN and FP rates are two
conflicting objectives, this problem does not produce a single
optimal solution but a set of possible solutions known as a
Pareto optimal set, which results in a Pareto front (green dots
in Figure 1A) in objective space. A Pareto front is essentially
an objective boundary such that any solution on the front can
only be outperformed by another solution in at most one of the
two competing objectives. Therefore, a Pareto optimal set is also
called a Pareto non-dominated set.

Formally the multi-objective optimization problem can be
equivalently stated as minimizing a two-objective vector

F (x) =
(

FN (x), FP (x)
)

(6)

where x is the vector of a detector’s operating parameters. A
solution x1 is said to dominate x2 if and only if

FN (x1) ≤ FN (x2) and

FP (x1) ≤ FP (x2) and (7)

{FN (x1) < FN (x2) or FP (x1) < FP (x2)}

where x2 6= x1. From the aforementioned Pareto optimal
solutions and Equations (1–4), we are able to derive PR-
curves and F1-curves that are Pareto optimal as illustrated in
Figures 1C,D.

The solutions of Equation (6) satisfying the conditions listed
in Equation (7) can be found rather efficiently by MOEA
with genetic mechanisms. In a standard genetic algorithm,
there are usually four steps in the evolutionary procedure: (1)
randomly initializing the solution population, (2) evaluating and
assigning a fitness value for each individual in the population
according to its performance, (3) selecting individuals based
on their fitness values to procreate, and (4) using crossover
and mutation to produce next generation from the selected
individuals. In this study, we used the SPEA2 algorithm to find
the Pareto fronts of all of the 9 examined detectors. SPEA2
was selected for its fast convergence rate and good performance
because it kept a relatively small, yet diverse population
(Zitzler et al., 2001a).

A brief work flowchart of our proposed metrics is provided
in Figure 2. It consists of three key modules: (1) detector, (2)
subsample, and (3) SPEA2 modules. Six simplex and 3 hybrid
detectors with their operating parameter descriptions are given
in Sections Six Simplex Detectors and Three Hybridization
Detectors respectively. Subsample and SPEA2 implementations
are delineated in Sections Subsample Strategy and SPEA2
Module.

Six Simplex Detectors
Fourier-based bandpass filtering (Figure 3, 2nd row) is the
foundation of many automated detectionmethods for identifying
the frequency of sleep spindles. The main difference among
such bandpass automatic spindle detectors is to apply various
methodological strategies for improving the identification of
the “right amplitude” and “right duration” of sleep spindles.
Alternatively, CWT and HHT for frequency discrimination are
also proposed in more recent approaches. We have focused
on six existing algorithms: three using Fourier filtering, one
using CWT, and two using HHT. They are briefly reviewed as
follows.

Detector 1. (d1). Ferrarelli’s Bandpass Filtering and

Amplitude Thresholding
The first detector d1, proposed by Ferrarelli et al. (2007),
detects sleep spindles through bandpass filtering and using
lower and upper amplitude thresholds. In our Pareto-
optimization software implementation (refer to Supplementary
Material for all software implementation), the EEG signal
was preprocessed with a filter using the bandpass setting
published by Warby et al. (2014) and the envelope of the
rectified filtered signal peaks (blue curve in Figure 3, 3rd row)
was thresholded by two parameters: p1,1×A1 and p1,2×A2.
A1 and A2 were derived respectively from the peak and
average amplitude of filtered signals in NREM stages 2, 3,
and 4; p1,1 and p1,2 were the lower and upper threshold ratios
respectively. Finally, each spindle candidate was examined by
the lower and upper duration criteria p1,3 and p1,4 s. As an
optimization algorithm in our implementation, the vector of
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FIGURE 2 | Work flowchart of proposed evaluation metrics.

operating parameters for detector d1 can be explicitly expressed
as

xd1 =
(

p1,1, p1,2, p1,3, p1,4
)

. (8)

Detector 2. (d2). Mölle’s Bandpass Filtering and RMS

Thresholding
Mölle et al. (2002) published a detection method by first applying
a bandpass filter to the EEG signal and then computing the
RMS of the filtered signal. In our software implementation,
the RMS of the filtered signal was calculated with a time
resolution of p2,1 s and a window of p2,2 s. The lower
amplitude threshold was defined as p2,3 (a threshold ratio) times

the standard deviation of the filtered NREM stage 2 signals.
Parameters p2,4 and p2,5 defined the lower and upper spindle
durations. The vector of operating parameters for detector d2
was

xd2 =
(

p2,1, p2,2, p2,3, p2,4, p2,5
)

. (9)

Detector 3. (d3). Martin’s Bandpass Filtering and RMS

Thresholding
Martin et al. (2013) published a detection method that also took
the RMS approach (similar to d2) with different time resolution
p3,1 = 0.25 s, time window p3,2 = 0.25 s, and a threshold ratio p3,3
as the 95 percentile (0.95) of the RMS amplitude of the bandpass
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FIGURE 3 | Frequency-based sleep spindle detection. An example C3 signal (data 1 from the MASS database) with sleep spindles marked by scorer 1 in red and

scorer 2 in green (1st row). Bandpass filtering results (2nd row). Envelope of rectified filtered signal peaks (blue) and RMS (red) of filtered results (3rd row). Normalized

power spectrum of CWT coefficients (4th row). CWT probabilistic estimate derived from top 10 coefficients (5th row). First 3 IMFs by the EMD method (6th row). High

frequency component extracted by the rolling ball sifting algorithm with a cutoff frequency at 10 Hz (7th row). Fuzzy logic estimates of d5 (red) and d6 (blue) (8th row).

filtered signal in NREM stages 2, 3, and 4. And p3,4 and p3,5
defined the lower and upper spindle durations. In this study,
however, time resolution p3,1 and time window p3,2 were fixed
at 0.1 and 0.25 s respectively so that RMS was preprocessed only
once to reduce the high RMS-and-percentile computation cost
for all NREM stages 2, 3, and 4. Note that p3,1 was lowered from
0.25 to 0.1 s for a finer time resolution. An example RMS is shown
as the red curve in Figure 3, 3rd row. The final vector of operating

parameters for detector d3 was

xd3 =
(

p3,3, p3,4, p3,5
)

. (10)

Detector 4. (d4). Tsanas’ CWT Instantaneous

Probabilistic Estimate with Moving Averaging
Detector d4 is one of two CWT-based methods proposed
by Tsanas and Clifford (2015). With a Morlet basis function
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which identifies regions where the power of CWT coefficients
corresponding to frequencies of spindles, d4 has the advantage
over the previous 3 Fourier-based methods without needing the
sleep stage information for deriving a normalized threshold.
However, it is also the most complicated detector with 15
adjustable parameters. In our implementation, we first made
the lower and upper spindle frequencies adjustable parameters
p4,1 and p4,2. The normalized percentage power of the CWT
coefficients (Figure 3, 4th row) were sorted in descending
order at each time instant and the instantaneous probabilistic
estimate of spindle occurrence was derived from the top 10
scales which fell in the range between p4,1 and p4,2 Hz.
Second, the probabilistic estimate was smoothed by a moving
average filter of p4,3 s (Figure 3, 5th row). Third, candidate
spindles were detected by a probabilistic estimate threshold p4,4
and initial regions longer than p4,5 s were kept and merged
with neighboring regions if their time gap was shorter than
p4,6 s. The last step was to group together regions which
contained series of samples with high probabilities of denoting
spindles. There were two grouping rules. One was for grouping
intermediate spindle candidates with a lower average probability
threshold p4,10 and one candidate was at least p4,8 s long and
the other was at least p4,9 s. Similarly, p4,7, p4,11, and p4,12
were for grouping strong spindle candidates with an higher
average probability threshold p4,7 and a duration over p4,11 or
p4,12 s. Finally, p4,13, p4,14, and p4,15 were the merging time
gap, lower duration, and upper mergeable duration criteria,
respectively. The vector of operating parameters for detector d4
was

xd4 =
(

p4,1, p4,2, p4,3, p4,4, p4,5, p4,6, p4,7, p4,8, p4,9, p4,10, p4,11,

p4,12, p4,13, p4,14, p4,15
)

(11)

Detector 5. (d5). Causa’s HHT Instantaneous

Frequency and Amplitude Fuzzy-Logic Estimate
Causa et al. (2010) proposed using HHT-derived instantaneous
amplitude and frequency for determining sleep spindle’s
probabilistic estimate. HHT is fundamentally different from
Fourier- or CWT-based approaches because it can generate
physically meaningful components, called intrinsic mode
functions (IMFs), empirically through a sifting procedure which
fits extrema with splines recursively (Huang et al., 1998). In
our software implementation, we generated first three IMFs
(Figure 3, 6th row) and used a zero crossing method (Huang
et al., 2009) for estimating their instantaneous frequency. For
deriving probabilistic estimates, 4 positive parameters p5,1,
p5,2, p5,3, and p5,4 µV were used to form the trapezoidal-
shaped membership function (p5,2− p5,1, p5,2, p5,2+ p5,3,
p5,2+ p5,3+ p5,4) for amplitude. Similarly, 4 parameters p5,5,
p5,6, p5,7, and p5,8 Hz for frequency. The fuzzy-logic estimates
from amplitude and frequency were multiplied for each IMF
respectively, and the maximal estimate of all 3 IMFs at each
sample time was retained as the final fuzzy-logic estimate
(red curve in Figure 3, 8th row). Lastly, the final estimate
was thresholded by p5,9, merged by a time gap criterion
p5,10 s, and checked by lower and upper duration criteria

p5,11 and p5,12 s. The vector of operating parameters for d5
was

xd5 =
(

p5,1, p5,2, p5,3, p5,4, p5,5, p5,6, p5,7, p5,8, p5,9, p5,10,

p5,11, p5,12
)

(12)

Detector 6. (d6). Huang’s Rolling Ball Sifting

Frequency and Amplitude Fuzzy-Logic Estimate
Huang et al. (2015) proposed a new HHT-based detector
that applied a bandpass empirical mode decomposition (EMD)
algorithm to extract IMFs with an adjustable frequency
discriminating capability. It worked in a way similar to d5
except that the IMF containing sleep spindles was extracted by
using two rolling balls (with cutoff frequencies at 10 and 16
Hz respectively) for selecting appropriate extrema in the sifting
process. Since the rolling ball algorithm was computationally
expensive, instead of using two balls, we applied a new rolling
ball sifting algorithm (Huang et al., 2016) with only one ball
(cutoff frequency at 10 Hz) in our new software implementation
for processing long MASS datasets. The extracted high frequency
component (>10 Hz), illustrated in Figure 3, 7th row, generated
only one set of instantaneous amplitude. However, 5 average
frequencies were estimated with a window of 1, 3, 5, 7, 9 zero-
crossings for smoothing purpose. The fuzzy-logic estimation
(blue curve in Figure 3, 8th row), thresholding, merging and
duration checking were performed identically as d5. Therefore,
the vector of operating parameters for d6 was also identical
to xd5.

Three Hybridization Detectors
There are different ways in hybridizing different detectors
for performance improvement. Simple approaches include
intersection (total agreement) and union (partial agreement) of
the results from multiple detectors. However, such a simple
design through giving different weights to different detectors
increase the computational cost cumulatively because it needs
to collect the results from all participating detectors. Instead, in
this study, we followed a double reading paradigm, in which the
first detector screened all data to find potential sleep spindles
as usual. However, the second detector only reviewed the sleep
spindle candidates identified by the first detector. This approach
was taken to balance between accuracy and computation cost.

We selected d2, d4, and d6 from the RMS, CWT, and HHT
categories respectively for composing 3 hybridization detectors.
First, hybrid detector d7 was composed of d6 as the first detector
and d2 as the second detector. Its operating vector xd7 = {xd6,
xd2} had 17 parameters in total. Second, hybrid detector d8 was
composed of d2 as the first detector and d6 as the second detector.
Its operating vector xd8 = {xd2, xd6} had 17 parameters. Third,
hybrid detector d9 was composed of d4 as the first detector and
d6 as the second detector. Its operating vector xd9 = {xd4, xd6}
had 27 parameters.

Subsample Strategy
Since the total length of sleep spindles in the MASS SS2 datasets
ranged from only 8 to 30 min per night, we decided to extract a
subsample of 60 min from each whole night sleep in the training
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datasets to reduce SPEA2 computation time. Considering that
our tested detectors used intrinsically different methods to
estimate frequency, we did not want to create a common,
single subsample for all of them. Instead, we tried to apply
the optimal parameters derived from the DREAMS database by
each individual detector to collect its own false positives from
the training set of MASS database. These detector-dependent
false positives and all true positives (defined by the chosen gold
standard) were used to create small segments of signals. These
small segments were dilated by 2.5 s from both ends and merged
(if overlapped) to form a pool of bigger segments. From this
pool, we randomly picked a total amount of 60 min long signals
with true and false spindles. Tested with the maximal F0.5-, F1-,
and F2-score (beta = 0.5, 1, 2 in Equation 3), we found that the
parameters achieving the highest F2-score based on the union
gold standard of the DREAMS database were a good choice for
generating false detection subsamples from the MASS database.

SPEA2 Module
SPEA2 software has three mandatory input operating
parameters: (1) solution population size, (2) maximum number
of generations, and (3) minimum and maximum boundary
values of the optimized detector’s operating parameters. In this
study, the solution population sizes and maximum generations
were empirically chosen such that they were at least 10 times
of the number of operating parameters. On several occasions,
some of these numbers were increased by 50–100 than the
aforementioned recommendations to ensure convergence to
Pareto front solutions. Note that population size, number of
generations, and parameter boundary values were empirically
chosen in the training stage of the hold-out experiment described
in the following section. Their values are listed in Section Spindle
Detection Performance on DREAMS Database. Finally, for the
other SPEA2 parameters (such as mutation and crossover) we
used the default values implemented by Popov (2005).

Statistics
For reporting the performance of each automatic spindle
detector, we first derive the vector of operating parameters that
achieves the maximal F1-score from its Pareto-optimal solutions
solved by the SPEA2 algorithm based on a training dataset.
Second, we apply the optimal operating parameter vector to a test
dataset (unseen to the detector) to assess the resultant F1-score
(Figure 2). Two validation strategies were conducted to assess the
performance of spindle detectors in the proposed Pareto optimal
and gold standard adaptive context. First, a hold-out strategy
was used to assess overfitting by our SPEA2 implementations.
Second, a k-fold cross-validation strategy was used to assess
spindle detectors.

In our hold-out experiment, we divided the datasets into three
groups: (1) all DREAMS datasets, (2) the first half of MASS
datasets (subjects 1–9), and (3) the second half of MASS datasets
(subjects 10–19). Subjects 7 and 8 were excluded from the
DREAMS database if the gold standard of scorer 2 or intersection
was applied; data 4, 8, 15, 16 were excluded from the MASS
database if scorer 2’s gold standard was applied. There were two
versions of EEG signals in the MASS database. We used the new

version published in 2015 to evaluate all the 9 detectors described
in Sections Six Simplex Detectors and Three Hybridization
Detectors. Our hold-out paradigm was conducted such that
DREAMS and the first half of MASS were freely explored to
find the proper ranges of adjusted parameters for each detector
and to choose the proper population size and the number of
generations for SPEA2. At this stage, we also experimented with
a few different ways to generate an appropriate subsample for
MASS datasets. Although subjecting a detector to 9 whole-night
sleep EEG was not an impossibility, the idea of “gold standard
adaptive” would work for most clinicians only if the training
time was within hours by a regular personal computer. Once
the parameter ranges, population size, number of generations,
subsample strategy were decided, they were then fixed and used
to train all the detectors with every different gold standard to find
their own Pareto optimal solutions. The second half of MASS
datasets that remained unseen to the spindle detectors during the
entire training stage were then used to test the final solutions only
once for deciding a conservative error bound (Brun et al., 2008).

The 95% confidence intervals (CI) of the estimated F1-scores
by the training and test datasets in the hold-out experiment
were derived by using probabilistic interpretation. Since the
distributions of the precision and recall are Beta distributions
(Goutte and Gaussier, 2005), the 95% CI of a F1-score can be
estimated by running Monte Carlo simulation of precision and
recall that are calculated from the data. We assumed that the
number of true negatives in the data was 10 times the number of
true positives and estimate the 95% CI by running Monte Carlo
simulation for 10,000 times.

Lastly, 3-fold cross-validation, where the subjects in the
MASS SS2 database were randomly partitioned into 3 equal
sized subgroups, was conducted to assess the performance
of 9 detectors. Of the 3 subgroups, a single subgroup was
retained as the validation data for testing the detectors, and
the remaining 2 subgroups were used as training data. In each
fold, multiple Pareto optimal parameter vectors were solved by
using a subsample of the training data as shown in Figure 2

for computation efficiency. However, the parameter vector x

which generated the maximum F1-score was judged based on
the complete-night training data. This maximum F1-score x was
then used to assess the FN and FP results on the complete-night
validation data. The cross-validation process was repeated 3 times
with each of the 3 subgroups used exactly once as the validation
data. The validation results from all 3-folds were finally grouped
together to produce a single estimation.

Software Implementation
All the sleep spindle detection algorithms evaluated in this
study were implemented in Matlab version R2015a (MathWorks,
Natick, MA, USA) and C language. Fourier-based bandpass
filtering software (d1, d2, and d3) was originally developed by
Warby et al. (2014). The CWT-based software (d4) was developed
by Tsanas and Clifford (2015). Parts of these Matlab codes were
rewritten in C language for reducing SPEA2 computation time.
The HHT-based software (d5 and d6) and hybrid software (d7,
d8, and d9) was developed by our group. All Matlab and C
source codes are available in SupplementaryMaterial. Third party
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software such as SPEA2 and EMD is available in Popov (2005)
and Wang et al. (2014) respectively. Computation time estimates
were performed on a Fujitsu Lifebook laptop with Intel Core i7-
3632QM processors at 2.20 GHz, using 12 GB of RAM memory
running a 64-bit Windows 10 operating system.

RESULTS

Spindle Detection Performance on Dreams
Database
In the training stage of the hold-out experiment, we found
that SPEA2 was able to converge to an adequate set of
solutions with a population size of 100 parameter vectors that
evolved 100 generations for detectors d1-d3 with 3–5 adjustable
parameters. For detectors d4-d9 with more than 10 parameters,
the population size was ascertained by 10 times the number
of parameters and the number of generations was empirically
determined by the population size plus 50–100 to ensure
convergence to Pareto front solutions for the DREAMS database.
In summary, the population sizes of d1-d9 were 100, 100, 100,
150, 120, 120, 170, 170, and 270 respectively. The maximum
generations were 100, 100, 100, 250, 200, 200, 250, 250, and 320
respectively. The ranges of lower and upper parameter values
were also empirically determined based the Pareto front results
of the DREAMS database for all 9 detectors. The ascertained
minimum and maximum (boundary) values of detectors d1-d5
parameters were

xd1,min = (0.1, 0.1, 0.3, 0.3) , (13)

xd1,max = (20, 30, 1, 3) , (14)

xd2,min = (0.05, 0.05, 0.1, 0.3, 0.3) , (15)

xd2,max = (0.5, 0.5, 10, 1, 3) , (16)

xd3,min = (0.1, 0.3, 0.3) , (17)

xd3,max = (99, 1, 3) , (18)

xd4,min = (8, 14, 0.05, 0.1, 0.01, 0.05, 0.3, 0.05, 0.1, 0.3,

0.05, 0.05, 0.1, 0.3, 0.3) , (19)

xd4,max = (12, 18, 0.25, 0.8, 0.1, 0.25, 0.9, 0.25, 0.5, 0.8,

0.25, 0.5, 0.5, 1, 3) , (20)

xd5,min = (1, 5, 10, 1, 0.1, 8, 1, 0.1, 0.01, 0.05, 0.3, 0.3) , (21)

xd5,max = (10, 40, 120, 50, 4, 13.5, 8, 4, 0.99, 0.5, 1, 3) (22)

The minimum and maximum values of xd6 were the same as
xd5. The hybrid detectors d7-d9 used the same minimum and
maximum boundaries for their respective components d2, d4 and
d6. The ranges of other parameters are given in Supplementary
Material for code transparency and result reproducibility.
Figure 4 shows the Pareto front-derived PR-curves and F1-scores
of 9 sleep spindle detectors, simplex d1–d6 and hybrid d7–
d9, solved by using the SPEA2 algorithm with the DREAMS
database of 4 different gold standards listed in Table 1. The
PR-curves (Figures 4A,C,E,G) and F1-scores (Figures 4B,D,F,H)
vary dramatically from the worst performance evaluated based
on scorer 1’s gold standard to the gold standard of intersection,
union, and finally to the best performance of scorer 2’s gold

standard. Although the F1-scores of all tested detectors vary, the
hybrid detectors (especially d9) seem to perform better regardless
of which gold standard is used.

Spindle Detector Hold-Out Validation on
Mass Database
After we trained these 9 detectors with the subsamples extracted
from the first half of MASS database by using the subsample
strategy (Section Subsample Strategy), we reported their training
performance based on the FN and FP calculated from the whole
night training datasets with the Pareto optimal solutions derived
from subsamples. The Pareto front-derived PR-curves estimated
in the training procedure are shown as red dots in Figures 5, 6 for
the gold standard of scorers 1 and 2 respectively. The PR-values
of test results derived from the second half of MASS database
are shown as blue dots (in Figures 5, 6) and are connected by a
light blue line to the training results (red dots) that are estimated
by using the same vector of operating parameters. The maximal
F1-scores acquired by training are marked by red squares in
Figures 5, 6. Note that the blue squares in Figures 5, 6 are not
the maximal test F1-scores but the test results by using the same
set of operating parameters of the corresponding red squares.
Here we did not report the maximal test F1-scores because in
real practice we can choose only a small number of operating
parameters after the software system has been optimized. The
PR-values, F1-scores, and 95% CI of F1 at the operating points
marked by squares in Figures 5, 6 are listed in Table 3 and their
operating parameter values are given in Supplementary Material.

The F1-scores for all 9 detectors by the gold standards
of scorer 1 and scorer 2 are illustrated in Figure 7. From
Figures 7A,B, Table 3, we observe that Fourier-based simplex
detectors d1–d3 perform the worst with the estimated maximal
F1-scores 0.563–0.609 by scorer 1’s gold standard. HHT-based
simplex detectors perform better with the estimated maximal
F1-scores 0.622–0.699. Hybrid detectors d7 and d8 perform the
best with the estimated maximal F1-scores 0.722–0.738. CWT-
based simplex detector d4 and hybrid d9 perform well with high
training F1-scores at 0.631 and 0.735 but low test results of
0.589 and 0.673 respectively. The results in Table 3 indicate that
Fourier-based detectors improve significantly by scorer 2’s gold
standard [scored based on both broad-band EEG signals (0.35–35
Hz band) and sigma-band filtered signals (11–17 Hz band)].
Despite the existence of a biased gold standard in favor of Fourier
filtering, hybrid d7 and d8 still outperform with maximal F1-
scores 0.722–0.744 compared to 0.637–0.7 by simplex Fourier-
based detectors. Finally, automatic detectors are compared to
the iso-curves of F1-scores of 0.75 (good) and 0.67 (average) in
Figure 8. The performance levels of “good” and “average” refer
to the study by Warby et al. (2014), where experts’ average F1
was 0.75 and non-experts’ consensus 0.67. Figures 8A,B illustrate
that the optimized simplex detectors d1-d5 are indeed inferior
to human performance of 0.67. However, HHT-based simplex
detector d6 perform comparably to the level of non-experts.
Hybrid detectors d7 and d8 perform well on a level slightly
below that of experts regardless which gold standard is used
(Figures 8A–D).
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FIGURE 4 | Pareto front-derived PR-curves and F1-scores for the DREAMS database with scorer 1’s gold standard (A,B), scorer 2’s gold standard (C,D),

intersection gold standard (E,F), and union gold standard (G,H).

Spindle Detector 3-Fold Cross-Validation
on Mass Database
The maximum F1-scores of d1–d9 estimated by 3-fold cross-
validation were 0.588, 0.604, 0.583, 0.61, 0.633, 0.679, 0.732,
0.727, and 0.7 respectively based on scorer 1’s gold standard.
They were 0.622, 0.677, 0.651, 0.651, 0.644, 0.669, 0.737, 0.726,
and 0.68 respectively based on scorer 2’s gold standard. Most
of these numbers are substantially better than the baseline
performance by using their originally published parameters. Both
3-fold validation, baseline performance, and their corresponding

PR-values are also listed in Table 3 for comparison. These cross-
validation estimates were comparable to the hold-out estimates
except d5’s F1-score on scorer 2’s gold standard. The hold-out
test F1-score was 0.608 (95% confidence intervals 0.601–0.616),
which was significantly smaller than the cross-validation’s F1
estimate of 0.644.

Computation Time
The SPEA2 training time for d1–d3, d4, and d5–d6 was 27–42 m,
5.3 h, and 1.7–2.2 h, respectively; for hybrid detectors d7, d8, and
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FIGURE 5 | Pareto-front-derived PR-curves for the MASS database by scorer 1’s gold standard for detectors d1 (A), d2 (B), d3 (C), d4 (D), d5(E), d6
(F), d7 (G), d8 (H), and d9 (I). The training results (red) and the test results (blue) are connected by light blue lines to indicate that they are derived by using the same

vector of operating parameters. The maximal training F1-scores and their corresponding test results are marked with squares and their values presented.

d9 was 4.8, 4.4, and 16 h, respectively. Although the computation
time (in seconds) to preprocess the C3-A1 channel of a complete-
night MASS dataset was 0.9, 7, 16, 28, 73, 835, 838, 390, 390 for
d1–d9 respectively, the execution time of spindle detectors d1–d9
implemented in C language was 0.06, 0.09, 0.16, 0.63, 0.20, 0.14,
0.22, 0.27, and 0.71, which is well below 1 s per complete-night
dataset. Therefore, the training time was mainly proportional
to the product of population size and number of generations,
which approximated the square of a detector’s parameter
number.

DISCUSSION

Table 4 summarizes four previous published evaluation
methodologies and our new approach. From Table 4, We
identify three important trends in evaluating automatic

sleep spindle detection. First, using open-access databases
(Devuyst et al., 2011; O’Reilly and Nielsen, 2015) and/or
making software source codes open-access (Warby et al.,
2014; O’Reilly and Nielsen, 2015) are the two most important
factors in advancing our understanding of performance
improvement of various spindle detectors. Second, using
non-specificity-derived metrics such as F1-score (Warby
et al., 2014; O’Reilly and Nielsen, 2015) for reporting
performance is another important trend to make results
from different studies comparable. Third, a newly developing
trend identified by O’Reilly and Nielsen (2015) is to involve
gold standards in the process of performance estimation. To
make this idea work, we suggest that commonly acceptable
evaluation metrics for spindle detection should be gold standard
adaptive.

Here we first discuss the necessity of being gold standard
adaptive in evaluating a sleep spindle detector. Figure 4 shows
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FIGURE 6 | Pareto-front-derived PR-curves for the MASS database by scorer 2’s gold standard for detectors d1 (A), d2 (B), d3 (C), d4 (D), d5(E), d6
(F), d7 (G), d8 (H), and d9 (I). The training results (red) and the test results (blue) are connected by light blue lines to indicate that they are derived by using the same

vector of operating parameters. The maximal training F1-scores and their corresponding test results are marked with squares and their values presented.

that the performance of a detector on the same database by
different gold standards can vary at most by a difference of 0.2
in F1-score. One may argue that the DREAMS database is too
small for an adequate evaluation. However, as an example, take
d2 inTable 3 evaluated based on theMASS database, the F1-score
still changed noticeably from a low level of 0.604 by scorer 1’s
gold standard to an average (non-expert human’s) level of 0.677
by scorer 2’s. Although the score of 0.677 is still considerably
lower than 0.726–0.737 by d7 and d8, d2 is a much faster detector
that can be useful in processing a big database of thousands
of patients if the gold standard of scorer 2 is adequate for our
study purpose. On the other hand, for performance accuracy
and consistency, d7 maybe the most adaptive performer with
a F1-score of 0.727 and 0.737 no matter which gold standard
was considered. The point we want to emphasize is that the
definition of true spindles may be age- or disease-dependent.

In addition, some applications may require a higher duration
accuracy criterion by making the overlap rate Rov (Equation 5)
another adjustable parameter. Yet, other applications may want
to adjust the ranges of a Fourier filter’s sigma-band for detecting
slow or fast spindles. Therefore, the so-called optimal detector
should not only be gold standard adaptive but also application-
dependent.

Second, a commonly accepted performance metric that is
suitable for gold standard adaptive should be formally and
uniquely defined. Although PR-curves and F1-scores are known
to be good metrics and commonly used in evaluating detectors of
sparse events such as sleep spindles, Figure 1 demonstrates that
PR-curves and F1-scores derived from non-optimal operating
points are not uniquely defined (as compared to the uniquely
defined Pareto front) even for a simple detector with 3 adjustable
parameters. The situations to define ad hoc PR-curves and
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TABLE 3 | Sleep spindle detector performance evaluation.

Detector Scorer 1’s gold standard Scorer 2’s gold standard

P R F1 F1 [95% CI] P R F1 F1 [95% CI]

d1 train 0.557 0.668 0.607 [0.597, 0.618] 0.556 0.782 0.650 [0.643, 0.657]

test 0.567 0.560 0.563 [0.552, 0.574] 0.546 0.799 0.649 [0.642, 0.655]

3-fold 0.544 0.639 0.588 – 0.601 0.738 0.662 –

baseline 0.481 0.360 0.412 – 0.599 0.194 0.293 –

d2 train 0.531 0.699 0.603 [0.593, 0.614] 0.609 0.764 0.677 [0.671, 0.684]

test 0.546 0.636 0.587 [0.578, 0.598] 0.614 0.814 0.700 [0.694, 0.706]

3-fold 0.500 0.762 0.604 – 0.594 0.788 0.677 –

baseline 0.268 0.970 0.420 – 0.538 0.807 0.646 –

d3 train 0.508 0.688 0.584 [0.574, 0.595] 0.571 0.721 0.637 [0.630, 0.644]

test 0.556 0.673 0.609 [0.599, 0.619] 0.567 0.748 0.645 [0.638, 0.652]

3-fold 0.508 0.684 0.583 – 0.577 0.748 0.651 –

baseline 0.267 0.943 0.416 – 0.535 0.751 0.625 –

d4 train 0.570 0.708 0.631 [0.621, 0.642] 0.650 0.667 0.659 [0.651, 0.666]

test 0.485 0.749 0.589 [0.579, 0.598] 0.554 0.770 0.645 [0.638, 0.651]

3-fold 0.535 0.710 0.610 – 0.627 0.677 0.651 –

baseline 0.177 0.980 0.300 – 0.352 0.845 0.497 –

d5 train 0.648 0.657 0.653 [0.642, 0.663] 0.724 0.508 0.597 [0.589, 0.606]

test 0.531 0.751 0.622 [0.613, 0.631] 0.615 0.601 0.608 [0.601, 0.616]

3-fold 0.601 0.670 0.633 – 0.605 0.688 0.644 –

baseline 0.228 0.884 0.362 – 0.623 0.660 0.641 –

d6 train 0.690 0.708 0.699 [0.689, 0.709] 0.684 0.680 0.682 [0.674, 0.689]

test 0.562 0.812 0.664 [0.655, 0.673] 0.514 0.786 0.621 [0.615, 0.628]

3-fold 0.649 0.712 0.679 – 0.643 0.697 0.669 –

baseline 0.051 0.873 0.097 – 0.138 0.903 0.240 –

d7 train 0.697 0.783 0.738 [0.729, 0.747] 0.714 0.773 0.742 [0.736, 0.749]

test 0.659 0.827 0.733 [0.725, 0.742] 0.624 0.857 0.722 [0.716, 0.728]

3-fold 0.720 0.745 0.732 – 0.699 0.781 0.737 –

d8 train 0.693 0.779 0.733 [0.724, 0.742] 0.764 0.696 0.729 [0.722, 0.736]

test 0.656 0.804 0.722 [0.714, 0.731] 0.705 0.789 0.744 [0.738, 0.750]

3-fold 0.706 0.749 0.727 – 0.685 0.774 0.726

d9 train 0.686 0.791 0.735 [0.725, 0.744] 0.709 0.671 0.690 [0.682, 0.697]

test 0.548 0.874 0.673 [0.664, 0.681] 0.551 0.802 0.653 [0.647, 0.660]

3-fold 0.657 0.748 0.700 – 0.658 0.703 0.680 –

CI stands for confidence intervals and the best hold-out test results are bold faced. 3-fold stands for 3-fold cross validation. The baseline performance is the result of using the suggested

parameters of the original publication.

F1-scores for more complex detectors such as d4–d6 deteriorated
and d9 with 27 parameters will be an almost impossibility. In
this study, we propose evaluating a spindle detector in a multi-
objective optimization context with the resultant Pareto fronts
for deriving PR-curves and F1-scores formally and uniquely.
A Pareto front is essentially an objective boundary such that
any solution on the front can only be outperformed by another
solution in at most one of the two competing objectives.
Therefore, a Pareto optimal set is uniquely defined for a given
data with a specific gold standard. We demonstrated that the
Pareto fronts can be efficiently solved by SPEA2 for spindle
detectors with the proposed subsample strategy.

Third, as evolutionary algorithms are able to solve the
optimization problems with implicit solutions that are not easily

foreseen in the process of designing a new detector, we also
demonstrated the possibility to develop new hybrid methods
by combining two existing simplex detectors. Note that among
6 simplex detectors d1-d6, choosing two in an order yields 30
possible hybrid approaches. We did not perform all 30 possible
combinations because we did not have the resources to do a
full-fledged hybridization experiment. Detectors d4-d5 and d4-
d6 combinations with 27 operating parameters were particularly
time-consuming. As our main goal was to prove that spindle
detectors would be improved by using MOEA, we only tested
the hybridization approach on HHT-Fourier and HHT-CWT
combinations. The rationale was that hybridization usually would
perform best by combining different computational mechanisms.
Fourier and wavelet are rather similar because both methods
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FIGURE 7 | The Pareto front-derived F1-scores of detectors d1-d9 are shown along the recall coordinate. (A) Training results by scorer 1’s gold standard.

(B) Test results by scorer 1’s gold standard. (C) Training results by scorer 2’s gold standard. (D) Test results by scorer 2’s gold standard.

use inner product in deriving their coefficients. On the other
hand, HHT uses a sifting procedure that is totally different from
the inner product procedure. Therefore, we chose the better
HHT-based algorithm d6 to hybridize with the Fourier-based d2
and CWT-based d4. Despite using a very simple double reading
design in which the first detector screens all data to find potential
sleep spindles and the second detector only reviews the sleep
spindle candidates identified by the first detector, this sequential
hybridization system allows us to design two very effective hybrid
detectors, d7 and d8, by simply switching the order of applied
simplex detectors d2 and d6. They achieved the highest F1-scores
of 0.726–0.737 that were notably better than their composite
components d2 and d6 of 0.604–0.679.

Last, our experiment was conducted in both hold-out and k-
fold cross-validation paradigms. The hold-out validation allowed
us to derive both model-based 95% CI and a more conservative
error bound estimate (Brun et al., 2008) to assess overfitting.
Take the best performers d7–d9 listed in Table 3 for example.
Detector d9 performed at a good level with its training F1-score
0.735 but an average hold-out test score 0.673 (by scorer 1’s gold
standard), which was much lower than the 95% CI 0.725–0.744
via Monte Carlo simulation at the maximal F1 = 0.735 from

the training datasets. The error bound estimated by a hold-out
design is larger and therefore more conservative than the model-
based estimation. We double-checked its 3-fold result, which was
0.7. Therefore, the possibility of overfitting did exist. The similar
poorer hold-out test scores were also observed for d4 (scorer 1’s
gold standard) and d6 (scorer 2’s gold standard). This implied
that these detectors were more susceptible to subsampling.
For example, one possible explanation was that the 60 min
long subsamples were not chosen properly by chance. Another
possible explanation was that detectors d4-d6 did not use any
amplitude normalization strategy. On the other hand, the hold-
out and 3-fold estimated F1-scores of d7 (scorer 1’s gold standard)
were 0.733 and 0.732, which fell well in the 95% CI 0.729–0.747
via Monte Carlo simulation of the maximal F1 = 0.738 from
the training datasets. Since d7 and d8 all performed with F1-
scores well above 0.7 by both model-based and hold-out error
bound estimations, their performance improvement over d1–d6
was considered statistically significant.

In conclusion, our study has demonstrated that using multi-
objective evolutionary algorithms to optimize automatic sleep
spindle detectors in a gold standard adaptive approach can
potentially improve the effectiveness and consistency of sleep
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FIGURE 8 | Performance comparison with the iso-curves at F1-scores of 0.75, 0.67, and 0.6. (A) The training PR-curves on the first half MASS database and

(B) the test PR-curves on the second half MASS database by scorer 1’s gold standard. (C) The training PR-curves on the first half MASS database and (D) the test

PR-curves on the second half MASS database by scorer 2’s gold standard.

TABLE 4 | Comparison of evaluation methods for sleep spindle detection.

Huupponen et al., 2007 Devuyst et al., 2011 Warby et al., 2014 O’Reilly and Nielsen, 2015 New method

Open-access

database used

No DREAMS No DREAMS and MASS DREAMS and MASS

Number of

evaluated detectors

4 1 6 4 9

Detector source

code open-access

unspecified No Yes Yes Yes

Operating parameter

adjustment

According to frequency and

amplitude statistics of sleep

spindles

According to frequency and

amplitude statistics of sleep

spindles

Using the original published

setting

Using the original published

setting

Multiple parameters were

optimized by MOEA

True detection

criterion

By-event By-event By-event (with 0.2 overlap

rate)

By-event and by-sample By-event (with 0.2 overlap

rate)

Evaluation metrics Sensitivity, specificity,

ROC-curve

Sensitivity, specificity,

ROC-curve

PR, F1-score ROC-, PR-curve, F1-score,

Matthew’s correlation

coefficient, Cohen’s Kappa

PR-curve, F1-score, Pareto

front

Statistics Parameters were set and

tested on the same data

Parameters were set and

tested on the same data

Using default parameters

and threshold

Threshold-dependent Hold-out, 3-fold cross

validation
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spindle identification and make the analysis of sleep spindle
properties more reliable in clinical settings.
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