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EEG and eye tracking variables are potential sources of information about the underlying
processes of target detection and storage during visual search. Fixation duration,
pupil size and event related potentials (ERPs) locked to the onset of fixation or
saccade (saccade-related potentials, SRPs) have been reported to differ dependent
on whether a target or a non-target is currently fixated. Here we focus on the
question of whether these variables also differ between targets that are subsequently
reported (hits) and targets that are not (misses). Observers were asked to scan
15 locations that were consecutively highlighted for 1 s in pseudo-random order.
Highlighted locations displayed either a target or a non-target stimulus with two,
three or four targets per trial. After scanning, participants indicated which locations
had displayed a target. To induce memory encoding failures, participants concurrently
performed an aurally presented math task (high load condition). In a low load condition,
participants ignored the math task. As expected, more targets were missed in
the high compared with the low load condition. For both conditions, eye tracking
features distinguished better between hits and misses than between targets and
non-targets (with larger pupil size and shorter fixations for missed compared with
correctly encoded targets). In contrast, SRP features distinguished better between
targets and non-targets than between hits and misses (with average SRPs showing
larger P300 waveforms for targets than for non-targets). Single trial classification
results were consistent with these averages. This work suggests complementary
contributions of eye and EEG measures in potential applications to support search
and detect tasks. SRPs may be useful to monitor what objects are relevant to an
observer, and eye variables may indicate whether the observer should be reminded
of them later.

Keywords: EEG, pupil size, fixation, SRP, FRP, visual search, target detection, BCI

INTRODUCTION

Visual search is a common task that is performed when looking for a singing bird in the trees,
when checking a poster for graphical errors or when searching an environment for suspicious
objects. We are interested in EEG and eye variables as potential sources of information about
the underlying processes of target detection and encoding during visual search, i.e., a task where
the eyes move. As elaborately discussed in “Application” Section, monitoring target detection
and encoding on the basis of implicit variables could be useful in a number of applications.
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Brain and Eye Correlates of Target

Detection

The literature describes several EEG and eye indicators of
target detection. Observers usually fixate longer on targets
than non-targets in a search task (e.g., Brouwer et al., 2013;
Jangraw et al, 2014; Wenzel et al, 2016). Also, several
studies showed stronger pupil dilation responses to target
compared to non-target stimuli (Nieuwenhuis et al, 2011;
Hong et al, 2014). Finally, the P300 event related potential
(ERP), a positive peak occurring in the EEG signal roughly
300 ms after a sensory event, indicates that an observer’s
attention has been drawn. It has been shown that the
P300 reliably distinguishes between top-down defined “targets”
and “non-targets”, e.g., in cases where observers are asked
to pay attention to the letter “p” presented in a sequence
of successively flashed letters (e.g., Farwell and Donchin,
1988).

While in studies on pupil dilation and P300 participants
usually kept their eyes still, some studies showed similar findings
when participants were actively and purposefully moving their
eyes. Jangraw et al. (2014) found that, for a realistic visual search
scenario, pupil size locked to target fixation onset increased
relative to non-target fixation. There is a growing body of
research on ERPs that are not time locked to stimulus onset
as determined within an experimental paradigm, but to ocular-
based events such as saccades and fixations (saccade-related
potentials, SRPs or fixation-related potentials, FRPs respectively)
as a means to determine whether observers are looking at a
target (i.e., a top-down defined relevant object). For some of the
early studies (e.g., Hale et al., 2008; Luo et al., 2009), differences
found between target and non-target SRPs could have been due
to confounding factors such as systematic target vs. non-target
differences in saccade length, low level visual features, or motor
preparation to press a button. However, by now it is clear that
ERPs following fixation of a target are different than ERPs
following fixation of a non-target and that these differences are
associated with top-down stimulus processing (e.g., Dandekar
et al., 2012a,b; Kamienkowski et al., 2012; Brouwer et al., 2013).

Brain and Eye Correlates of Missed Targets
In the current study, we examine fixation duration, pupil
size and SRPs in a structured visual search task. We are
especially interested in encoding failures, i.e., failing to report
a fixated target. Observers can fail to report fixated targets for
different reasons. They may have “really” missed the targets, e.g.,
because the type of target was difficult to identify (perceptual
identification failures). Another possible reason is that after
target identification, observers forgot the target before it was time
to report, for example, because they were involved in another task
(memory encoding failures).

In the case that observers did not identify the target, we
expect eye and SRP features for misses to be similar to non-
targets—observers simply did not perceive the target as being a
target. This hypothesis is supported by research by Dias et al.
(2013) who studied SRPs following fixations of not-reported
targets under circumstances that misses were likely due to

not identifying the target. In their task, participants searched
a display filled with rectangular objects where the target was
defined by a combination of visual features that changed every
trial. For instance, a target could be a vertical bar consisting
of a red bar on the left and a yellow one on the right that
was presented between non-targets that also consisted of vertical
colored bar combinations. After finding the target, participants
had to immediately report finding it. The average miss SRP
could not be distinguished from the average non-target SRP,
while the average hit SRP stood out and was consistent with
a P300. Dias et al. (2013) found that misses were associated
with relatively high EEG alpha activity which has also been
linked to lapses of attention (e.g., Vazquez Marrufo et al,
2001).

In the case that targets are identified but not reported due
to a memory encoding failure, we do not expect features for
misses to be the same as for non-targets. Here, misses are
detected as targets at the time of fixation. However, to the
extent that differences in target vs. non-target SRPs reflect
differences in allocated attention, where this difference matters
for storage in memory, SRP waveforms following these missed
targets could fall in between target and non-target SRPs. Evidence
that is partly in line with this expectation has been found in
previous P300 studies. In these studies, participants were asked
to remember as many words as possible of a list of sequentially
presented words. P300s following presentation of words that
were later remembered were compared to those that were later
forgotten. Remembered words tended to correspond with larger
P300s. However, these effects were small and interacted with
primacy and recency effects as well as the type of rehearsal or
encoding strategy of the participants (Karis et al., 1984; Fabiani
et al., 1990; Azizian and Polich, 2007; Kamp et al., 2012). For
instance, Azizian and Polich found larger P300 amplitudes for
recalled compared to forgotten words only for words at the
beginning of the list, and Fabiani et al. (1990) only found a
positive relation between P300 and recall when participants
used a rote strategy (repeating the words to themselves) for
remembering. As of yet, we do not know whether there is a
relation between the P300 and later recall of targets in a visual
search task.

Fixation duration may reflect or may enable more attention
and deeper processing of the fixated object. Therefore, we not
only expect fixation duration to be longer for targets than for
non-targets, but also for hits compared to misses.

We discussed that SRPs and fixation duration as signatures
for missed targets may be in between hit target and non-target
values. The same may hold for pupil size, i.e., hit targets may be
associated with larger pupil size than missed targets. However,
the reverse may be found as well. In case of a search task
where targets are likely to be forgotten because the observer is
simultaneously attending to another task, we expect momentary
high workload to be associated with misses. Since workload
or memory load is strongly related to pupil size (Kahneman
and Beatty, 1966; Beatty, 1982; Hogervorst et al., 2014), also
specifically with memory load during visual search (Porter et al.,
2007), we expect it to be larger for misses than for hits in
our task.
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Current Study

In the current study we examine the general association between
SRP and eye features on the one hand and whether a fixated
object is a target and is going to be missed on the other
hand. In addition, we examine how well we can distinguish
between targets and non-targets, and between hits and misses
on a single fixation basis and which combination of these
sources of information gives us the best result. A surge of recent
studies show that it is possible to distinguish between target
and non-target SRPs above chance on a single SRP basis, also
in rather challenging circumstances. For instance, Uscumli¢ and
Blankertz (2016) show a single trial distinction when moving
stimuli are involved; single trial classification has been shown for
a mixture of foveally and parafoveally identified stimuli (Brouwer
et al., 2014; Wenzel et al.,, 2016); and it has been shown when
using more natural stimuli such as looking for a face in a crowd
(Kaunitz et al., 2014) or when viewing signs during navigating a
virtual environment (Jangraw et al., 2014). Some previous studies
have shown that combining SRP features and eye related features
increased classification performance for targets and non-targets
(Jangraw et al., 2014; Wenzel et al., 2016). Thus, for target and
non-target distinction, eye and brain signals can potentially add
complimentary information. It remains to be seen how this works
out for the distinction between hits and misses.

In our task, participants performed a structured visual search
task consisting of scanning 15 locations on a screen. Target
locations were reported after scanning all locations. An auditory
math task was performed in the high load condition but ignored
in the low load condition. In pilot experiments we verified that
performing such a double task results in failures to report targets.
With respect to the SRP, we expect a larger P300 for targets
compared to non-targets, and possibly a higher P300 for hit
compared to missed targets. We expect longer fixation duration
for targets compared to non-targets, and longer fixation duration
for hits than for misses. Pupil size may be larger for targets than
for non-targets, and—through a general association between
high workload and pupil size—larger for misses than for hits.

MATERIALS AND METHODS

Participants

Twenty-one participants (nine males, 12 females) between
the age of 19 and 30 years (average age: 23) were recruited
through the participant pool of the Netherlands Organization
for Applied Scientific Research (TNO). None of the participants
wore glasses. Each participant received a monetary reward
for his or her time and travel costs. This study was
carried out in accordance with the recommendations of
the Human Research Protections Official (HRPO) and
the TNO Institutional Review Board (TCPE) with written
informed consent from all subjects. All participants signed an
informed consent form in accordance with the Declaration
of Helsinki. This study was approved by the HRPO and
TCPE and conducted in accordance with the Army Research
Laboratory’s IRB requirements (32 CFR 219 and DoDI
3216.02).

Materials

The task was presented on a 19” flat-screen monitor (Dell
1907FP Flatpanel 19”, display size 37.5 x 30 c¢cm). The screen
resolution was 1280 x 1024 and the refresh rate was set at 60 Hz.
Participants’ eyes were located approximately 40 cm from the
screen. Audio output was coming from a dual speaker set (TEAC
PowerMax 60/2) placed left and right of the screen.

Gaze and pupil size were recorded at 60 frames per second
using SmartEyePro V6.1.6 (Smart Eye AB, Goteburg, Sweden).
This system consists of two cameras (Basler acA640-120 gm, HR
8.0 mm lens) placed at the left and right side of the screen.

EEG and EOG signals were recorded wusing an
ActiveTwoMK II system (BioSemi, Amsterdam, Netherlands)
with a sampling frequency of 512 Hz. For EEG, 32 active
silver-chloride EEG electrodes were placed according to the
10-20 system and were referenced to the Common Mode Sense
(CMS) active electrode and Driven Right Leg (DRL) passive
electrode. Four EOG electrodes (BioSemi Flat Active electrodes,
Amsterdam, Netherlands) were used to record eye movement.
Two EOG electrodes were placed at the approximately 0.5 cm off
the lateral canthi of both eyes, and were used to record horizontal
eye movement. Another two EOG electrodes were placed above
and below the left eye to record vertical eye movement and
blinks. The electrode offset of all electrodes was below 25.

Task and Design

The experiment featured two tasks: a monitoring task and an
auditory math task. In the high load condition, participants
performed both tasks. In the low load condition, they only
needed to perform the monitoring task, even though the math
task was still played to keep auditory stimulation constant across
conditions.

Monitoring Task

Participants were asked to monitor 15 “systems”, represented
by strings of symbols on a screen and placed in three rows
of five columns. There were three different system conditions:
hidden (“####”), working as intended (“#OK#”) or system failure
(“#FA#”). At the start of a trial, all system conditions were
hidden. Then, each of the systems was successively highlighted
for 1 s (1027 ms) by displaying a square around it while
its condition changed from “####” into either “#OK#” or
“#FA#” (Figure 1 shows an example of the stimulus display,
and also presents the dimensions of the different stimulus
elements). Highlighting the systems happened in random order,
except for that two subsequently presented systems were never
further apart than two steps in horizontal direction and one in
vertical direction, or two vertical and one horizontal. The next
highlighted system was in peripheral vision, such that we could
not distinguish between “#OK#” or “#FA#” without making a
saccade. After all system conditions had been shown, empty
boxes appeared at the system locations and the participant had
to indicate which systems failed during the trial by clicking the
appropriate boxes with the left mouse button. When finished,
the participant pressed an OK button at the top left of the
screen. Every trial, two, three or four “#FA#”s were presented.
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FIGURE 1| Depiction of the stimulus screen at a moment where the
lower left system is highlighted. Dimensions are indicated in cm. The
distance between the screen and the eyes was approximately 40 cm, i.e., in
degrees of visual angle, the “####” system was about 2.6 x 0.7° of visual
angle.

The amount (two, three or four) and the “#FA#” locations were
chosen randomly.

Math Task
The math task was an aurally presented sum consisting of six
numbers between 6 and 12. Only addition (+) and subtraction
(—) operations were used. An example is “8—6 + 10—12 + 11
+ 7. The first number was presented 1 s after the start of the
monitor task, and every 2660 ms another number was presented.
Thus, the last number was presented after 14.3 s. Performing this
task involves attention and working memory. When participants
had to perform the math task (i.e., in the high load condition),
they were required to give the answer of the sum after having
indicated where the “#FA#”s were located. This was done by
typing the answer and pressing enter. In order to motivate
participants to perform the math task, they received feedback on
their answer. If the answer was incorrect, the correct answer was
shown.

For each of the load conditions, participants performed
eight blocks of 11 trials. High and low load conditions were
presented alternately, starting with the high load condition.

Procedure

After a general explanation and signing the informed
consent, the EEG and EOG electrodes were attached.
During this time, the participant had time to read
detailed instructions. Participants were asked to take a
comfortable position in front of the screen. Even though
they were able to move freely, they were instructed to
minimize their head and body movements. Before the
task began, a four point-calibration was performed to
calibrate the SmartEye system. There was a few minutes
break after eight blocks of trials, i.e., half-way through the
experiment. The participants indicated when they were ready
to continue.

Analysis

Electrophysiological Data

EEG and EOG data was resampled to 256 Hz. Bad EEG
channels were identified as channels with standard deviations
exceeding five times the median standard deviation over
all channels, after bandpass filtering between 0.5 and
32 Hz. This affected 1-3 channels for five participants. The
unfiltered data from bad channels were replaced by the
weighted average of unfiltered data from the surrounding
channels. Next, the EEG-data was re-referenced to the
mean of all unfiltered data excluding the bad channels. The
resulting signals were submitted to bandpass filtering between
0.5and 32 Hz.

We extracted saccades to divide the data in saccade-locked
segments. This was done as follows (see also Figure 2). First,
horizontal and vertical EOG were cleaned from noise. This
was done by detecting values that exceeded five times the
standard deviation. The signal around these peaks was cut
out and interpolated. Next, blinks were detected and removed
in vertical EOG: after band pass filtering between 2 Hz
and 100 Hz, peaks exceeding a threshold of three times the
standard deviation were considered to be blinks, removed
and interpolated. Derivatives of the vertical and horizontal
cleaned EOG signals were calculated using a derivative Gaussian
filter with a standard deviation (sigma) of eight samples
(about 31 ms). Values exceeding four times the standard
deviation were associated with potential stimulus-to-stimulus
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FIGURE 2| lllustration of extracting saccades of interest for a sample
trial. (A) Detecting noise (indicated in red) in EOG. This example shows the
horizontal EOG. Noise was cut out and interpolated. (B) Detecting blinks in
vertical EOG. Blinks were cut out and interpolated. (C) Detecting potential
saccades of interest in the derivative of the cleaned EOG. This example shows
the horizontal EOG.
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saccades. We then looked at candidate saccades occurring
between 100 ms and 800 ms after a next location was
highlighted on the screen. The first saccade where the sign
of the HEOG signal matched the direction of the stimulus-
to-stimulus transition was selected as the saccade of interest.
If no match was found in the HEOG signal, we looked for
saccades in the VEOG with a sign that matched the vertical
saccade jump. In 10% of the data no matching saccade was
found. The EEG and EOG data was split into segments
starting from the point of the highest saccade speed to 1 s
after, and baselined using the first 100 ms of the epoch.
EEG epochs with extremely high variance (standard deviation
exceeding 50 times the standard deviation) were discarded as
outliers.

Eye Tracking Data

One participant was excluded from the eye data analyses, because
of technical difficulties with the eye tracking hardware during
this measurement. After the measurement, the fixation locations
were recalibrated using the 15 displayed stimulus positions
to obtain higher gaze localization accuracy. Fixations were
considered to be on the stimulus when the fixation position
was within a radius of 150 pixels (4.4 cm or 6.4°) from
the center of the current stimulus location. Fixation duration
was determined as the time that eye fixation was on the
stimulus. Only valid samples in a window starting at stimulus
onset until 2 s after were taken into account. Pupil size was
determined as the mean of the pupil size values over these
same samples.

Classification

For classification, we used linear SVM models that were
trained to distinguish between either targets vs. non-targets
(for each of the load conditions) or hits vs. misses (in the
high load condition) using 5-fold cross validation. Classification
was performed using the Donders machine learning toolbox
developed by van Gerven et al. (2013) and implemented in
the FieldTrip open source Matlab toolbox (Oostenveld et al.,
2011). The features were standardized to have mean 0 and
standard deviation 1 on the basis of data from the training
set. Included features were EEG voltages over a time interval
of 250-1000 ms after peak velocity of the stimulus saccade, in
which all EEG electrodes were included. In order to examine
potential information from EOG leaking into EEG, we also
used EOG voltages over the same time interval as features.
Different models were trained using different combinations of
EEG (i.e., SRP) features, EOG features, fixation duration and
pupil size. Classification was performed separately for each
participant and each load condition. Random selections of
non-targets and hits were used in the training sets in order
to match the numbers of available target and miss epochs to
ensure balanced training of the model. For each participant, each
load condition, each type of distinction (target vs. non targets
and hits vs. misses) and each model we determined whether
classification was above chance using a binomial test. An alpha
level of 5% was used.

RESULTS

Behavioral Performance

Performance on the secondary (math) task was on average
62% correct (SD 17%) indicating that the secondary task was
quite difficult and performance varied strongly between subjects.
High workload data from both trials with correct and incorrect
responses to the math task were included in the analyses. Note
that performance on the math task is no direct indicator of
workload. Performance could be high because a participant
tried hard (high load) or, for that participant, the sum was
easy (low load). Conversely, low performance could be caused
by lack of trying (low load) or because the participant simply
did not manage, despite trying hard (high load). There was
no evidence for participants choosing to focus on the one
rather than the other as indicated by the lack of (negative)
correlation between participants’ performance on the math task
and performance on the monitoring task (Pearson correlation:
r=0.25,p=027).

Figure 3A shows the hit rate of the primary task (defined as
the proportion of “#FA#” targets whose location was correctly
indicated) for successive blocks (of 11 trials each) in the high
and low workload conditions. There seems to be some indication
of a learning effect in the high load condition with increasing
performance up to block 5. The Figure 3B shows the hit rate as
a function of when the target was presented within a trial. For
the high load condition, it is clear that targets presented at the
beginning or the end of a trial are remembered better than the
ones in between. This is consistent with primacy and recency
effects.

As expected and intended, the hit rate in the high load
condition was much lower (average hit rate of 0.73 (SD 0.13)
than in the low load condition (average hit rate of 0.96, SD
0.04). Except for one participant who only missed nine targets,
all participants missed at least 22 targets in the high load
condition, with an average of 72 missed targets (range: [9, 133]).
In the low load condition, the average number of missed targets
was eight (with a range of [0, 32]). We consider the average
number of eight missed targets in the low load condition as
too little to do meaningful hit vs. miss comparisons in this
condition.

Missed targets can be accompanied by wrongly identified
targets (i.e., false alarms), or not (resulting in less targets being
reported than being presented). We found that in general, the
latter is the case. In the high load condition, the number of
false alarms was on average 42 (range of [5, 132]). Given the
number of missed targets, this means that participants reported
on average 30 targets less than the number of targets that
was actually shown (with a range of [—103, 10]). While brain
processes will be different when a target is not identified as a
target (definitely leading to not report the target at all) compared
to when a target has been identified but not properly encoded
(which, depending on the reporting strategy of the participant,
could lead to not reporting it at all or to an accompanying false
alarm), we do not distinguish between not reporting a target at all
and indicating a wrong location in this study. Given the design
of our experiment, and the results described in the following,

Frontiers in Human Neuroscience | www.frontiersin.org

May 2017 | Volume 11 | Article 264


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Brouwer et al.

EEG and Eye Target Encoding

A 10
&
L 3 4 %
09}
208
o
LTo7t
06}
I I High load
[——JLow load
0.5
1 2 3 4 5 6 7 8
Block number (across experiment)
B 10

II]T'{E

}' I

Hit rate

I High load
[—JLow load

5 10 15
Target number (within a trial)

FIGURE 3| Hit rate (correctly reported targets as a proportion of the
total number of presented targets) separately for load condition.

(A) shows hit rate for each of the experimental blocks; (B) shows hit rate as a
function of a target's position within a trial consisting of a total of 15 targets
and non-targets. Error bars indicate standard errors of the mean.

we take both to mean that the target has not been properly
encoded. However, it is important to keep in mind that treating
these results as the same may not be appropriate under other
circumstances.

Saccade Latencies

Table 1 shows the saccade latencies, defined as the peak velocity
of the stimulus saccade relative to stimulus onset. Relative
to this point SRP onsets were determined. Latencies toward
targets that are missed are longer than toward hit targets
(tae) = 2.18, p = 0.04 for the low load condition; tx9) = 4.85,
p < 0.01 for high load). Saccade latencies toward targets are
shorter than toward non-targets. Although the difference is
small (8 ms in both low and high load conditions), it is
statistically significant (respectively (t19) = 2.83, p = 0.01 for
low load; t(19y = 2.12, p = 0.05 for high load). We think
that this effect is mediated by a longer fixation duration

TABLE 1 | Means and standard deviations of saccade latency (time of
peak velocity of the stimulus saccade relative to stimulus onset),
separately for each low and high load condition, targets, non-targets, hits
and misses.

Low load High load
mean SD mean SD
Target 157 40 221 52
Non-target 165 45 229 53
Hit 154 38 199 43
Miss 267 245 284 97

The gray font of the hits and misses in the low load condition signifies that because
of few misses in the low load condition, the hit trials are about the same as the
target trials and the misses are represented by few data points.

for targets than non-targets (see “Eye—Fixation Duration”
Section). The object fixated prior to a target is more likely
to have been a non-target (that does not keep the eyes linger
relatively long and results in a short saccade latency for the
next object) compared to the object fixated prior to non-
target.

EEG—SRP

Figure 4 shows SRP traces associated with targets, non-targets,
hits and misses for each of the two load conditions, averaged
across participants and electrode locations around Pz (CP1,
P3, Pz, PO3, PO4, P4, CP2). In the lower part of the figures
we indicated individual time samples (3.9 ms) that were
significantly different for target vs. non-target (light gray) and
hit vs. miss (dark gray) as indicated by paired t-tests (alpha
level of 5%). Around 500 ms, target SRPs are larger than
non-target SRPs, which is consistent with a stronger P300 for
targets than non-targets. The difference appears stronger in
the low load condition—only in this condition, the difference
between target and non-target traces reached significance for
an uninterrupted interval of almost 300 ms. After correcting
for multiple testing (Benjamini and Hochberg, 1995), this
interval is reduced to around 150 ms (indicated by the bold,
black line in Figure 4). When examining traces for load
condition separately, hit and miss traces did not differ for
a substantial period of time. When collapsing across load
conditions, the higher values for miss traces towards the end
of the epoch becomes significant. However, it is clear that
at least up to 450 ms, miss traces overlap with hit traces.
Miss traces certainly do not lie in between hit and non-target
traces.

Exploring average traces for all individual channels revealed
no significant differences between target and non-target, and hits
and misses in the math condition. For the non-math condition,
we found significant effects as reflected in Figure 4 (higher
voltages for targets compared to non-targets around 500 ms) for
channel CP1, Pz and P4. P7 showed a lower voltage for targets
compared to non-targets around 250 ms, and F8 a lower voltage
around 450 ms.

Eye —Fixation Duration
Figure 5 shows average fixation duration. As expected, fixation
duration was longer for targets than for non-targets, both
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FIGURE 4 | Saccade related potential (SRP) traces averaged across
participants and electrode locations CP1, P3, Pz, PO3, PO4, P4 and
CP2, separately for non-targets and targets, where targets are again
separated in hits and misses. Onset of the SRP traces is the time of peak
velocity of the saccade towards the (non-) target. (A) shows results for the low
load condition, the (B) for the high load condition. In the lower part of the
figures we indicated individual time samples (3.9 ms) that were significantly
different for target vs. non-target (light gray) and hit vs. miss (dark gray) as
indicated by paired t-tests.

in the high and in the low load condition (paired t-tests,
tasy = 1147, p < 0.01; tqe) = 1143, p < 0.01). Fixation
duration was longer for hits than for misses in the high load
condition (paired t-test, t(j9) = 2.38, p = 0.03). The same
trend was seen in the low load condition. No significant
difference was found in fixation duration between high
and low workload conditions (paired t-test, tn9) = 1.40,
p=0.18).

Eye —Pupil Size

Figure 6 shows pupil size. For both high and low load
conditions, pupil size was the same between targets and
non-targets (paired t-test, f(j9) = 0.54, p = 0.59; tq9) = 0.12,
p = 091). As expected, pupil size was significantly larger
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B - 1000
2
© b
X |
K [
500
. Hit
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A |
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FIGURE 5 | Average fixation duration for the high load and low load
condition, separately for targets and non-targets (A) and, for the targets,
separately for hits and misses (B). The light color of the low load condition
bars in the (B) signify that these represent little data since there were few
misses in the low load condition. Error bars indicate standard errors of the
mean. Stars indicate significant differences (**representing p < 0.01,
*representing p < 0.05).

during the high load condition compared to the low load
condition (paired t-test, t(19) = 12.5, p < 0.01). Additionally,
pupil size was found to be larger for misses than for hits
in the high workload condition (paired t-test, t19) = 4.25,
p < 0.01). The same trend was found in the low load
condition.

Single Trial Analysis

Figure 7 shows the classification accuracy between targets
and non-targets (blue bars) separately for the low and
high load conditions, and hits and misses (red bars) for
the high load condition. As expected from the average
SRPs as presented above and from previous studies,
single fixation classification was possible for target vs.
non-targets based on SRP in the low load condition (on
average 65% correct, with performance significantly above
chance for 13 out of 21 participants according to binomial
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FIGURE 6 | Average pupil size for the high load and low load condition,
separately for targets and non-targets (A) and, for the targets, separately
for hits and misses (B). The light color of the low load condition bars in the

(B) signify that these represent little data since there were few misses in the
low load condition. Error bars indicate standard errors of the mean. Stars
indicate a significant difference (o < 0.01) between hits and misses.
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FIGURE 7 | Classification results of models averaged over individual
participants that distinguish between target and non-target fixations
(blue bars) and hits and misses (red bars), separately for data from the
low load condition (upper half of the figure —no results for hit and miss
due to few misses) and the high load condition (lower half of the
figure). On the left the features that the models were based on are indicated:
SRP, fixation duration, pupil size, combined eye features, and a combination of
all features. Error bars indicate standard errors of the mean.

tests). For the high load condition average classification
performance on the basis of SRP reaches 59% correct (7 out
of 21 participants above chance). For both load conditions,
classification accuracy between target and non-targets
is highest when SRP features are used. Adding fixation
duration and pupil size does not (substantially) improve
performance.

Another picture emerges for the distinction between hits
and misses—which we could only meaningfully examine for the
high load condition due to the very small number of misses in
the low load condition. Classification based on SRPs is around
chance level (52% correct), while classification based on pupil
size results in an average single fixation classification accuracy
of 58%. Adding fixation duration does not (substantially)
improve performance; adding SRP rather decreases performance.
Distinguishing between hits and misses did not reach above
chance performance for single subjects (note that the power
of the binomial tests is much weaker for hits vs. misses

SRP

Target vs non-target
EOG

Hit vs miss

SRP+EOG

SRP

EOG

| High load | | Low load |

SRP+EOG

04 0.45 05 0.55 06 0.65 0.7
Classification accuracy (prop)

FIGURE 8 | Classification results of models averaged over individual
participants that distinguish between target and non-target fixations
(blue bars) and hits and misses (red bars), separately for data from the
low load condition (upper half of the figure —no results for hit and miss
due to few misses) and the high load condition (lower half of the
figure). On the left the features that the models were based on are indicated:
SRP, EOG, and a combination of SRP and EOG features. Error bars indicate
standard errors of the mean.

compared to targets vs. non-targets where more data was
available).

Figure 8 shows results for classification based on EOG
features, and EOG and SRP features combined, with the result
of the SRP based models as a comparison. When using EOG,
classification accuracy between either targets and non-targets or

Frontiers in Human Neuroscience | www.frontiersin.org

May 2017 | Volume 11 | Article 264


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Brouwer et al.

EEG and Eye Target Encoding

hits and misses does not rise over 52% and adding EOG to SRP
does not improve classification.

DISCUSSION

We investigated a structured search task where fixated targets
that observers can easily identify are relatively likely to remain
unreported due to a concurrent secondary task that is expected
to interfere with working memory. We found that in such a case,
SRPs differ between targets and non-targets (consistent with a
target eliciting a P300), but not between hit targets and missed
targets. Fixation duration was longer for targets than non-targets
as expected, and also for hits compared to misses. Pupil size
did not differ between targets and non-targets, but was larger
for misses than for hits. In sum, EEG features appeared more
suitable to distinguish targets from non-targets while eye features
(especially pupil size) were suitable to distinguish fixated targets
that were subsequently reported from those that were not. These
results were also reflected in single trial classification analyses.

We interpret our findings as reflecting distinct underlying
cognitive processes as discussed further below.

SRP P300

Differences between target and non-target SRPs are as expected
with a higher amplitude P300 for targets compared to non-
targets. This difference is smaller between the average target
and non-target SRP traces in the high compared to the low
load condition. Previous studies also found the P300 to be less
pronounced under high load conditions (Allison and Polich,
2008; Gherri and Eimer, 2011; Pratt et al., 2011). Also for ERPs
following fixations, smaller target P300s during high workload
compared to low workload have been reported before Ries et al.
(2016). This reducing effect of workload on the P300 is consistent
with less attentional resources being available for the target
detection task.

While the P300 reflects attentional processes, this did not
translate to larger P300s for hit compared to missed targets.
Clearly, SRPs associated with missed targets more closely
resembled hit target rather than non-target SRPs. This suggests
that, as we intended, there is no problem in target identification
and that the amount of attention allocated to the fixated object
around the time of fixation is not critical for its encoding in
memory.

Fixation Duration

As expected, fixation duration is longer for targets than for non-
targets. We also found it to be longer for hits than for misses. A
short duration of a fixation being associated with misses could
in principle be caused by participants moving the eyes from the
target to the next stimulus too quickly, or because participants
lingered relatively long on the stimulus that was fixated before the
target, which causes a late arrival on the target and leaves less time
for target fixation. Comparing the differences in hit-miss saccade
latency to the difference in hit-miss fixation duration indicates
that misses are mostly due to arriving late rather than leaving
too early.

Note that in the present structured search task, potentially
relevant information appeared every second, encouraging rather
long, and relatively invariable fixation durations. Thus, in
different types of search tasks fixation duration effects can be
expected to be stronger.

Also note that the rather strong association between
fixation duration and hits and misses could potentially
have led to confounding effects in the SRPs, i.e., differences
between hit and miss SRPs that cannot be attributed to
memory or attentional processes but are e.g., due to visual
processes caused by systematic timing differences in the
change of stimulus appearance. In this study, we did
not find any significant difference between hit and miss
SRPs, but this should be kept in mind for similar future
studies.

Pupil Size

Pupil size is larger in the high load compared to the low
load condition. An increased pupil size with an increase in
memory load or workload is a robust finding in the literature
(Kahneman and Beatty, 1966; Beatty, 1982; Hogervorst et al.,
2014). We also observed the hypothesized effect of larger pupil
size during missed targets, consistent with a momentary high
workload being the cause of the miss. Such momentary increase
in cognitive workload could have been caused by a difficult (part
in the) math trial, or by having to store yet another target.
Also, momentary fluctuations could be caused by participants
sometimes giving up on the math task half way during a
trial. Our data do not reflect differences in phasic pupil size
responses—there was no significant difference in pupil size
between targets and non-targets as determined by the median
size over the fixation interval. While our dependent measure
of pupil size was not optimal to capture differences in pupil
dilation that start to diverge at longer latencies and reach their
maximum difference at about 1.5 s post fixation (Hong et al.,
2014; Jangraw et al., 2014), averaged pupil size traces in our data
did not show the expected differential pattern for targets and
non-targets. At present, we do not know why this difference was
not observed. The average pupil size was quite large (around
4.5 mm diameter) which may have played a role in attenuating
the phasic response.

In sum, SRP and eye features provide complementary
information in the search task under study. Saccade-related
P300s signify that a target has been detected but not that it has
been encoded for successful recall. For that, fixation duration
and pupil size are informative, likely because they respectively
reflect time taken to store the target and variations in workload
associated with the secondary task.

Application

Determining whether an observer is looking at a target (i.e., at
an object that is of interest) using SRPs and eye related features
may be useful in two general areas. If it is not known what
visual information is important (in a particular situation, or
for a particular person) such features provide a means to
examine what is of interest to an observer without requiring
conscious behavioral responses. If it is known what information
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is important, brain and eye signals can be used to judge
whether this important information is properly recognized as
being important. If we know whether an observer is gazing at
relevant information (as judged from the brain and eye signals,
or as a priori knowledge of the task), determining whether
this information is going to be remembered could be used for
deciding whether or not to present the information again or
in another way. Target recognition and encoding indicators
may also be used as indicators of (momentarily) suboptimal
performance so that the system can advise the human observer
or operator to take break. The interplay between user state
detection and responses to individual targets may be used in
higher level classification strategies. If observers are detected to
be in a high memory load situation (because of a large pupil
size and EEG features), a model that classifies fixated targets (as
detected through SRP) into hits and misses may be activated.

In addition to physiological or eye-based sources of
information, task- and context-related information can be used
directly in models for state monitoring and behavior prediction.
For instance, knowledge of the presence of an additional or
difficult task will add to the likelihood of misses, and indicate
that a classifier distinguishing between hits and misses should be
put to work. In some cases, knowledge of the task may strongly
influence the interpretation of eye and brain signals that occur
while searching and storing visual information. As mentioned
before, low workload as may be indicated by a small pupil size,
can be associated with misses in cases that a target is difficult
to identify and there are no other tasks (the situation as in Dias
etal., 2013) or it can be associated with hits in cases that a target
is easy to identify and there is a concurrent task (current study).
Also, the type of search task influences which physiological or
eye based features can be expected to be informative. When there
is no time pressure, fixation duration is expected to be more
informative compared to when there is.

It has to be realized that the certainty with which it is
possible to determine whether an observer is looking at a
target or whether an observer is going to miss a target at the
individual fixation level can never achieve perfect accuracy. The
highest fixation classification accuracy as found in the current
study is 65% and associated with distinguishing targets from
non-targets in the low load condition. While it is obviously
difficult to compare classification performance across studies, a
classification accuracy of around 65% (with a 50% chance level)
has also been found in other studies distinguishing targets from
non-targets using SRPs (Brouwer et al., 2013: 62%; Wenzel et al.,
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