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Rationale: Advances in neurocomputational modeling suggest that valuation systems
for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on
the other side may rely on distinct computational strategies for reinforcement learning,
namely model-free vs. model-based learning. As a key theoretical difference, the model-
based system strongly demands cognitive functions to plan actions prospectively based
on an internal cognitive model of the environment, whereas valuation in the model-free
system relies on rather simple learning rules from operant conditioning to retrospectively
associate actions with their outcomes and is thus cognitively less demanding. Acute
stress reactivity is known to impair model-based but not model-free choice behavior,
with higher working memory capacity protecting the model-based system from acute
stress. However, it is not clear which impact accumulated real life stress has on
model-free and model-based decision systems and how this influence interacts with
cognitive abilities.

Methods: We used a sequential decision-making task distinguishing relative
contributions of both learning strategies to choice behavior, the Social Readjustment
Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol
Substitution Test to test cognitive speed in 95 healthy subjects.

Results: Individuals reporting high stress exposure who had low cognitive speed
showed reduced model-based but increased model-free behavioral control. In contrast,
subjects exposed to accumulated real life stress with high cognitive speed displayed
increased model-based performance but reduced model-free control.

Conclusion: These findings suggest that accumulated real life stress exposure
can enhance reliance on cognitive speed for model-based computations, which
may ultimately protect the model-based system from the detrimental influences of
accumulated real life stress. The combination of accumulated real life stress exposure
and slower information processing capacities, however, might favor model-free
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strategies. Thus, the valence and preference of either system strongly depends on
stressful experiences and individual cognitive capacities.

Keywords: chronic stress, model-based learning, model-free learning, decision making, cognitive speed, real-life
events

INTRODUCTION

Habitual responding to rewards and the pursuit of goals are
key to human decision-making. Such habitual (automatic)
vs. goal-directed (planned) control of behavior is associated
with distinct neural systems for valuation and decision-
making (Dolan and Dayan, 2013). Computational attempts
to understand these behavioral systems assume that both
reflect different computational strategies during reinforcement
learning, namely model-based (goal-directed) vs. model-free
(habitual) behavior (Daw et al., 2005, 2011; Dolan and Dayan,
2013). Therefore, there is a close association between the
theoretical concepts of goal-directed and model-based behavior
(Friedel et al., 2014; Gillan et al., 2015; Sjoerds et al., 2016). A key
difference between the two behavioral strategies is that model-
based behavior strongly demands higher cognitive functions to
plan actions prospectively based on an internal model of the
environment. Model-free behavior on the other hand relies on
simple retrospective evaluation of cached reward values and is
cognitively less demanding (Daw et al., 2005; Otto et al., 2013a;
Schad et al., 2014). The conditions under which each of these
systems controls behavior have been of particular interest in
neuroscience and psychiatry, in part because the (im)balance
between model-free and model-based behavior is believed to be
a key factor in a number of psychiatric disorders. Psychiatric
conditions characterized by increased model-free behavior at
the cost of model-based performance are e.g., addiction, binge
eating disorder and obsessive compulsive disorder (Sebold et al.,
2014; Voon et al., 2015; Gillan et al., 2016; Heinz et al.,
2017). Among situational factors that influence reward-based
decision making, stress is a key candidate for biasing the
balance of the two systems toward more habitual decision
making (Schwabe and Wolf, 2009, 2012) and might thus be
of relevance for the development and maintenance of these
disorders.

One key factor in the arbitration between model-based and
model-free behavior may be the interaction between stress
and cognitive functioning, as stress is known to exert strong
influences on cognition and learning (Baumeister et al., 2002;
Garrett et al., 2010; Otto et al., 2013b). The magnitude and
valence of this influence crucially differs depending on the
operationalization (e.g., pain, social stress), the timing and
duration of acute vs. chronic stress exposure (Lupien et al.,
2009) and the specific cognitive function. Acute stress is known
to impair goal-directed choices (Schwabe and Wolf, 2009)
and executive functions underlying model-based behavior (Otto
et al., 2013a). Executive cognitive functions that have been
strongly associated with model-based behavior are processing
speed (Schad et al., 2014) and working memory capacity (Otto
et al., 2013b; Smittenaar et al., 2013; Schad et al., 2014).

Recent reports of decision-making under stress (for review
see Starcke and Brand, 2012) primarily focused on effects of
acute stress (Schwabe and Wolf, 2009; Otto et al., 2013b;
Buckert et al., 2014). For example, it has been shown that
acute stress, as indicated by a transient cortisol response of the
neuroendocrine system to a laboratory stressor disrupts context-
dependent memory (Schwabe et al., 2009), induces a shift
from more goal-directed towards habitual strategies (Schwabe
and Wolf, 2009) and impairs model-based behavior (Otto
et al., 2013b). Crucially, high working memory capacity protects
individuals from this disruption (Otto et al., 2013b), suggesting
that stress interacts with executive functions underlying model-
based control.

On a neurobiological level the mesostriatal dopamine
system is prominently implicated in reinforcement learning in
humans with neural signals in the ventral striatum covarying
with prediction error signaling during reinforcement learning
(Kurniawan et al., 2013). We have previously shown that
the neural correlate of reinforcement learning in the ventral
striatum is moderated by cognitive functioning and chronic
(accumulated real life) stress experience (Friedel et al., 2015).
This signal in the ventral striatum has also been shown to
be influenced by acute stress (Robinson et al., 2013) and
changes in cortisol levels during an acute stressor were correlated
with increases in striatal responses during a decision-making
task (Dedovic et al., 2009). On the behavioral level, stress
facilitates a shift from flexible cognitive to more rigid habit
memory systems (Schwabe and Wolf, 2009). On the neural
level this is in line with the idea of reduced prefrontal
cortex functions such as working memory and attention,
promoting a switch from ‘‘thoughtful ‘‘top-down’’ control
by the prefrontal cortex to ‘‘bottom-up’’ control by the
amygdala and related subcortical structures’’ (Arnsten, 2009; Yu,
2016).

However, while negative influences from acute stress on
decision-systems are well documented, little is known about
how accumulated real life stress exposure affects cognitive
functions underlying model-based choice. Evidence from animal
studies indicates that chronically stressed rats turn towards
habitual behavior (Dias-Ferreira et al., 2009) and one study
suggests that this finding might be translated to human
decision-making (Soares et al., 2012). A recent study reports
that acute and chronic (accumulated real life) stress may
interact: acute stress exposure reduce model-based behavior,
but only in subjects earlier exposed to high levels of
chronic (accumulated real life) stress (Radenbach et al., 2015).
These findings underline the importance of chronic stress in
behavioral control. However, the cognitive and computational
mechanisms underlying such influences are still insufficiently
understood.
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Here, we used the Social Readjustment Rating Scale (Holmes
and Rahe, 1967) to study how accumulated real life stress
interacts with cognitive speed on model-based vs. model-free
decision-making in a sample of healthy subjects. First, we
explored contributions of model-based vs. model-free decision-
making via statistical analysis of choices in a sequential decision-
making task. Following up on statistical findings, we tested our
primary hypothesis that stress and cognitive speed interact with
model-based andmodel-free decision-making as indicated by the
interaction between transition frequency (common vs. rare) and
reward.

MATERIALS AND METHODS

Subjects and Screening Instruments
A group of N = 95 right handed healthy adults (N = 16 females)
with a mean age of 43.62 years (SD = 11.0; range: 21.4–66) and
an average of 11.3 years of school education (SD = 1.5 years) was
recruited in a longitudinal German two-center study on learning
and alcohol dependence (LeAD, see www.lead-studie.de; Clinical
Trials identifier NCT01744834). The reported sample of healthy
subjects had been matched to a sample of alcohol dependent
subjects according to their age, smoking status and gender.
We excluded one subject based on implausible high stress
values (SRRS = 635 > 3 SD of the group’s mean of 122).
The study consisted of 2 days of testing, including 1 day of
psychopathological assessment, neuropsychological tests, and
questionnaires, and a second day involving fMRI scanning
during two experimental learning tasks. Neuropsychological
testing included the digit symbol substitution test (DSST,
Wechsler, 1997) as a measure of cognitive speed and working
memory capacity as assessed with the digit symbol backwards
test (Wechsler, 1997; Aster et al., 2006) which had previously
been associated with model-free and model-based control (Otto
et al., 2013b). Moreover, we have assessed the German version
of the verbal knowledge test (MWTB, Lehrl, 2005), which relates
to crystallized IQ (Schad et al., 2014) and the trial-making-test
(TMT) -A and B, which assesses executive functioning (Corrigan
and Hinkeldey, 1987; Sánchez-Cubillo et al., 2009).

On the first day, written informed consent was obtained from
all participants before they underwent the neuropsychological
testing. On the second day, participants completed the below-
described sequential decision making task (Daw et al.,
2011). After completing the task, participants received
monetary compensation for their participation. Ethical
approval for the study was obtained in accordance with the
Declaration of Helsinki from the Medical Ethics Committees
of Charité–Universitätsmedizin Berlin (EA/1/157/11) and
Technische Universität Dresden (EK 228072012). Not included
were subjects with Axis I psychiatric disorders except nicotine
dependence, alcohol abuse and specific phobia according
to DSM-IV as measured with the Composite International
Diagnostic Interview (CIDI, Wittchen and Pfister, 1997; Jacobi
et al., 2013), subjects with DSM-IV personality disorders
(SAPAS screening; Moran et al., 2003), and subjects with
MRI contraindications (for further details see Sebold et al.,
2016).

Measures of Accumulated Real Life Stress
and Cognitive Speed
Accumulated Real Life Stress
In the Social Readjustment Rating Scale (SRRS, Holmes and
Rahe, 1967) participants indicated whether any of 43 potentially
stressful life events occurred to them within the last 12 months.
Each life event is associated with a specific amount of life change
units (LCUs) based on ratings by a large sample of participants,
ranging from 100 LCUs for ‘‘death of a spouse’’ to 11 LCUs for
‘‘minor violation of the law’’. The LCUs for each of these life
events were added up, providing a measure of past-year stress
load for each participant, which has been proven to be a reliable
indicator of overall (and lifetime) accumulated real life stress
(Holmes and Rahe, 1967; Scully et al., 2000).

Cognitive Speed
Cognitive speed was assessed with the DSST (Wechsler, 1997),
see Figure 1. The DSST is a neuropsychological test measuring
general processing speed (Salthouse, 1992), writing speed,
and short-term-memory (Laux and Lane, 1985). Subjects are
provided with a code table assigning nine different abstract
symbols to the digits 1–9 and are then given a table presenting
a list of digits in each top row and empty boxes in each
bottom row. They are then instructed to sequentially draw
as many of the 133 (maximum score) corresponding symbols
underneath the digits as possible in 120 s. Standardized values
corrected for age according to the manual (DSST, Wechsler,
1997) resulted in scores from 2 to 19 which were used for
subsequent analyses.

Two-Step Task
We adapted the Two-Step decision task (Daw et al., 2011,
Figure 2) for MATLAB with the Psychophysics Toolbox Version
3 extension (Brainard, 1997; Pelli, 1997) in order to assess
model-based vs. model-free decision making. We used a new
set of colored stimuli, but the same transition structure and
outcome probabilities as in the original Two-Step study (Daw
et al., 2011). Participants had to choose one out of a pair of
abstract grayscale stimuli leading to another colored stimulus
pair for choice at stage 2 (stage 1 and 2 at Figure 2A).
Instructions emphasized reward maximization. Importantly, the
win probability for each of the four stage 2 stimuli varied
over time according to a slow and independent random walk
(chances of winning money at Figure 2A). The probability to
be presented with a specific stimulus pair at stage 2 depended
on the choice at stage 1 and was constant over time; there was
a common (70%) and a rare (30%) transition for each stage
1 stimulus. After the experiment, one third of all rewards (with
a fixed minimum of 3 EURO and maximum of 10 EURO)
was additionally paid out to increase the motivation of the
participants. The instructions provided detailed information
about the structure of the task; specifically concerning the
varying outcome probabilities at stage 2 and about the constant
transition probabilities between stage 1 and 2. In addition,
there were 50 practice trials prior to the main experiment. The
distinction between model-based and model-free performance
primarily depends on the use of the transition probability: a
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FIGURE 1 | Digit Symbol Substitution Test (DSST, Wechsler, 1997): the DSST consists of a code table displaying pairs of digits and symbols, and rows of double
boxes with a digit in the top box and an empty space in the bottom box. The task for the subject is to use the code table to determine the symbol associated with
each digit, and to write as many symbols as possible in the empty boxes below each digit within 120 s.

purely model-free learner would repeat a decision that led to a
rewarded choice ignoring the transition frequencies, resulting in
a main effect of reward on selection of the first stage; whereas a
purely model-based learner would repeat a decision that led to
a rewarded common choice but most unlikely repeat a decision
that led to a rewarded rare choice, resulting in an interaction
between transition frequency (common vs. rare) and reward (see
Figure 2B).

Data Analysis
The final sample consisted of 95 subjects with a mean DSST
score of 10.8 (SD = 3.1) and a mean SRRS score of 115.7
(SD = 94.9). All regression analyses were conducted using linear
models implemented in the stats package of the R programming
language, version 3.1.2 (cran.us.r-project.org). For orthogonal
contrasts (rewarded vs. unrewarded/common vs. rare), we used
effect coding [−0.5 0.5]. The level of statistical significance was
set to p< 0.05.

We were specifically interested in howmodel-free andmodel-
based control were related to stress and cognitive speed. For
this purpose, we calculated two individual scores, one for
model-free (% rewarded common + % rewarded rare – %
unrewarded common – % unrewarded rare, see Figure 2B,
left plot) and one for model-based behavior (% rewarded
common + % unrewarded rare – % rewarded rare – %
unrewarded common, see Figure 2B, middle plot), as previously
described (Sebold et al., 2014). Individual model-free and
model-based scores were extracted from the raw data of
the Two-Step task, where the percentage of individual first
stage repetitions was calculated based on the previous trial’s
outcome (rewarded vs. unrewarded) and transition frequency
(common vs. rare, see Figure 2B). Model-free effects describe

the individual main effect of reward, whereas individual
scores for model-based control reflect the interaction between
transition frequency and reward. In line with our previous
research (Friedel et al., 2014; Sebold et al., 2014), we chose
this analysis strategy because we aimed to extract individual
model-free and model-based scores in order to subsequently
predict differences in both scores from stress and cognitive
speed.

The scores (both approaching normal distribution) then
served as criterion variable in two subsequent linear regressions,
in which the interaction between stress and cognitive speed
was tested on each of these scores. We computed median
splits of DSST score (which were normally distributed) and
subjects were assigned to a high or low cognitive speed group
(low ≤ 11, high > 11), before entered into the regression model.
SRRS scores were z-transformed before they were entered into
the regression models as a continuous variable. For further
post hoc tests and illustrative purposes (see Figure 3B), we
additionally assigned subjects to a low (≤ 101) and a moderate
to high (>101) stress group based on the group’s median
split.

As previous research has indicated that differences in
age could impact on the balance between model-free and
model-based control (Eppinger et al., 2013; Sebold et al.,
2016), our results could potentially have been confounded by
age effects. In order to test this, we performed additional
analyses, where we put age (z-scaled) as an additional
nuisance regressor in the two previously described linear
models.

In order to replicate previous studies, which demonstrated
that subjects showed a mixture between model-free and model-
based decision-making strategies in the Two-Step task, we
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FIGURE 2 | (A) Structure of the Two-Step Task. (B) Simulated data of a pure
model-free vs. a pure model-based decision-maker. Model-free and
model-based strategies predict distinct response patterns on the first stage. In
model-free decisions, first stages should be repeated whenever the outcome
of the previous trial was rewarded, whereas they should not be repeated
whenever choices were unrewarded. Therefore model-free decisions predict a
main effect of reward on first stage repetition of the subsequent trial. In
model-based decisions, the individual takes transition frequencies into
account. Thus, for instance, when a trial from the rare transition frequency
ended up in reward, the individual knows that in order to obtain reward in the
next trial he/she should actually switch to the opposing first stage stimuli,
because this one has a higher probability of ending up at the specific second
stage stimulus pair that is now associated with high probability of reward.
(C) Across all subjects (N = 95), model-free and model-based scores were
significantly positive (as indicated with the ∗∗∗ both p < 0.0001), suggesting
that subjects showed a mixture of model-free and model-based choice
strategies.

performed one-sample t-tests, which tested whether each score
was significantly larger than zero.

RESULTS

Across all subjects, model-free and model-based scores were
significantly positive (both p < 0.0001), suggesting that subjects
showed a mixture of model-free and model-based choice
strategies (see Figure 2C).

In the linear model regressing cognitive speed, stress and their
interaction on model-free control, no main effect was found for
either stress (p = 0.16), nor cognitive speed (p = 0.30), while their
interaction (β = 0.5, F(91) = 2.76, p = 0.022) was significantly
associated with model-free behavior. In fact, model-free control
increased with increasing stress exposure when cognitive speed
was low (see Figure 3A).

In the second linear model we again found no main
effect of cognitive speed (p = 0.1) nor stress (p = 0.86) on
model-based control, but an interaction between stress and
cognitive speed which was negative, (β = −0.07, F(91) = 2.7,
p = 0.04), indicating that model-based behavior was reduced
when stress exposure was high but cognitive speed was low (see
Figure 3A).

Healthy controls reported rather low levels of accumulated
real life stress, which led to a positive (left) skew of the data.
When dichotomizing the SRRS score effects closely failed to
reach significance (on a p-level of 0.05: interaction of stress and
cognitive speed on model-free control, p = 0.08; interaction of
stress and cognitive speed on model-based control, p = 0.09).
This seems plausible, as the sample consisted of healthy control
subjects, where most subjects reported a comparably little
amount of accumulated real life stress. To maintain most of the
variance of the SRRS predictor variables (which is reduced by
performing median splits) and in line with previous research
(Radenbach et al., 2015) we stuck with the above reported
analyses. The assumptions for a multiple regression analysis
were met.

The digit symbol backwards test (Wechsler, 1997; Aster et al.,
2006), the German version of the verbal knowledge test (MWTB,
Lehrl, 2005) and the TMT-A and -B (Reitan and Wolfson, 1985)
did not interact with stress regarding either model-free or model-
based control.

When age was added as additional covariate in our two
linear models, we again found that the interaction between stress
and cognitive speed was significant for model-free (β = 0.05,
F(90) = 2.07, p = 0.022) and model-based control (β = −0.07,
F(90) = 2.05, p = 0.04), suggesting that the interaction between
stress and cognitive speed on model-free and model-based
control was not caused by confounding age effects. Moreover,
in these analyses, we found no main effect of age on model-free
(p = 0.78) or model-based control (p = 0.67), suggesting
that in our sample age did not impact these decision-making
strategies.

Exploratory post hoc analyses, where we tested the influence of
cognitive speed onmodel-free andmodel-based decision-making
separately for low and high stress subjects revealed that cognitive
speed increased model-based (β = 0.06, p = 0.025) but decreased
model-free control (β = −0.03, p = 0.04) only in high stress
subjects, whereas this effect was not significant in low stress
subjects (model-based: β = 0.02, p = 0.4, model-free: β = −0.13,
p = 0.34). Thus, differences between the influence of cognitive
speed on model-free vs. model-based control were mainly driven
by subjects who had experienced comparably high stress in the
past year (see Figure 3B).

DISCUSSION

The main finding of our study is that self-reported life stress
exposure during the past 12 months interacts with cognitive
processing speed on human decision-making: in individuals with
lower cognitive speed, accumulated real life stress was associated
with reduced model-based performance and a shift towards
model-free choice behavior. High levels of cognitive speed, on the
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FIGURE 3 | (A) Effects of stress and cognitive speed on model-free vs. model-based control: subjects with low cognitive speed display an increase of model-free
but a decrease of model-based behavior with increasing stress exposure, whereas subjects with high cognitive speed display an increase of model-based but a
decrease of model-free behavior with increasing stress exposure. (B) The differential association of cognitive speed with model-free and model-based control was
particularly evident in subjects who had experienced high stress (significant effects indicated with ∗), whereas there was no such effect in subjects who had
experienced low stress.

other hand, seemed to protect individuals from such influences,
as these were associated with an increased reliance on the model-
based system, especially after high accumulated real life stress
exposure.

Acute stress is known to induce a distinct decline of model-
based choices, while leaving the model-free system unaffected
(Otto et al., 2013b). High working memory capacity, a measure
closely related to cognitive flexibility and processing speed,
was recently shown to protect model-based choices from such
deteriorating influences (Otto et al., 2013b). This suggests that
the relative transition from model-based towards model-free
decision-systems (Schwabe and Wolf, 2009; Otto et al., 2013b)
observed after acute, laboratory-induced stress might be due to
taxing of executive functions underlying model-based decision-
making. The present findings replicate findings that high
processing speed is related to model-based decision-making
(Schad et al., 2014) and complement on previously reported
interaction effects between acute stress reactivity and cognitive
abilities (Otto et al., 2013b) by pointing to the influence of
chronic, long-term real-life stress. With respect to the interaction
of acute and chronic stress experience on model-based decision
making, Radenbach et al. (2015) have shown that acute stress
results in a decrease of model based performance only when
chronic (accumulated real life) stress exposure was high. In
addition to and complementing on this finding, we show that the
association of real-life stress with model-based decision making
is also modulated by cognitive speed.

An important question arising from our findings is which
mechanisms underlie the association between long-term stress,
cognitive speed and the balance between model-based vs.
model-free control. Empirical evidence on the differential
influence of acute vs. long term stress on cognitive functioning
is in part controversial. Acute stress is known to exert a
negative influence on memory. Schwabe and Wolf (2009) report
that acutely stressed individuals become insensitive to the
devaluation of a particular outcome accompanied by a significant
decrease in explicit knowledge of action-outcome contingencies.
For enduring past stress experience time-dependent effects on
working memory processing, emotional memory and brain
function in general have been reported (for a recent overview see
Yu, 2016). Chronic enduring stress exposure in humans led to
a compensatory upregulation of prefrontal functioning whereas
acute stress and the quick influence of cortisol in combination
with noradrenaline led to an increase of subcortical and a
decrease of prefrontal functioning (Hermans et al., 2011, 2014).
Findings from animal research demonstrate that chronically
stressed rats become insensitive to devaluation of outcomes
(Graham et al., 2010), together with atrophy of the medial
prefrontal cortex and hypertrophy of the putamen (Dias-Ferreira
et al., 2009) indicating a negative influence of long term stress
exposure on cognitive processing.

Looking from an evolutionary perspective, Decker et al.
(2016) suggest that the recruitment of model-based valuation
systems relies on a critical cognitive component, which is
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associated with the gradual maturation of goal-directed behavior.
Whereas a model-free strategy was apparent in choice behavior
across all age groups, a model-based strategy was absent in
children, emerged in adolescents and matured in adults. This
observation suggests that cognitive resources like processing
speed may be decisive in coping with the influences of long-term
real-life stress experience depending on brain maturation and
age. In this context, the complexity and uncertainty associated
with accumulated real life stress may pose difficulties and
expose limits for the development of fully rational decision
strategies and favor computationally less demanding model-free
decision-making strategies (Daw et al., 2005; Otto et al.,
2013b).

One important aspect of the mechanisms associated with
an overreliance on model-free strategies is their association
with the development and maintenance of various psychiatric
disorders, such as addiction, obsessive compulsive disorder
and binge eating disorder (Everitt and Robbins, 2005;
Sebold et al., 2014; Voon et al., 2015). Gillan et al. (2016)
used a transdiagnostic approach and applied the Two-Step
task to about 2000 healthy individuals assessing a broad
variety of symptoms (assessed via a self-report questionnaire
containing 209 items), which have been associated with different
psychiatric diagnostic categories (e.g., alcohol addiction,
schizotypy, depression and social anxiety). Independent of the
diagnostic category, the authors report a strong association of
compulsive spectrum behavior with a decrease in model-based
performance in the Two-Step task. Decision-making tendencies
might thus be linked to certain trait markers that interact
with the vulnerability for the development of compulsive
spectrum disorders. Also, past stress exposure increases the
risk for the development of psychiatric disorders, such as
major depressive disorder and schizophrenia (Murgatroyd
and Spengler, 2011a,b, 2012) and might further add up to
an increased vulnerability with respect to its interaction
with individual cognitive capacities and decision making
strategies.

An important limitation to our findings is that they are
correlational and from a cross-sectional design, hence no
causal conclusions should be drawn and assumptions on the
employment of cognitive abilities according to environmental
circumstances are theoretical. However, the different directional
associations are interesting to disentangle. The importance
of our findings derives from the fact that we complement
previous findings on acute stress (Otto et al., 2013b) with
chronic (accumulated real life stress) exposure, strengthening the
importance of both (past) environmental as well as cognitive
variables in understanding human decision making. Coping
abilities associated with high processing speed might be able to
enhance model-based decision-making in response to stressful
experiences. Further, especially longitudinal research is needed
to disentangle effects of acute vs. chronic (accumulated real
life) stress exposure and cognitive abilities on choice systems in
different mental disorders, and to closely parse the cognitive and
computational processes underlying the interaction of processing
performance speed and past stress experiences in model-based
decision-making.

To account for accumulated real life stress effects, we
used the weighted sum of (positive and negative) life events
reported by the subjects in the past 12 months with the
SRRS. The generalizability of our results is thus limited, as
we could not account for the interindividual differences in the
experience of accumulated real life stress, which can potentially
be influenced by an (im)balance of personal traits, resources
and the demands placed upon an individual by social and
occupational situations. However, an interesting feature of the
SRRS is that it spans a broad range of events and their
estimated potential to elicit readjustment processes, including
events that are usually related to positive affect (such as
pregnancy, marriage and outstanding personal achievement).
Crucially these events may be regarded positively by some and
negatively by others, depending on the context of change (such
as changes in residence, changing to a different line of work,
major changes in responsibility at work). Moreover the SRRS
includes negative events (such as death of spouse, death of a
close family member). All of these events have been rated and
evaluated according to their need for social readjustment on
large independent samples (Holmes and Rahe, 1967; Scully et al.,
2000).

Due to a lack of statistical power we could not assess
the influence of sex on decision making and its interaction
with accumulated real life stress. However, this aspect
is worth mentioning, as there is recent evidence that sex
differences are important modulators of stress-related reward
sensitivity and decision making (for a recent overview see
Yu, 2016). It was found that stress led to greater reward
collection and faster decisions in males but less reward
collection and slower decisions in females (Lighthall
et al., 2012). One study showed that mild psychological
stress resulted in a significant decrease in reward-related
responses in the medial prefrontal cortex without affecting
ventral striatal responses in women (Ossewaarde et al.,
2011).

We did not assess physiological measures of stress. A
biological correlate of chronic stress such as hair cortisol,
which could give some important information on the
hypothalamic–pituitary–adrenal (HPA) axis in the months
before assessment, should be considered in future studies. Given
the effects of cortisol on cognition, this could have an effect
on model-based/model-free learning as well (Otto et al., 2013b;
Radenbach et al., 2015).

Altogether, our findings suggest that the cognitive abilities
and processes underlying model-based decision-making may not
be fixed (Schad et al., 2014), but are rather flexibly employed
according to environmental circumstances. While model-based
computations build on executive resources and processing
speed, especially when past experiences have already demanded
flexible adaptation to ever changing environments (such as stress
induced through a high need for social readjustment), other
settings seem to foster model-free processes. A preference for
model- free strategies might prevail after high stress exposure
especially when experience has shown that the possibility of a
fast flexible adaptation has been insufficient (e.g., due to low
processing speed).
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