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Recent studies have investigated local oscillations, long-range connectivity, and global

network patterns to identify neural changes associated with anesthetic-induced

unconsciousness. These studies typically employ anesthetic protocols that either just

cross the threshold of unconsciousness, or induce deep unconsciousness for a brief

period of time—neither of which models general anesthesia for major surgery. To study

neural patterns of unconsciousness and recovery in a clinically-relevant context, we used

a realistic anesthetic regimen to induce and maintain unconsciousness in eight healthy

participants for 3 h. High-density electroencephalogram (EEG) was acquired throughout

and for another 3 h after emergence. Seven epochs of 5-min eyes-closed resting

states were extracted from the data at baseline as well as 30, 60, 90, 120, 150, and

180-min post-emergence. Additionally, 5-min epochs were extracted during induction,

unconsciousness, and immediately prior to recovery of consciousness, for a total of 10

analysis epochs. The EEG data in each epoch were analyzed using source-localized

spectral analysis, phase-lag index, and graph theoretical techniques. Posterior alpha

power was significantly depressed during unconsciousness, and gradually approached

baseline levels over the 3 h recovery period. Phase-lag index did not distinguish

between states of consciousness or stages of recovery. Network efficiency was

significantly depressed and network clustering coefficient was significantly increased

during unconsciousness; these graph theoretical measures returned to baseline during

the 3 h recovery period. Posterior alpha power may be a potential biomarker for normal

recovery of functional brain networks after general anesthesia.
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INTRODUCTION

In recent years, the electroencephalographic study of anesthetic
state transitions has focused on (1) coherent oscillations (Akeju
et al., 2014), (2) functional connectivity (Lee U. et al., 2013), and
(3) network analysis (Lee H. et al., 2013; Chennu et al., 2016). A
number of findings have emerged that appear to distinguish states
of consciousness from anesthetic-induced unconsciousness. For
example, the shift of alpha power (Berger, 1930) from the
occipital to frontal cortex—a process known as anteriorization
and first posited to be a marker of general anesthesia based on
nonhuman primate studies in the 1970s (Tinker et al., 1977)—is
associated with propofol-induced unconsciousness and surgical
levels of sevoflurane anesthesia (John et al., 2001; Purdon et al.,
2013; Akeju et al., 2014). Functional disconnection of anterior
and posterior cortical regions—first posited to be an invariant
marker of general anesthesia in 2001 (John et al., 2001)—has been
found to correlate with propofol-, sevoflurane-, and ketamine-
induced unresponsiveness by both electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI)
(Boveroux et al., 2010; Jordan et al., 2013; Lee U. et al., 2013;
Palanca et al., 2015; Bonhomme et al., 2016; Ranft et al., 2016).
Finally, graph theoretical network properties—first shown to be
modulated by anesthetics in 2010 (Lee et al., 2010)—have been
shown by both EEG and fMRI investigations to be disrupted
during unconsciousness induced by propofol, dexmedetomidine,
and halogenated ethers (Lee et al., 2011; Schröter et al., 2012;
Moon et al., 2015; Hashmi et al., 2017).

Although, considerable progress has been made in identifying
changes in key local oscillations, long-range connectivity, and
global network patterns, many of the recent high-resolution
neuroimaging studies of anesthetic-induced unconsciousness
have been conducted in healthy volunteers with protocols that
either (1) just cross the threshold of unconsciousness, or (2)
induce more profound unresponsiveness but for a brief period of
time. These conditions do not model general anesthesia for major
surgery, which has prolonged periods of anesthetic exposure
at concentrations far higher than those required to induce
unconsciousness. One of the critical limitations of either “long
but light” or “deep but brief” anesthetic protocols in healthy
volunteers is that the recovery process is far more rapid than
might be observed in the perioperative domain. Furthermore,
neither the topography of oscillations nor the topology of
networks has typically been studied beyond the initial return
of consciousness. Collectively, these limitations have resulted in
incomplete knowledge of the neural correlates of the recovering
brain after the major perturbation of general anesthesia.

One advantage to the study of healthy volunteers is
the absence of surgical stress, inflammatory burden, or
polypharmacy, which confound neuroscientific insight into
the recovery of consciousness and cognition after general
anesthesia. Thus, what is needed is a protocol with surgically-
relevant anesthetic regimens without surgical intervention,
followed by neural data acquisition that extends far beyond
the initial return of consciousness. In this study, we report the
implementation of just such a paradigm, in which healthy human
participants underwent induction of anesthesia with propofol,

3 h of age-adjusted 1.3 minimum alveolar concentration
(MAC) of isoflurane anesthesia, followed by recovery and
continued high-density EEG acquisition for another 3 h after
emergence. These data were analyzed with source-localized
spectral analysis, functional connectivity, and graph-theoretical
approaches, testing the hypothesis that the full recovery of
local and global network function is prolonged after anesthetic
exposure simulating surgical conditions.

MATERIALS AND METHODS

This study was conducted at the University of Michigan
Medical School and approved by the Institutional Board Review
(HUM0071578); written informed consent was obtained from all
participants.

Study Population
We analyzed data from eight healthy volunteers (5 males,
23–29 year of age) with 128-channel EEG as a subset of the
Reconstructing Consciousness and Cognition (ReCCognition)
study (NCT01911195). The full protocol for this investigation has
been published (Maier et al., 2017). Participants were American
Society of Anesthesiologists class 1 physical status, body mass
index <30, with Mallampati 1 or 2 airway classifications, and no
other factors predictive of difficult airway. We excluded subjects
who were pregnant, had a history of obstructive sleep apnea,
reactive airway disease, neuropsychiatric disorders, history or
current use of psychotropicmedications, gastroesophageal reflux,
cardiac conduction abnormalities, asthma, epilepsy, history of
problems with anesthesia, family history of problems with
anesthesia, and any neurologic or psychiatric history. Pregnancy
and illicit drug use were ruled out through both urine and blood
analyses.

Anesthetic Protocol
Induction and maintenance of general anesthesia with,
respectively, propofol and a halogenated ether was chosen
because of its relevance to routine clinical care. Isoflurane was
chosen as the halogenated ether because the associated recovery
would be longer than sevoflurane or desflurane, allowing more
opportunity for the observation of differential recovery of
cognitive and network function. Participants were assessed
throughout the experiment by at least two anesthesiologists
and standard monitors (i.e., oxygen saturation, noninvasive
blood pressure, electrocardiogram, end-tidal carbon dioxide;
nasal temperature probe). Participants were pre-oxygenated
with 100% O2 by face mask and received intravenous propofol
at increasing infusion rates over three consecutive 5-min
blocks (block 1: 100µg/kg/min, block 2:200µg/kg/min, block
3:300µg/kg/min). To assess loss of consciousness, a pre-recorded
auditory instruction (i.e., “Squeeze your left/right hand twice,”
with left or right randomized) was triggered every 30 s; the
onset of anesthetic-induced unconsciousness was defined as the
absence of response to two consecutive commands delivered
30 s apart. Isoflurane anesthesia was then administered with
air and 40% oxygen at 1.3 age-adjusted minimum alveolar
concentration (i.e., the ED95; Nickalls and Mapleson, 2003) via
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mask inhalation. A laryngeal mask airway was inserted and
positive pressure ventilation was used to maintain tidal volumes
at greater than 5 mL/kg and normocapnia (end-tidal carbon
dioxide targeted to 35–45 mmHg). Surface warming blankets
were applied to maintain normothermia, and phenylephrine was
titrated as needed to maintain mean arterial pressure within 20%
of pre-anesthetic values. Ondansetron 4mg was administered
30-min prior to discontinuation of isoflurane. After 3 h of
exposure to isoflurane, the anesthetic was discontinued, and
participant responsiveness was assessed every 30 s using the same
verbal command until the participant regained consciousness;
recovery of consciousness (ROC) was defined as two consecutive
responses to the command. The laryngeal mask airway was
removed at or before ROC, as determined by the clinical
anesthesia team.

Electroencephalography Data Acquisition
and Preprocessing
The EEG was acquired using a 128-channel system from
Electrical Geodesics, Inc. (Eugene, OR) with all channels
referenced to the vertex. Electrode impedance was reduced below
50 k� prior to data collection and data were sampled at 500 Hz.
An investigator experienced in reading electroencephalograms
(SBM, TB, or GV) visually monitored the data to ensure
continued signal integrity throughout the experiment. After the
experiment, the EEGwas bandpass filtered between 0.1 and 50Hz
and re-referenced to an average reference. Epochs and channels
with noise or non-physiological artifacts were identified and
removed.

Analysis Epochs
During the experiment, participants were in a resting state seven
times for 5-min epochs. During these sessions, participants were
instructed to remain still with their eyes closed while their
EEG was recorded. Participant responsiveness was monitored
with the same auditory command used for assessment of the
anesthetic state transitions, in order to ensure that they remained
awake for the duration of the session. Session 1 occurred
prior to the induction of anesthesia. Session 2–7 occurred,
respectively, at 30, 60, 90, 120, 150, and 180-min post-ROC.
Additionally, three 5-min epochs were extracted during the
exposure to anesthesia: (1) “induction”—the first 5-min of
exposure to propofol; (2) “unconscious”—the first 5-min after
the discontinuation of isoflurane; and (3) “pre-ROC”—the 5-min
immediately preceding ROC (Figure 1). Collectively, these define
10 analysis epochs for each participant.

Electroencephalographic Analysis
Source Estimation
Cortical current source density mapping was calculated using a
distributed model consisting of 10,000 current dipoles. Dipole
locations, and orientations were constrained to the cortical
area of the standard brain model of the Montreal Neurological
Institute, which was then warped to the geometry of the sensor
net using the Brainstorm software package (Tadel et al., 2011).
The EEG forward model was computed using a Symmetric
Boundary Element Method from the open-source software

OpenMEEG (http://openmeeg.github.io). Cortical current maps
were then computed from the EEG time series through a linear
inverse estimate (weighted minimum-norm current estimate)
using Brainstorm. Finally, the principal-component current
activity from within the 68 brain regions defined by the Desikan-
Killiany brain atlas were calculated to generate a single time series
for each brain region.

Spectral Analysis
Spectrograms were computed in Chronux (http://chronux.org/)
(Mitra and Bokil, 2008) using the multitaper method, with
window lengths of T = 2 s, step size = 0.1 s, time-bandwidth
product NW = 2, number of tapers K = 3. For each participant,
a time series of source-localized activity was generated for four
posterior brain regions (precuneus, cuneus, inferior parietal,
superior parietal) where many of the brain’s network hubs are
localized (Moon et al., 2015). For each brain region, the region-
based time series from all participants was used to generate
group-level spectrograms for each analysis epoch.

Functional Connectivity
Functional connectivity was assessed using Phase Lag Index
(PLI), a measure designed to address the problem of volume
conduction by accounting for only nonzero phase lead/lag
relationships (Stam et al., 2007). The instantaneous phase of
each EEG channel was computed via a Hilbert transform, and
the phase difference 18t between all channel combinations was
calculated. PLI was then calculated as follows:

PLIij =
∣

∣〈sign(1ϕt〉
∣

∣

Here, the sign() function yields a value of 1 if 18t > 0, a
value of 0 if 18t = 0 and a value of −1 if 18t < 0. Thus,
PLI quantifies the degree of phase locking of an instantaneous
phase relationship. PLI values range between 0 (no locking)
and 1 (perfect locking). Each analysis epoch was divided into
non-overlapping 10 s windows for which the PLI across all
channel combinations was calculated. For each analysis epoch, an
average PLI matrix was generated across all 10 s windows and the
global functional connectivity was calculated as the average PLI
across all channel combinations. PLI was calculated across four
frequency bands: (1) delta (1–4 Hz); (2) theta (4–8 Hz); (3) alpha
(8–13 Hz); and (4) beta (13–30 Hz).

Graph-Theoretical Analysis
We constructed a brain network using the alpha bandwidth (8–
13 Hz) of the EEG, which is the most prominent and frequently
studied bandwidth in spectral analysis. The functional network
was constructed using the weighted phase lag index (WPLI;
Vinck et al., 2011) as follows:
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where ℑ(Cij) is the imaginary part of cross-spectrum Cij between
two signals i and j. If the phases of signal i always lead or
lag those of signal j, that is, Pr
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, then
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FIGURE 1 | Experimental design and timeline. Blue squares indicate the 5-min analysis epochs distributed throughout the experiment during which participants were

asked to rest with their eyes closed. ROC, recovery of consciousness.

WPLIij = 1. If the phase lead/lag relationship of two signals is
random,WPLIij = 0.

Next, we constructed a binary adjacency matrix Aij. If
the WPLIij value of nodes i and j was within the top 10%
of WPLI-values, Aij = 1; otherwise, Aij = 0. From the
binary adjacency matrix, we calculated basic network properties,
including average path length, clustering coefficient, modularity,
and global efficiency. The average path length (Lw) is the average
of the shortest path lengths (Lij) between all pairs of nodes in the
network (Latora and Marchiori, 2001). The clustering coefficient
represents how the nodes of a graph tend to cluster together, with
higher values implying networks with highly clustered or regular
structures (Watts and Strogatz, 1998). The clustering coefficient
(Cw) for the network was calculated by averaging the clustering
coefficients of all individual nodes (Ci). The modularity of the
network represents the sum of connection strengths within
modules and was calculated using the Louvain algorithm in the
brain connectivity toolbox (Rubinov and Sporns, 2010). High
modularity values imply networks with strong within-module
connections and weak between-module connections (Newman,
2006). Finally, the global efficiency is the inverse of the average
shortest path length over all pairs of nodes.

All network metrics were normalized against randomized
networks. Ten random networks were generated by shuffling
the empirically-generated network’s edges while preserving the
degree distributions (Maslov and Sneppen, 2002), which is also
known as a null model. The path length and clustering coefficient
for each null model were calculated and averaged, yielding
Lr and Cr, respectively. Normalized path length (Lw/Lr) and
clustering coefficient (Cw/Cr) were then calculated. The expected
connection strength (Pij) of the null model was calculated,
and subtracted from the modularity, yielding Q—the sum of
connection strengths within modules after eliminating null
model effects. Normalized global efficiency was calculated from
the normalized path length.

Statistical Analysis
Average spectral power, PLI, and the network properties were
compared across the 10 analysis epochs. One-way repeated
measures ANOVA was applied, with Bonferroni correction
of alpha (<0.05) for multiple comparisons of each analysis
epoch.

RESULTS

Recovery of Alpha Power in Posterior
Brain Regions after Emergence from
General Anesthesia
Topographic analyses of the spatial distribution of alpha power
in all analysis epochs averaged across all eight participants
are presented in Figure 2A. Baseline posterior-dominant alpha
power shifted to frontal dominance during unconsciousness.
This anteriorization of alpha power reversed upon recovery of
consciousness and returned to baseline patterns 90-min post-
emergence.

The group-level, source-localized spectrogram demonstrated
similar trends across all four posterior brain regions. The
spectrogram of the bilateral superior parietal region is presented
as a representative region in Figure 2B; the superior parietal
region was selected because it was associated with the strongest
trend of alpha recovery of all posterior sources studied and
thus represents the best-case scenario. Alpha power (Figure 2C)
decreased significantly upon induction and unconsciousness,
exhibiting a gradual but significant increase toward baseline
power levels across all analysis epochs post-emergence. Three
hours post-emergence, alpha power approached but did not
return to baseline levels (p < 0.001).

Phase Lag Index during States of
Consciousness or Recovery
We calculated PLI of global channel combinations in the alpha
bandwidth for all analysis epochs (Figure 3). The PLI of each
epoch was compared against baseline. PLI did not vary with
state of consciousness during induction, unconsciousness, or just
before ROC, nor did it vary from baseline at any analysis epoch
post-emergence.

Recovery of Functional Brain Network
Properties after Emergence from General
Anesthesia
During general anesthesia, brain networks demonstrated a
significant increase in path length (p = 0.002) and clustering
coefficient (p = 0.002) as well as a significant decrease in
global efficiency (p < 0.001) (Figure 4). Changes in network
properties persisted until emergence from anesthetic-induced
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FIGURE 2 | Alpha bandwidth topography and power across ten analysis epochs. (A) Topographic mapping of alpha power; (B) Source-localized spectrogram of the

superior parietal region; and (C) Mean alpha power in the superior parietal region (blue) and standard error across all participants (red). Base, Baseline consciousness;

Induct, Induction; Uncons, Unconsciousness; ROC, Recovery of consciousness.

unconsciousness (path length, p = 0.005; clustering coefficient,
p = 0.002; global efficiency, p = 0.002). These three network
properties did not differ significantly from their baseline values
30-min after recovery of consciousness.

DISCUSSION

Brain network recovery after a major functional perturbation,
such as general anesthesia, is of both clinical and neuroscientific
interest. In this study, we found that global functional
connectivity patterns using PLI did not distinguish states
of consciousness, which is consistent with our prior findings
(Lee H. et al., 2013), but global network efficiency dropped
during unconsciousness and returned to baseline levels
early in the recovery process. Changes in global efficiency
were defined by inverse changes in path length, collectively
suggesting that—during general anesthesia—information

transfer across networks is impeded. Depression of network
efficiency and/or surrogates of information transfer have
now been identified across a variety of anesthetic drugs
(propofol, sevoflurane, ketamine, dexmedetomidine) with
diverse molecular and neurophysiological profiles (Boveroux
et al., 2010; Lee et al., 2011; Schröter et al., 2012; Lee U. et al.,
2013; Jordan et al., 2013; Moon et al., 2015; Palanca et al., 2015;
Bonhomme et al., 2016; Ranft et al., 2016; Hashmi et al., 2017).
The return of source-localized alpha power during recovery
appears to follow a similar trajectory, raising the possibility
of a sensor-level biomarker for functional brain network
recovery after anesthesia that can be measured in real time and
personalized based on the initial posterior alpha power.

Graph theory originated with the early work of Leonhard
Euler in the eighteenth century and has been used in the
neurosciences to assess brain networks for at least a decade
(Ferri et al., 2007, 2008; Spoormaker et al., 2010; Mišić and
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Sporns, 2016). In 2010 and 2011, graph theory was first applied
to the study of anesthetic state transitions by our laboratory

FIGURE 3 | Global functional connectivity calculated using phase lag index

(PLI) across all analysis epochs. Error bars represent standard deviation. ROC,

recovery of consciousness.

(Lee et al., 2010, 2011), demonstrating preservation of some
network organizational principles during general anesthesia as
well as dissociable network properties of anesthetic induction and
recovery. Graph-theoretical analysis has since been applied to
neuroimaging and neurophysiologic recordings during general
anesthesia in both humans and animals. Of note, the first
application of graph theory to neuroimaging during anesthesia
(isoflurane in rats; propofol in humans) did not identify
significant changes in path length (a determinant of efficiency;
Liang et al., 2012; Schröter et al., 2012). However, a more
recent study of functional networks reconstructed from 128-
channel EEG in the alpha bandwidth—a methodology similar
to the current study—found significant increases in path length
associated with propofol-induced unconsciousness (Chennu
et al., 2016). Furthermore, using fMRI, Monti et al also identified
a reversible disruption of path length that returned with the
initial recovery of consciousness (Monti et al., 2013). Our work
confirms that network efficiency is impaired during general
anesthesia, but with an inhaled anesthetic and a clinically-realistic
protocol.

The relationship between graph-theoretical analysis and
recent efforts to assess information transfer within functional
brain networks during general anesthesia is notable. Propofol,

FIGURE 4 | Brain network properties across the experimental period: (A) path length; (B) clustering coefficient; (C) modularity; and (D) global efficiency. Error bars

represent standard deviation, and *indicates epochs that are significantly different from the baseline (p < 0.05). Base, Baseline consciousness; Induct, Induction;

Uncons, Unconsciousness; ROC, Recovery of consciousness.
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sevoflurane, and ketamine have all been found—by both
neurophysiologic and neuroimaging studies—to disrupt
connectivity patterns and surrogates of information transfer
in frontal-parietal networks (Hudetz and Mashour, 2016). It
is likely that this line of investigation and network analyses
are fundamentally related. First, altered connectivity patterns
and network reconfigurations leading to inefficiency would
naturally result in impaired information transfer. Even in studies
without information-theoretical measures, increased path length
and decreased efficiency suggest conditions that might impede
information exchange. Second, several lines of evidence support
the hypothesis that topology shapes information transfer in
large-scale (spatially) and long-scale (temporally) functional
brain networks. Past studies of propofol using EEG show that
reversal of directional connectivity in frontal-parietal networks
parallels a reversal in the topology of hubs (Lee H. et al., 2013).
On a more fundamental level, highly-connected network hubs
appear to be sinks for information transfer, while peripheral
nodes appear to be sources. This has been established in
mathematical and simulation studies as well as empirical studies
in multiple states and species (Moon et al., 2015, 2017).

Although graph analyses and studies of information transfer
are of neuroscientific interest, they are not currently measurable
in real time in the routine clinical setting. The finding that alpha
power in the superior parietal lobule returns on a more gradual
time scale might have clinical relevance. In a large randomized
controlled trial that assessed the effectiveness of the bispectral
index and end-tidal anesthetic concentration monitoring in
preventing intraoperative awareness and improving post-surgical
recovery, mean discharge-readiness times in the recovery room
were approximately 95-min (Mashour et al., 2012). Thus, the
recovery of posterior alpha power in the current study parallels
real-world recovery after surgery and anesthesia. Alpha power
is known to shift from the posterior region to the frontal area
at the point of propofol-induced unconsciousness as well as
during surgical anesthesia with sevoflurane (Purdon et al., 2013;
Akeju et al., 2014) and (as shown in this study) isoflurane. To
date, posterior alpha has typically only been measured upon
initial recovery and often only after relatively short exposure.
The present findings encourage further study of sensor-level
alpha changes in the posterior region that might serve as a
marker for recovery from anesthesia. Further, study of the

relationship of network-level changes and posterior alpha power
is warranted.

Strengths of this study include high-density (128 channel)
EEG recording, a clinically-realistic anesthetic regimen, and
serial measurement of resting state networks during a prolonged
recovery time. Limitations relate to the poorer spatial resolution
of EEG compared to other neuroimaging modalities, the
restriction of analysis to the alpha bandwidth, the inability to
assess subcortical structures, and the coarse-grained analysis
of networks that does not capture the fine-scale dynamics
(spatially and temporally) of spike-level networks. Furthermore,
the ostensible recovery of network efficiency just after emergence
could be due to the relatively low number of participants in
the study (n = 8). Alternatively, it might relate to the inherent
variability of emergence from anesthesia that has been identified

experimentally (Lee et al., 2011) and clinically (Chander et al.,
2014). Finally, ondansetron was administered for the prevention
of nausea and vomiting, and it is possible that this affected
the EEG-derived network behavior; however, it is unlikely that
this would significantly distort the far more dominant effects of
1.3 age-adjusted minimum alveolar concentration of isoflurane
administered for 3 h.

In conclusion, a clinically-relevant anesthetic protocol and
recovery process demonstrates a significant depression of
functional network efficiency that returns in association with
the recovery of posterior alpha power over a clinically-relevant
timeframe, suggesting a potential biomarker for normal recovery
after general anesthesia.
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