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Most brain-computer interfaces (BCIs) focus on detecting single aspects of user
states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these
aspects as control input for external systems. This communication can be effective,
but unaccounted mental processes can interfere with signals used for classification
and thereby introduce changes in the signal properties which could potentially impede
BCI classification performance. To improve BCI performance, we propose deploying an
approach that potentially allows to describe different mental states that could influence
BCI performance. To test this approach, we analyzed neural signatures of potential
affective states in data collected in a paradigm where the complex user state of
perceived loss of control (LOC) was induced. In this article, source localization methods
were used to identify brain dynamics with source located outside but affecting the signal
of interest originating from the primary motor areas, pointing to interfering processes in
the brain during natural human-machine interaction. In particular, we found affective
correlates which were related to perceived LOC. We conclude that additional context
information about the ongoing user state might help to improve the applicability of BCIs
to real-world scenarios.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), loss of control (LOC), frontal alpha
asymmetry (FAA), independent component analysis (ICA)

INTRODUCTION

Traditionally, brain-computer interfaces (BCIs) have been developed to translate measured brain
activities into commands for technical systems in real-time. By using measures of neural activity
like the electroencephalogram (EEG), BCIs therefore offer alternative communication channels for
human-machine interaction (Wolpaw et al., 2002). The primary goal in developing BCI systems
was to support persons with severe behavioral impairments like amyotrophic lateral sclerosis (also
known as Lou Gehrig’s disease). However, recently there have been developments toward systems
that can benefit users without disabilities as well.

From a user perspective, there are three main types of BCIs (Zander and Kothe, 2011):
first, reactive BCIs, tracking users’ attention towards stimuli that are externally presented
and encode direct control commands. Second, active BCIs relying on voluntarily induced
changes in brain activity, e.g., by imagining motor activities. Both active and reactive BCIs are used
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to control devices through directed commands (e.g., P300 speller;
Belitski et al., 2011, or motor imagery based BCIs; Pfurtscheller
and Neuper, 2006). Third, passive BCIs apply mental state
monitoring to establish an implicit control loop. Passive BCIs do
not rely on a user‘s awareness about the concrete information
exchanged during this interaction. An example can be found
in Zander et al. (2016), where ERP-based error detection was
used to improve cursor movements toward targets in a 2d-grid.
The participants of the study did not know, that they provided
information to the system, but still recognized that system
performance was improved. Other possible application scenarios
for passive BCIs are adaptive learning environments (Gerjets
et al., 2014), automatic correction of errors (Parra et al., 2003) or
even the detection of mental states like bluffing in a game context
(Reissland and Zander, 2009).

The Relevance of Complex Mental User
States to BCI Performance: The Case of
Loss of Control
Most available BCIs, whether reactive, active or passive, try
to identify specific, narrow mental states or processes, as for
example motor imagery (Lotte et al., 2010), working-memory
load (Gerjets et al., 2014) or affective responses (Mühl et al.,
2014). However, such systems typically do not account for
contextual fluctuations in other mental states and processes
that arise during use. In line with this reasoning, previous
work suggests that spontaneously occurring decrements in BCI
reliability could be related tomodulations in unaccountedmental
processes and states (Zander and Jatzev, 2012; Myrden and Chau,
2015).

Natural environments for innovative BCI applications (e.g.,
classroom or workplace settings; see Gerjets et al., 2014) usually
contain various factors that can potentially evoke complex
mental states in a user. Therefore, such application scenarios
might easily induce a variability of different mental states that
are not directly related to the core mental state or process that
is in the focus of a certain BCI application. Accordingly, such
factors can produce changes in EEG signals that are picked up by
a system, but cannot be interpreted correctly due to the limited
user state model (usually consisting of a single mental state or
process) the system is built upon.

As many available classification algorithms assume stationary
signal properties, which are learned from a single calibration
session, these algorithms are unable to track shifts in the feature
space (called non-stationarities) and rather require users to adapt
to unexpected or erroneous behavior of the system, for instance
by trying to produce brain signals similar to those used during
calibration (Krauledat et al., 2006).

Future systems might be able to automatically adapt to
contextual changes in the EEG and provide stable performance
even in noisy environments outside the lab. To facilitate the
development of such systems it seems necessary to investigate
complex user states with the aim to separate contextual and
potentially interfering states from the primary interaction mode.

In this article, we address the role of one interfering mental
state on BCI performance in a paradigm that was designed to

experimentally manipulate an important complex user state in
the context of BCI systems, namely the perceived feeling of a
loss of control (LOC). The LOC paradigm used in our study has
already been hypothesized to evoke affective as well as cognitive
responses (Zander and Jatzev, 2009) and thereby appears to
be particularly suited to study different basic components of
complex user states. In this paradigm, the feeling of LOC is
evoked by means of a feedback manipulation: subjects were
first trained to use a fixed set of rules (color-angle associations)
to control a simple letter rotation task by means of button
presses with the left vs. right hand. Later in the experiment,
the previously learned rules were temporarily violated, thus
eliciting the feeling of LOC. This paradigm allows to study
the neural signatures of motor executions with and without
LOC in order to analyze what happens to a specific BCI
signal of interest (in this case motor execution responses) when
other cognitive or affective mental states overlap with this
signal.

Contrary to standard BCI approaches, we decided to analyze
motor execution responses rather than motor imagery responses
in order to better control for the perceived LOC. Input based
on motor imagery can be rather unreliable, whereas button
presses are an extremely accurate input modality thereby not
yielding unintended LOC experiences. Moreover, earlier work
by Pfurtscheller and Neuper (1997) has demonstrated that
that motor execution responses are structurally similar to
motor imagery responses with respect to their neural signature.
Therefore, for the purpose of the current study, namely to
investigate the role of interfering mental states on the stability
of BCI performance, we assumed that using a button-press
paradigmwould yield similar results than using a paradigm based
solely on motor imagery.

In earlier work it has already been demonstrated that EEG
signature of motor execution responses changed under LOC,
thereby leading to a BCI performance degradation when the
interface was controlled by EEG signals (Zander and Jatzev,
2012). However, in this work it remained unclear, which aspects
of the complex user state contributed to the altered signature of
motor responses in the EEG signal.

Following previous work by Zander and Jatzev (2009), we
assume in this article that LOCmight involve affective processes.
According to this reasoning, the feeling of losing control over
an interface should provoke negative emotions like irritation,
worry, frustration, anger or helplessness (Reuderink et al., 2009).
The aim of the current article is to provide additional evidence
for this assumption by comparing LOC trials to correct trials
in our experimental paradigm with regard to potential neural
signatures of affective user states. For this purpose we will not
only analyze sensor-based EEG measures but also conduct an
EEG-based source analysis.

Neural Signatures of Potential Affective
User States in the Loss of Control
Paradigm
Several studies used EEG measures to investigate the neural
basis of affective processes (Davidson, 1992; Olofsson et al.,
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2008; Kim et al., 2013). Laterality in the alpha band measured
in frontal regions, also called Frontal alpha asymmetry (FAA),
is widely used in these studies as a measure for affective
processing. However, this measure seems to capture a wide
variety of affective responses. Many studies that used brain
lateralization as a measure of affective states or responses focused
on one particular dimension of emotional experience, namely the
valence dimension (Ahern and Schwartz, 1985; Davidson and
Tomarken, 1989; Lin et al., 2008; Huang et al., 2012; Ramirez
and Vamvakousis, 2012). The valence (or pleasure) dimension
reflects the pleasantness or unpleasantness of an affective event
and ranges from extreme pain (or unhappiness) to ecstasy (or
extreme happiness). Left frontal activity in this context often
indicates a tendency toward positive emotions like happiness
(e.g., Ahern and Schwartz, 1985).

However, the equivalence of left frontal activity with positive
emotions is not unequivocal. Several studies showed that some
emotions with negative valence might also activate the left
hemisphere. An interpretation of this apparent contradiction
has been provided by the Approach-Withdrawal model, first
proposed by Schneirla (Schneirla, 1959), as cited in Dalgleish,
2004). It states that the left hemisphere is active in emotions
associated with pleasant or unpleasant approach behaviors like
anger or engagement whereas the right hemisphere is related to
avoidance behaviors like fear. As an alternative explanation it
has been proposed that FAA can be used to measure emotional
responses along the dominance dimension (Demaree et al.,
2005). Dominance has been specified as ‘‘feelings of control and
influence over everyday situations, events and relationships vs.
feelings of being controlled and influenced by circumstances
and others’’ (Mehrabian, 1994). In this context left-frontal
activation is related to more dominant emotions that can
also be of positive and negative valence. Whichever of these
interpretations is correct, FAA should in any case be sensitive to
affective responses we expect to be modulated during perceived
LOC. Interestingly, a recent study by Reuderink et al. (2013)
found that activity in the lower alpha band was related to
the valence dimension, while activity in the upper alpha band
was related to the dominance dimension, which might be of
important in this analysis, since it seems plausible that LOC
might have an effect on the dominance as well as the valence
dimension.

Thus, in a first step to explore whether the complex LOC user
state contains affective components besides motor activities, we
focused on examining a potential FAA shifts occurring during
phases of reduced control. Specifically, using the FAA measure,
we investigated each individual experience of LOC during phases
with LOC (as compared to trials within these phases that do not
reflect a LOC).

In a second step, to further substantiate potential affective
correlates found using the FAA, we conducted an exploratory
cluster analysis on the EEG data to explore whether the
corresponding brain dynamics can be attributed to specific
neuroanatomical structures. Furthermore, we also wanted to
investigate if such brain structures project activity onto areas
used to infer the motor execution response in Zander and
Jatzev (2012). In order to provide evidence for specific structures

as sources of a FAA, we used equivalent dipole modeling of
independent components (ICs) derived from an independent
component analysis (ICA; Makeig et al., 1996; Oostenveld
and Oostendorp, 2002). However, due to the novelty of the
experimental paradigm used, it is difficult to make concise
predictions about specific brain areas involved, especially since
the previous literature on brain laterality concluded that most
theories underlying frontal asymmetries lack anatomical specifity
(Wager et al., 2003). Nonetheless, it is expected that potentially
revealed brain sources underlying an FAA response can be
interpreted in the context of the paradigm used in this
study.

MATERIALS AND METHODS

Experimental Task
A simple game (called ‘‘Rotation-Left-Right’’) was used to
modulate LOC over the course of the experiment. Subjects had
to discretely rotate a letter stimulus until it was aligned to a
target letter with regard to its rotation angle. The basic principles
of the task are illustrated in Figure 1 and a full description
of the experimental task can be found in Zander and Jatzev
(2012).

The stimuli were the two capital letters R and L. The capital
letter R indicated clockwise rotations after a button press of the
right hand and the capital letter L indicated counterclockwise
rotations after a button press of the left hand. The color of the
rotating letter changed approximately each second to indicate
an expected rotation angle with the color being either, green
for 30◦, yellow for 60◦ or red for 90◦. For each letter rotation,
subjects could decide whether they wanted to rotate the rotating
letter according to the angle indicated by the color by pressing
a button or not. Each trial started with the presentation of a
rotating letter (L or R, either colored in green, yellow or red)
together with a target position in gray to which the stimulus
letter had to be aligned to by means of an appropriate rotation.
Subsequently, subjects had a time window of 1000 ms to react
(or not) with a left hand (for the letter L) or right hand (for
the letter R) button press, resulting in a letter rotation (or
not). After 300 ms of the subsequent 850–950 ms interstimulus
interval the color of the rotating letter turned to gray. Following
the interstimulus interval, a new letter was presented in color
to start the next rotation trial. A sample trial is shown in
Figure 2.

A training phase was provided to allow subjects to acquaint
themselves with the task. All colors and corresponding rotation
angles occurred with the same probability and each letter
had to be rotated for at least 90◦ and at most 270◦ in
order to be aligned with a target position. The subjects were
instructed to finish the trials as fast as possible. If a subject
chose a rotation angle that rotated the figure beyond the
target position, then the subject was required to go around
the circle another time. In the first part of the experiment,
the contingencies between letters, colors and rotations were
trained for approximately 30 min. In the second part of the
experiment the previously learned rule system of color-angle
mapping was systematically violated by rotating the letter by
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FIGURE 1 | The Rotation-Left-Right game used as experimental task. Left: stimulus display showing stimulus to be rotated and target position. Letter R indicated
clockwise rotation with right hand button press. Letter L indicated counterclockwise rotation with left hand button press. Right: experimental conditions. In the
normal trials condition the color-rotation angle mapping was fixed. In the loss of control (LOC) trials condition was distorted with a maximal occurrence rate of 30%.
Hence, during LOC the subjects did not know how the system responded to a button press. Adapted from Zander and Kothe (2011).

a different than expected angle with a chance of up to 30%.
These violations resulted in trials with unexpected rotations
(LOC trials), forced subjects to reconsider and potentially modify
their previously formed strategies and induced—according to
our hypothesis—a complex user state, namely the feeling of a
perceived LOC.

Our analysis was focused on data from the second part of
the experiment where trials with expected stimulus rotation
(normal trials) and trials with erroneous stimulus rotation (LOC
trials) were mixed. At the beginning of the analyzed data
segment with an overall duration of 15 min, the incidence of
trials where previously learned rules were violated was linearly
increased from 0% to 30% over 4 min. This was done to prevent
disengagement from the task due to an abrupt onset of LOC.
Then the occurrence of LOC trials stayed at a maximum of
30% for 7 min, before the incidence of trials with incorrect
rotation (LOC trials) was linearly decreased over the next 4 min.
On average there were 255.7 (SD = 19.7) trials in the normal
condition and 81.8 (SD = 9.4) trials in the LOC condition.
There was no statistical difference between left (mean = 121.4;
SD = 19.8) and right (mean = 133.2; SD = 19.4) trials in
the normal condition. There was also no significant difference
between left (mean = 38.6; SD = 9.0) and right (mean = 43.2;
SD = 11.1) trials in the LOC condition. Each trial started with a
new target position. The average steps to complete a trial were

computed for both conditions and it was found that trials in
the LOC condition (mean = 4.42; SD = 0.19) had significantly
more (p < 0.001) steps than trials in the normal condition
(mean = 3.99; SD = 0.25). However, there was only a trend
towards significance in trial duration (p = 0.055) for LOC trials
(mean = 10.99 s; SD = 1.26) and normal trials (mean = 10.15 s;
SD = 1.19).

Experimental Setup
The Dataset
The dataset comprised 18 healthy subjects (age range:
19–40 years) that were recorded in a previous experiment
to investigate the effect of perceived LOC on EEG features
related to motor response (Jatzev et al., 2008). The recordings
have been approved by the ethical committee of the Berlin
Technical University and informed consent has been acquired.
Out of these 18 subjects, three subjects had to be removed from
the analysis due to strong artifact contamination. EEG-data
was recorded with 32 active Ag/Cl-electrodes (positioned
according to the extended 10% system) and a biosignal amplifier
(Brainproducts GmbH., Gilching, Germany). All channels were
referenced to the nasion. Impedances were kept below 20 kΩ.
The data were sampled at 1 kHz. The EEG recording sessions
lasted for about 66 min, but only 15 min of data that included
LOC trials were analyzed for this manuscript.
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FIGURE 2 | A sample trial of the Rotation-Left-Right game in the normal condition. At the start of the trial the to be rotated figure and the target figure are displayed.
Following an inter-stimulus-interval (ISI) of 550–650 ms the to be rotated figure changes color (to red), indicating a potential figure rotation of 90◦ to the left. After a
key press that occurred within 1000 ms, the figure rotates 90◦ to the left. This is followed by an ISI of 300 ms, where the figure does not change color. After that the
figure changes to dark gray in another ISI of 550–650 ms. This is followed by another change of figure color (to yellow), indicating a potential rotation of 60◦ to the
left. Since a key press occurred within 1000 ms, the figure rotates 60◦ to the left, thereby aligning with the target figure. There is no change in color in the next ISI
with a duration of 300 ms. After that the fading out of the figure indicates a successfull trial for 300 ms. Finally, the figure disappears, indicating an inter-trial-interval of
500 ms.

Preprocessing
First, the data was bandpass filtered between 1 Hz and 30 Hz.
Then it was down-sampled to 250 Hz and re-referenced to the
common average to suppress artifactual activity that spread over
all channels (e.g., muscle activity or outside electrical noise; see
McFarland et al., 1997). To ensure that our findings could be
applied to an online application scenario no further manual
artifact rejection was performed. A logarithmic transformation
was applied before computing the spectra to better fit the
data to a Gaussian distribution. Based on Allen et al. (2004)
and the available data, the electrode pairs F3/F4 and FC1/FC2,
respectively, were analyzed with regard to potential FAAs. All
data processing was done via (MATLAB and Statistics Toolbox
Release, 2013; The MathWorks, Inc., Natick, MA, USA) and
EEGLAB (Delorme and Makeig, 2004).

Analysis
Only rotation trials with button press were used for analysis.
The time window for analysis started 100 ms after the rotation

of the stimulus and ended 700 ms later (50–150 ms before the
interstimulus interval ended) to ensure that the data was not
contaminated by effects related to expectancy of the next rotation
opportunity (see Figure 3, left).

Power spectral density (PSD) of the EEG signal using
Welch’s PSD estimate (Welch, 1967) was used as basis for
FAA estimation between 8 Hz and 10 Hz for the lower alpha
band and between 10 Hz and 12 Hz for the upper alpha
band. FAAs were computed as difference score (ln (right alpha
power)) − (ln (left alpha power)), following the approach from
Allen et al. (2004). A Kolmogorov-Smirnov-test was used to
test the assumption of normality and found that it was not
violated.

For the analysis, we performed a three-way repeated measures
ANOVAusing the grand average (summing across all trials) FAA
as dependent variable. The first factor was trial type with two
levels (normal and LOC). The second factor was electrode pair,
also with two levels (F4 − F3 and FC2 − FC1). The third and
last factor was alpha band (lower alpha = 8–10 Hz and higher
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FIGURE 3 | Window of analysis (left) and topografic difference plot illustrating the difference of alpha power between normal and LOC trials (right). Left: time is on the
horizontal axis. Vertical line indicates onset of letter rotation. Right: topographic plot showing the found asymmetry effect for trial type as difference in frontal alpha
(8–12 Hz) power. Nose is at the top. Channel labels indicate channel location. Electrodes of interest are marked with black circles. Colorbar indicates value range of
difference (normal vs. LOC) in alpha power (after logarithm). Blue color shows low alpha power (top left and bottom left). Red color shows high alpha power.

alpha = 10–12). Effects only appearing in the data of individual
subjects were not taken into account.

For the cluster analysis, we followed an established approach
illustrated in Gramann et al. (2010) that used equivalent dipole
modeling based on topographies of ICs across the whole
subject sample (containing all correct trials for the normal
and LOC conditions) to estimate the location of cortical
sources underlying potential effects at the sensor level. This
was performed in the following steps: first, ICs were computed
on the individual EEG data (band pass filtered between 1 Hz
and 100 Hz) using the CUDAICA implementation (Raimondo
et al., 2012) of the Infomax ICA (Bell and Sejnowski, 1995).
Next, dipole fitting was done using a simple three-shell spherical
head model (registered to the Montreal Neurological Institute
canonical template brain) implemented in the DIPFIT2-plugin
(version 2.3) from the EEGLAB toolbox (Delorme et al., 2011;
Oostenveld et al., 2011). Following this, the spectral activity of
the resulting ICs was computed using the same data that was
used for the scalp based analysis (approximately 15 min of EEG
data that contained normal and LOC trials). To increase location
accuracy of the final independent component clusters, all ICs
that contained dipole coordinates with a residual variance greater
than 15% have been automatically removed before clustering.
As next step, IC clustering was performed across subjects and
based on mean IC log spectra (between 3 Hz and 25 Hz),
equivalent dipole locations as well as scalp maps as determining
factors. The dipole locations were naturally three-dimensional
and weighted by a factor of 20 to extract more closely spaced
component clusters. All these measures were finally compacted
into 10 dimensions via principal component analysis (Law
and Jolliffe, 1987), since clustering algorithms may not work
well with measures having more than 10 dimensions. Then,
k-means clustering (Ding and He, 2004) was used with ‘‘k’’

set to 23 as suggested by the EEGLAB toolbox. Any outlier
ICs were automatically removed if the distance to any cluster
centroid in joint measure space was greater than three standard
deviations from the mean. Afterward, the resulting IC clusters
were inspected and ICs that exhibited activity that seemed
to originate from non-brain artifacts were removed based on
their activation spectra, scalp topographies and dipole location.
Finally, anatomical regions were assigned to the centroids of the
resulting component cluster using talairach coordinates and the
Talairach web client (Lancaster et al., 2000).

RESULTS

Scalp Based Analysis
As expected, we found a main effect for trial type, F(1,14) = 9.46,
p < 0.01, η2 = 0.40. LOC trials showed stronger left frontal
activation (due to higher right frontal alpha power) than normal
trials. There was no significant main effect for electrode pair,
F(1,14) = 2.15, n.s. Furthermore, there was no significant main
effect for alpha band, F(1,14) = 0.65, n.s. Finally, none of the
interactions exhibited significant effects (all F-values < 1.5). A
topographic plot that illustrates the main effect for trial type
can be seen in Figure 3 (right side), median values are shown
in Figure 4 and channel spectra for all electrodes are shown in
Figure 5.

Cluster Analysis: Identifying Sources
Underlying the FAAs Found at the Sensor
Level
The cluster analysis yielded an IC cluster that contained data
from nine subjects and showed spectral activity likely related
to frontal laterality responses. The spectral activity of the
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FIGURE 4 | Box plots showing median values for electrodes (left; averaged across alpha bands) and alpha bands (right; averaged across electrodes): median values
are indicated by black horizontal lines within the boxes. Top and bottom borders of the boxes represent the middle 50% of the data. Whiskers represent the smallest
and largest values not classified as outliers or extreme values.

component cluster projected strongly onto an area close to
electrode FC2 (see Figure 6, bottom left). The scalp projection
of this cluster showed the highest correlation (r = 0.64, p< 0.001,
sig.; see Table 1) with the topographical difference plot (see
Figure 3, right), when compared with the scalp projections of all
other component clusters that exhibited a significant effect in the
wide alpha band. Hence, the topographies show a unique, high
similarity.

This component cluster was located in or near the right
supplementary motor area (SMA) in Brodmann Area 6 (BA6; see
Figure 6) and showed decreased lower alpha activity (p < 0.05)
and increased higher alpha activity (p < 0.05) during LOC
trials.

The homologous cluster located in or near the left BA6
(see Figure 7) and contained data from 11 subjects did not
show significantly increased alpha power during LOC. A visual
inspection of the activation spectra of both clusters did not show
any indication of electromyographic contamination.

DISCUSSION

We could demonstrate that the complex user state in the
focus of this article, namely the feeling of perceived LOC,
displays some of the characteristic neural signatures of affective
processes (i.e., brain laterality responses; Demaree et al., 2005).
In particular, our scalp based analysis revealed a frontal
asymmetry in the alpha band, indicating an increase in left
frontal activity (due to an increase in right frontal alpha
power) for incorrect stimulus rotation (LOC trials) as compared
to normal trials with correct stimulus rotation. We further
approximated the cortical sources that seem to contribute to
the LOC-related FAA using equivalent dipole fitting of ICs,
revealing opposing effects that could not be found at the electrode
level.

Frontal Alpha Asymmetry Indicates
Affective Responses during Perceived
Loss of Control
We found that trials with incorrect stimulus rotation (LOC)
were accompanied with increased left frontal activity (due
to increased right frontal alpha power). Such responses are
commonly related to increased dominance, emotions associated
with approach behaviors, as well as positive valence. While
a shift toward positive valence would seem quite puzzling,
an emotional shift toward more dominance and approach
behaviors could be well explained with feelings of anger, hostility
and contempt (Demaree et al., 2005), which possibly were
experienced by subjects during LOC trials. These approach
related responses would reflect engagement (Harmon-Jones
et al., 2010), indicating that subjects made efforts to regain
control of the system. This interpretation appears most
likely, especially since no behavioral alternative was available
(subjects could only press one button), previously formed
strategies to solve the task did not work anymore due
to the violation of task rules and the random nature of
the occurring LOC trials made it difficult to adapt those
strategies. Interestingly, the fact that the system did not respond
properly anymore, impeding task performance, did not seem
to result in task disengagement, since task disengagement
should have been reflected in decreased left frontal activation,
thereby implying avoidance behaviors resulting in feelings like
frustration.

Component Cluster Analysis Indicates
Differential Effects Not Visible at the
Sensor Level
Scalp electrodes record a mixed sum of cortical activity which
can distort results and lead to incorrect conclusions. ICA uses
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FIGURE 5 | Channel spectra between 1 Hz and 30 Hz for all four channels used in the analysis. Top left: channel F3. Top right: channel F4. Bottom left: channel FC1.
Bottom right: channel FC2. Significant differences (p < 0.05) are indicated with black bars. Please note that only channel FC2 shows significant activity in the alpha
range (8–12 Hz; marked in red).

a linear transformation of the scalp signal to separate the
recorded activity into different data sources. In combination with
equivalent dipole fitting it is possible to investigate the cortical
dynamics that underlie the signals recorded at the sensor level.
We found a component cluster that was located in or near
BA6 displaying a scalp projection (see Figure 6, bottom left)
closely resembling the laterality effect found in the alpha power
difference plots (see Figure 3, right). This cluster exhibited an
alpha band activity during LOC trials that was decreased in
the lower alpha band (p < 0.05) and increased in the upper
alpha band (p < 0.05; see Figure 6). Similar results have been
found in a study by Reuderink et al. (2013). The authors found
that activity in the lower alpha band was related to the valence
dimension, while activity in the upper alpha band was related to
the dominance dimension. However, our investigation did not
exhibit this effect at the electrode level which is the basis of most
other FAA related analyses. The reason for this discrepancy is
probably due to the fact that scalp electrodes record a mixture
of multiple different cortical sources, which can distort effects
based on single cortical sources. However, the sample was too
small to put a strong emphasis on the results of the cluster
analysis and further studies are needed to support these findings.

Nevertheless, we see this as further evidence that that the
FAA effect might be more complex than previously assumed.
A separate analysis of different alpha bands in combination
with source based analyses might allow to disentangle different
responses that are usually associated with this measure.

The component cluster that we found to be related to the
FAA induced by LOC was located in or near BA6, which plays
a major role in the planning of motor responses. In line with this
function of BA6, previous research has indicated that emotional
experiences are always associated with certain motor response
tendencies (e.g., Önal-Hartmann et al., 2012), for instance, we
reach for positive stimuli or push away negative ones. BA6 is
composed of the premotor cortex and, medially, the SMA. The
right BA6 cluster centroid was located closest to the SMA (see
Figure 6, top right). The SMA has been shown to be active
duringmotor action under affective influence. For example, SMA
activation was found for emotional conflict in a study by Ochsner
et al. (2009) in an affective flanker task. Another study by Oliveri
et al. (2003) found enhancedmotor evoked potentials in the SMA
when using emotional stimuli. The authors conclude that the
SMA plays a role when emotional experiences are transformed
into motor actions. This evidence is in line with our expectations

Frontiers in Human Neuroscience | www.frontiersin.org 8 July 2017 | Volume 11 | Article 370

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Grissmann et al. Affective Aspects of Perceived Loss of Control

FIGURE 6 | Component cluster in or near right Brodmann Area 6 (BA6). The spectrum shows a significant decrease (p < 0.05) in the lower alpha range (black
horizontal bar marked in red) and a significant increase (p < 0.05) in the upper alpha range (black horizontal bar marked in green) during LOC. Top right shows the
location of individual dipoles (blue) as well as the cluster centroid (red). Bottom left shows the corresponding scalp projection (red colors indicate higher cluster
weights).

concerning the emotional effects of the paradigm used in our
study.

Our findings are further supported by the fact that the
homologous component cluster located on the left hemisphere
and projected onto electrodes F3 and FC1 (see Figure 7) did not
show a significant increase in the alpha band during LOC trials.
Furthermore, the scalp projection of this component cluster did
not exhibit a strong similarity (r = 0.17, p < 0.001, sig.; see
Table 1) with the topographical difference plot (see Figure 3,
right). We therefore conclude that the right BA6 component
cluster is the main contributor to the laterality effect (measured
via FAA) we found at the sensor level.

Limitations and Outlook
Although we were able to identify affective responses in the
LOC task as expected, this work has two main limitations.
First, no classification has been conducted on the discovered
laterality response. Future studies would need to adapt the
LOC paradigm to make it suitable for a real-time classification
approach. Such a paradigm should use motor imagery instead

of button presses as input and implement a passive BCI for the
automatic detection of affective processes that might interfere
with the primary interaction mode. However, it is of utmost
importance to state that building such a system is not trivial, since
both the classification of motor imagery as control input as well
as the detection of affective responses will not be 100% reliable
and a separation of both influences on the scalp recorded EEG
might prove difficult. Using ICs as classifier features might turn
out to be a viable approach, but up to now it is quite unclear
whether IC cluster remain stable when using them in such a
dynamic system. Additionally, we also used healthy individuals
as subject sample and it is yet unclear how our findings transfer
to a clinical population.

Second, future studies should try to obtain more online
measures of the subjective user states during interaction with
the system. Since classification is done on a trial by trial basis,
non-intrusive approaches would be ideal (e.g., heart rate or
electrodermal activity). However, such approaches pose their
own difficulties and usually do not work perfectly (Mauss
and Robinson, 2009). Due to the necessary temporal density

TABLE 1 | Correlation coefficients between difference plot and all component clusters with significant activity in the alpha band.

Cluster right BA39 left BA6 right BA6 right BA10 right BA37

ρ −0.24 0.17 0.64 0.38 −0.43
All correlations significant at p < 0.001

Please note that the right Brodmann Area 6 (BA6) cluster displays the highest correlation coefficient (marked in red), indicating the largest overlap between the component

cluster and the difference plot.
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FIGURE 7 | Component cluster in or near left BA6. Note that the spectrum does not show a significant increase (p < 0.05) in the alpha range during LOC. Top right
shows the location of individual dipoles (blue) as well as the cluster centroid (red). Bottom left shows the corresponding scalp projection.

of user state measures, subjective ratings that can only be
acquired in retrospect do also not seem very suitable for this
paradigm. Nevertheless, they might provide an approximation
of the general experience during the experiment and it is
strongly recommended that future studies should implement
them (e.g., affective ratings for all three dimensions from the
pleasure-arousal-dominance model using the self-assessment
manikin; Bradley and Lang, 1994). With such measures it might
become possible to uncover inter-individual differences, thereby
enabling a more differentiated perspective. For instance, we
assume, that even if most subjects were not discouraged by the
erratic behavior the system exhibited, some subjects might have
been.

Furthermore, the current paradigm does not manipulate
cognitive and affective processes separately and therefore these
processes are confounded to a certain degree. Future studies
should use paradigms that allow for such a manipulation
to further disentangle the specific brain responses related to
cognitive as well as affective responses. Potential candidates are
the affective flanker task (Alguacil et al., 2013) or the affective
n-back task (Passarotti et al., 2011).

Additionally, the findings from the cluster analysis should
be seen as exploratory due to the small amount of channels
and the rather small sample size. Furthermore, the use of the
spherical head model can also introduce errors in the location
estimate of the cortical sources. Moreover, template brainmodels
were used to infer the location of the cortical sources which
can introduce additional errors. Future studies should use
high-density EEG recordings and individual brain scans to allow
for more sophisticated source localization procedures. However,
ICA-based analyses are of amore qualitative nature and therefore

the resulting findings should be further substantiated using other
approaches like combined EEG-FMRI recordings.

Conclusion
Using FAA in combination with source localization approaches,
we described brain responses in the EEG during naturalistic
human-machine interaction that appear to be related to affective
components of a complex user state (LOC). Our analyses helped
to distinguish these responses from those related to the primary
interaction mode (button press).

While this study should only be seen as a first step toward
the investigation of the underlying factors that contribute to
non-stationarities found at the sensor level, it still illustrates that
complex user states involve multiple factors. Such factors might
be used as additional context information in future BCI systems
by extracting a multi-facetted user state model from the ongoing
EEG. Such a user state model might help to increase reliability in
uncontrolled settings by providing information which is usually
hard to access.
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