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Lixia Tian* and Lin Ma

School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

Despite numerous studies on the microstructural changes of the human brain
throughout life, we have indeed little direct knowledge about the changes from early
to mid-adulthood. The aim of this study was to investigate the microstructural changes
of the human brain from early to mid-adulthood. We performed two sets of analyses
based on the diffusion tensor imaging (DTI) data of 111 adults aged 18-55 years.
Specifically, we first correlated age with skeletonized fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) at global and regional
level, and then estimated individuals’ ages based on each DTI metric using elastic
net, a kind of multivariate pattern analysis (MVPA) method that aims at selecting
the model that achieves the best trade-off between goodness of fit and model
complexity. We observed statistically significant negative age-vs-FA correlations and
relatively less changes of MD. The negative age-vs-FA correlations were associated
with negative age-vs-AD and positive age-vs-RD correlations. Regional negative age-
vs-FA correlations were observed in the bilateral genu of the corpus callosum (CCg),
the corticospinal tract (CST), the fornix and several other tracts, and these negative
correlations may indicate the earlier changes of the fibers with aging. In brain age
estimation, the chronological-vs-estimated-age correlations based on FA, MD, AD and
RD were R = 0.62, 0.44, 0.63 and 0.69 (P = 0.002, 0.008, 0.002 and 0.002 based on
500 permutations), respectively, and these results indicate that even the microstructural
changes from early to mid-adulthood alone are sufficiently specific to decode individuals’
ages. Overall, the current results not only demonstrated statistically significant FA
decreases from early to mid-adulthood and clarified the driving factors of the FA
decreases (RD increases and AD decreases, in contrast to increases of both measures
in late-adulthood), but highlighted the necessity of considering age effects in related
studies.

Keywords: fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), multivariate pattern analysis,
aging

Abbreviations: AD, axial diffusivity; CC, corpus callosum; CCg, genu of the corpus callosum; CCs, splenium of the corpus
callosum (CCs); CST, corticospinal tract; DTI, Diffusion tensor imaging; E-Net, elastic net; FA, fractional anisotropy;
FSL, Fmrib’S Software Library; FWE, family-wise error; ILF, inferior longitudinal fasciculus; LASSO, least absolute
shrinkage and selection operator; LOOCYV, leave one out cross validation; MAE, mean absolute error; MD, mean diffusivity;
RD, radial diffusivity; SLF, superior longitudinal fasciculus.
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INTRODUCTION

With the advent of diffusion tensor imaging (DTI), novel
opportunities emerged for in vivo characterization of the brain’s
white matter microstructure. To date, numerous studies have
been performed on the maturation and aging of the human
brain using such DTT metrics as fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD;
Salat et al., 2005; Madden et al., 2009; Dennis and Thompson,
2013; Kulikova et al., 2015). According to these studies, FA
increases and MD decreases with maturation (Qiu et al., 2008;
Giorgio et al., 2010; Lebel et al., 2012; Krogsrud et al., 2016), and
FA decreases and MD increases with aging in a majority of white
matter tracts (Sullivan and Pfefferbaum, 2006; Charlton et al.,
2008; Lebel et al., 2012; de Groot et al., 2016). In addition, FA
changes are driven by the changes of AD and RD. Specifically,
AD and RD decrease with maturation and increase with aging,
and it is the greater relative changes of RD as compared to AD on
both sides of the minimum that drive the FA changes (Giorgio
et al., 2010; Hsu et al., 2010; Lebel et al., 2012; Sala et al., 2012;
Kulikova et al., 2015).

Despite the former findings, the patterns and extent of the
microstructural changes of the human brain from early to
mid-adulthood remain largely unexplored. Though there have
been many studies on the changes throughout life (Hasan et al.,
2009; Westlye et al., 2010; Lebel et al., 2012; Sexton et al., 2014),
changes with maturation and aging (at late adulthood) often
played the predominant roles (e.g., driving the evolution curve)
in those studies. For instance, dramatic changes with maturation
and slow changes with aging of a measure would produce a
relatively “early peak” of the measure, while slow changes with
maturation and dramatic changes with aging of a measure would
produce a relatively “late peak” of it. In other words, the changes
of the human brain from early to mid-adulthood may largely be
overwhelmed by those with maturation and aging, as the former
may be relatively small as compared to the latter.

Investigating the microstructural changes of the human
brain from early to middle adulthood will not only add to
our knowledge about the changes throughout the lifespan, but
also provide preliminary ideas about possible age effects in
related studies. In fact, the effects of microstructural changes
from early to mid-adulthood, if there are any, have not been
considered carefully in related studies. For instance, in some
studies including adult subjects covering large age span (e.g., of
19-59 years in the study by Welcome and Joanisse (2014) and of
25-58 years in the study by Boltzmann et al. (2017), possible age
effects were not specially considered.

The aim of this study was to investigate the patterns
and extent of the microstrucutural changes of the human
brain from early to mid-adulthood. In addition to traditional
statistical analyses, we further performed multivariate pattern
analysis (MVPA) to investigate whether the microstructural
changes of the human brain from early to mid-adulthood
alone are sufficiently specific to decode individuals’ ages.
Two recent studies demonstrated that individuals’ brain ages
could be estimated at relatively high accuracy based on the
DTI metrics by using MVPA methods (Mwangi et al., 2013;

Erus et al.,, 2015). As child and adolescent subjects (whose brain
structures undergo great changes) were included in both studies,
relatively high estimating accuracies are expected. As compared
to the changes in children and adolescents, the microstructural
changes from early to mid-adulthood may be relatively small,
and it is still unknown whether the microstructural changes from
early to mid-adulthood alone are sufficiently specific to decode
individuals’ ages indeed.

In this study, elastic net (E-Net) was used for brain age
estimations. E-Net is a kind of MVPA method that aims at
selecting the model that achieves the best trade-off between
goodness of fit and model complexity by minimizing the residual
sum of squares of estimating errors plus the penalty term. By
imposing a sparsity requirement directly on the data space
(rather than on kernel space, as is the fact for support vector
machine and relevant vector machine), E-Net obtains predictive
models that are easy to interpret without the need of feature
selection beforehand. E-Net has been successfully applied to the
predictions of individuals’ brain ages (Khundrakpam et al., 2015;
Tian et al., 2016), behavior (Grosenick et al., 2013), and disorder
status (Wan et al.,, 2011; Chiang et al., 2015).

The study was performed on the DTI data of 111 adults aged
18-55 years selected from a publicly released dataset. A cut off
age of 55 years was chosen for the consideration that it was
neither too low to exclude too many subjects and decrease the
statistical power, nor too high to include old adults in Wolkorte
et al. (2014) and Kodiweera et al. (2016). To test whether there
were general changes in any of the four DTI metrics, we first
correlated age with the mean of each DTI metric across the
voxels within the FA skeleton mask obtained using standard
tract-based spatial statistics (TBSS). Age was then correlated with
the skeletonized maps of each DTT metric in a voxel-wise manner
to test for regional microstructural changes. To test whether the
microstructural changes from early to mid-adulthood alone are
specific enough to decode individuals’ ages, we finally estimated
individuals’ ages using elastic net based on each of the DTI
metrics.

MATERIALS AND METHODS

Dataset

The data used in the present study were selected from the
publicly released dataset “the Nathan Kline Institute/Rockland
Sample (NKI-RS)”! (Nooner et al., 2012). The data acquisition
was approved by the institutional review board of the Nathan
Kline Institute. The initial release of the NKI-RS dataset included
207 participants, each of whom underwent multimodal brain
scans and a battery of clinical assessments. One hundred and
eleven healthy adult subjects aged 18~55 years (mean age:
35.00 & 11.19 years, 71 males), whose DTI data were available,
were included in the present study.

The MRI data were acquired using a 3.0 T SIEMENS Trio
scanner. The DTI images were acquired using the following
parameters: TR/TE = 10,000/91 ms, FOV = 256 mm, spatial
resolution = 2.0 x 2.0 x 2.0 mm, slices = 58, 64 diffusion

Uhttp://fcon_1000.projects.nitrc.org/indi/pro/nkihtml
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encoding directions, b-value = 1000 s/mm? and 12 non-diffusion
volumes. Further details about the image acquisition protocol
could be found on the INDI website provided above. Other
images not used in the present study will not be described here.

Image Preprocessing and TBSS

FMRIB’s Diffusion Toolbox (FDT) in FMRIB’S Software Library
(FSL)? was used for image preprocessing. The images were first
skull stripped and then were corrected for eddy currents. A
diffusion tensor model was fit to each voxel to generate FA, MD,
AD and RD images. The standard TBSS procedure (Smith et al.,
2006) was applied in this study to obtain the skeletonized images
of the four DTT metrics. Specifically, all subjects’ FA images were
first nonlinearly aligned to the FA template in the MNI space’.
The aligned FA images were averaged to create a mean FA image,
which was then thinned to create a skeletonized mean FA image,
and a skeleton mask was finally created by thresholding the mean
FA skeleton with FA > 0.3 (Smith et al., 2006; Chiang et al., 2009;
Mwangi et al., 2013). Here, we used a threshold of FA > 0.3
mainly for consistency with the study by Mwangi et al. (2013),
which was also based on the dataset “NKI-RS”. In addition, false
positives may be reduced with the use of a higher FA threshold,
as voxels which are primarily gray matter or cerebral spinal
fluid in some subjects would be largely excluded (Smith et al.,
2006). Each subject’s (aligned) FA image was finally projected
onto the skeleton by filling the skeleton with FA values from the
nearest relevant tract center. The skeletons for the MD, RD and
AD images were created by first nonlinearly aligning to the FA
template in the MNI space and then projecting onto the mean
FA skeleton. All further analyses were based on the skeletonized
images of the DTT metrics.

DTI Metric-vs-Age Correlation

We first performed global-level statistical analyses to test whether
there were general changes in any metric. We obtained the mean
of each DTI metric (across the voxels within the FA skeleton
mask) of each subject using “fslmeants” command in FSL, and
then each mean DTI metric was correlated with age across
subjects. As the DTI metrics were reported to change nonlinearly
throughout life (Hasan et al., 2009; Westlye et al., 2010; Lebel
et al., 2012), we also modeled the mean of each DTI metric as
a quadratic function of age (A x (age — B)> + C) to check
whether age-related changes of the DTI metrics from early to
mid-adulthood can be well fitted using a nonlinear model.

To test for regional microstructural changes, age was then
correlated with each DTI metric of the voxels within the
FA skeleton mask in a voxel-wise manner. For this purpose,
5000 permutations were performed on the skeletonized images
of each DTI metric across subjects using “randomize” command
in FSL. The voxel-wise correlation maps were thresholded at
p < 0.05 (family-wise error (FWE) corrected) and cluster
size > 10 mm?®. Statistically significant clusters were filled
using the “TBSS_fill” command in FSL beforehand for display
convenience.

Zhttp://www.fmrib.ox.ac.uk/fsl/
3www.fmrib.ox.ac.uk/fsl/data/FMRIB58_FA

Brain Age Estimation

We then estimated individuals’ ages based on each DTI metric
to test whether the microstructural changes of the human brain
are specific enough to decode individuals’ ages using E-Net.
Specifically, for each DTI metric, we entered the metric of all
voxels within the FA skeleton mask into the following linear
model in a voxel-wise manner:

d
y= > Bx+hote (1)

j=1

where y is the age of the subject; d is the number of variables,
and here d was 97602; xjs (j = 0, 2, ..., d) are voxel-wise DTIT
metrics; B;s (j = 0, 2, ..., d) are the model parameters, and ¢
is the error term. Penalized least squares approach with E-Net
penalty (a weighted sum of the least absolute shrinkage and
selection operator (LASSO) penalty and ridge penalty) was used
to estimate the parameters of the model (Zou and Hastie, 2005).
The aim of the approach is to minimize the E-Net cost function:

2

N d d
S yi= > B —Bo| 2D (Bl +050 — ) (B)?)

i=1 ji=1 j=1
2)

where y; is the age of subject i; N is the number of subjects; x;; is
the jth variable (DTT metric of a voxel) of subject i; A and « are
regularization parameters. The LASSO penalty Z;l: 1 1B;] leads
to sparse models by setting some parameters (f;s) to zero, and the
ridge penalty Z}j: I (ﬁj)2 encourages the f;s for the correlated
variables (voxel-wise DTI metrics) to have approximately the
same value. The regularization parameters A and o set the
sparsity of the model and tune the ratio between the ridge and
LASSO penalties, respectively.

In this study, E-Net was performed using Glmnet (Friedman
et al., 2010)*. Leave one out cross validation (LOOCV) was used
to estimate the performance of the predictors. Within each of
the 111 LOOCYV loops, one sample was set as the test sample, all
the other 110 samples were set as the training samples, and the
brain age of the test sample was estimated using the predictive
model trained completely on the 110 training samples. With the
use of LOOCYV, the test sample was assumed to be independent of
the training samples. It should be noted that this assumption of
independence may sometimes not strictly hold, though LOOCV
has been widely accepted in the region (Dosenbach et al., 2010;
Mwangi et al., 2013; Tian et al., 2016). A more reliable way may
be training the model using one dataset and evaluating the model
using another dataset, if a second dataset were available.

The regularization parameters A and o were optimized for
each LOOCYV loop. Specifically, for each training-set (including
110 samples), we tried 10 « values (o € [0.5, 0.95] in steps of 0.05,
we set o > 0.5 to give more weight for the LASSO penalty) and
100 A values. Based on each A-« pair, “inner” cross validation was
then performed, and the A-« pair that maximize the correlation
between the estimated and chronological ages (based on the
110 training samples) were selected as the optimal regularization

“http://statweb.stanford.edu/~tibs/lasso.html
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parameters for the current training samples (Tian et al., 2016).
Brain age estimation was then performed on the corresponding
testing data using the optimal A-o pair.

Pearson’s correlation coefficient and mean absolute error
(MAE) between the estimated and chronological ages were
used to evaluate the performance of the estimations. Using
500 permutations, we estimated how likely we were to observe the
same brain age estimation performance by chance. Specifically,
the chronological ages of the subjects were randomly permuted
500 times (randomly assign the age of one subject to another),
and the entire estimation process was carried out with each set of
the permuted ages.

RESULTS

The results based on the global-level statistical analyses are shown
in Figure 1. It can be seen that age was significantly negatively
correlated with mean FA (R = —0.44, P < 0.0001) and AD
(R=—0.38, P < 0.0001), and positively correlated with mean RD
(R =0.30, P = 0.0016). These results indicate an overall decrease
of FA and AD and increase of RD from early to mid-adulthood.

No statistically significant correlation was found between age and
mean MD (R =0.077, P = 0.42).

When we modeled the mean of each DTI metric as a quadratic
function of age (A x (age — B)? + C), the fitting parameters
indicate inverse U-shaped age-related FA changes and
U-shaped age-related MD, AD and RD changes (Supplementary
Figure S1). However, FA was estimated to peak at —18.92 years
(Supplementary Figure S1A), which was unreasonable with no
doubt. RD was estimated to reach its minimum at 18.87 years
(Supplementary Figure S1D), and this bottom was also much
earlier than those reported in literatures (Lebel et al., 2010, 2012).

When correlating age with FA in a voxel-wise manner,
statistically significant negative correlations (P < 0.05, FWE
corrected, cluster size >10 mm?>) were observed in such fibers
as the bilateral corticospinal tract (CST), the genu of the
corpus callosum (CCg), the fornix, the left superior longitudinal
fasciculus (SLF) and inferior longitudinal fasciculus (ILF),
and the right splenium of the corpus callosum (CCs), and
no statistically significant positive age-vs-FA correlation was
observed (Figure 2, Table 1). Nearly all of the negative age-
vs-FA correlations were associated with negative age-vs-AD
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and positive age-vs-RD correlations (Figure 3), and the only
exception was the correlation in the fornix, which was associated
with positive correlations with both RD and AD (Figure 3K).
Statistically significant age-related correlations with MD, AD
and RD were found in the corpus callosum (CC) and the CST
(Supplementary Figures S2, S3 and S4, Table 2).

Brain ages could be estimated at relatively high accuracy based
on each DTI metric. Specifically, no better brain age estimation
was obtained in any of the 500 permutations based on FA,
AD and RD, and three better estimations were observed among
500 permutations based on MD (Figure 4). The correlations
between the estimated and chronological ages based on FA,
MD, AD and RD were 0.62, 0.44, 0.63 and 0.68, respectively
(MAE =7.28,8.77, 7.31 and 6.66 years; Figure 4).

DISCUSSION

In contrast to maturation and aging of the human brain,
structural and functional changes of the human brain from early
to mid-adulthood have rarely been specially studied. In this
study, we investigated microstructural changes of the human
brain from early to mid-adulthood. Based on the DTI data of
111 adults aged 18-55 years, we observed statistically significant
negative age-vs-FA correlations, as well as statistically significant
age-related correlations with other DTI metrics, from early to
mid-adulthood. Further brain age estimations showed that the
changes were specific enough to decode individuals’ ages.

FA Decreases

In this study, we observed both global and regional negative age-
vs-FA correlations (Figures 1A, 2, Table 1) and suggest that
the correlations indicate microstructural aging of the human
brain from early to mid-adulthood. FA decrease is an important
characteristic of aging. Decreases in FA in the elderly have been
suggested to signify worsening white matter integrity, and quite
a few studies linked decreases in FA in the elderly to mild
demyelination and loss of myelinated axons in them (Benedetti
et al., 2006; Ardekani et al., 2007; Grieve et al., 2007; Charlton
et al., 2008; Madden et al., 2009; Lebel et al., 2010; Ly et al,
2014). Accordingly, the statistically significant negative age-vs-
FA correlations observed in the current study (Figures 1A, 2,
Table 1) may indicate an overall microstructural aging of the
human brain from early to mid-adulthood.

Regional negative age-vs-FA correlations were observed in
such fibers as the CCg, the CST, the fornix, the SLF and the
ILF (Figure 2). Each of the fibers has been reported to show
statistically significant FA decreases in former aging studies
(Abe et al.,, 2002; Zahr et al., 2009; Teipel et al., 2010; Lovdén
et al., 2014). Specifically, the CCg, which connects the bilateral
prefrontal lobes, have been reported to be rather susceptible to
aging (Pfefferbaum et al., 2000; Abe et al., 2002; Bhagat and
Beaulieu, 2004; Ota et al., 2006; Hsu et al., 2010; Zhang et al,,
2010). The early aging of CCg has been related to the fact that up
to 20%-30% of its axons are unmyelinated (Lamantia and Rakic,
1990; Pagani et al., 2008). FA declines in the CCg in the elderly
have been reported to be associated with lower perceptual speed

and longer episodic retrieval reaction time (Schulte et al., 2005;
Bucur et al., 2008), as well as poor performance in reasoning in
them (Monge et al.,, 2016). CST is a major neural tract in the
human brain for motor function. Numerous studies on aging
reported FA decreases in the CST (Terao et al., 1994; Lovdén
et al.,, 2014; Vik et al,, 2015), and these decreases have been
reported to be accompanied by reduction in the number of
myelinated fibers and thinning of the tissue it originates (Terao
et al., 1994). FA decreases in the CST have been reported to
contribute much to decreases of perceptual speed in the elderly
(Lovdén et al., 2014; Johnson et al., 2015; Vik et al., 2015). The
SLF connects the temporo-parietal junction area and parietal
lobe with the frontal lobe (Makris et al., 2005), and its FA
decreases in the elderly have been linked with poor performance
in cognitive tasks in them (Perry et al., 2009; Stamatakis et al,,
2011; Lockhart et al., 2012; Sasson et al., 2012). Quite a few studies
on aging reported age-related FA decreases in the fornix (Pagani
et al., 2008; Stadlbauer et al., 2008; Lee et al., 2009; Zahr et al,,
2009; Sullivan et al., 2010), a part of the limbic system important
for episodic memory recall (Tsivilis et al., 2008), and declines
of memory performance in the elderly have been reported to be
associated with FA decreases in the fornix (Li et al., 2016; Oishi
and Lyketsos, 2016). Closely relevant to the current results, the
fornix, the CCg, the CCs and the ILF have been reported to be
the four fibers that exhibit the earliest FA decreases in the lifespan
study by Lebel et al. (2012). According to these former findings,
we suggest that the statistically significant negative age-vs-FA
correlations in the CCg, the CST, the fornix, the SLF and the ILF
observed in the current study may indicate that the fibers are the
earliest to change with aging.

Changes in Other DTI Metrics

In addition to FA decreases, aging of the human brain
has also been associated with MD increases (Benedetti
et al, 2006; Lebel et al, 2012; Ly et al, 2014). Age-vs-
MD correlations in the current study, however, were not
statistically significant at global level (Figure 1B) and
relatively weaker than those with FA at regional level
(Supplementary Figure S2, Table 2). We suggest that age-related
MD increases might lag behind age-related FA decreases.
This suggestion is supported by reports that MD minima
significantly lags behind FA peaks, with minimum MD values
occurring 6-18 vyears after FA peaks (Lebel et al, 2010,
2012).

The negative age-vs-FA correlations in the current study
were associated primarily with negative age-vs-AD and positive
age-vs-RD correlations (Figures 1A,C,D, 3). This finding is
consistent with the reports of a study by Kodiweera et al.
(2016), in which significant RD increases and AD decreases
were observed in middle-aged adult brains. Both RD and AD
have been reported to decrease with development, reach a
minimum and then increase in later life (Lebel et al., 2010,
2012). RD increases and AD decreases in the elderly have often
been linked to age-related demyelination (Song et al., 2002,
2005; Bennett et al., 2010) and axonal shrinkage (Song et al.,
2003; Bennett et al., 2010), respectively. We speculate that the
present finding of statistically significant negative age-vs-AD and
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the slice. No statistically significant positive age-vs-FA correlation was observed.

5 S P=0.00

FIGURE 2 | Statistically significant negative age-vs-fractional anisotropy (FA) correlations across subjects. The threshold was p < 0.05 (FWE corrected) and cluster
size >10 mm®. The correlation map was superimposed on the FA template in the MNI space (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA). Green color indicates
the FA skeleton mask, and blue-light-blue color indicates statistically significant negative correlations. Statistically significant negative age-vs-FA correlations were
observed in the bilateral corticospinal tract (CST) (A,B), the genu of the corpus callosum (CCg) (C,D,J,L), the fornix (K), the left superior longitudinal fasciculus (SLF)
(E,F,H), the left inferior longitudinal fasciculus (ILF) (1), and the right splenium of the CC (G), as were highlighted by circles when there were more than one cluster on

positive age-vs-RD correlations may reflect an RD-preceding-
AD sequence of change of the two metrics, with AD having not
reached its respective minimum, while RD has already passed its
minimum at the time. This speculation is supported by the report
that RD reaches its minimum and begins to increase before AD
(Lebel et al., 2010). If our suggestion of “RD-preceding-AD”

hypothesis were valid, we suggest that our finding of the fornix
being the only region exhibiting AD increase (Figure 3K) might
be due to its earlier change with aging relative to other fibers:
AD increases in the fornix begin at an earlier time, when other
fibers still exhibit AD decreases. This suggestion is consistent
with former studies that reported the earliest maturation and
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TABLE 1 | Statistically significant age-vs-fractional anisotropy (FA) correlations.

Region Cluster (mm?) Coordinate (peak) R (peak) Region Cluster (mm?) Coordinate (peak) R (peak)
L.CST 149 (=19, —24, 39) —0.56 R.CCs 19 (20, —36, 32) -0.52
R. CST 82 (19, —10, 40) —0.55 L. SLF 18 (—18, 7, 40) —0.51
L. CCg 76 (=19, 34, 13) —0.54 L. ILF 15 (=35, =59, 8) —0.53
R.CCg 35 (19, 35, 19) —0.49 L.CCg 15 (—16, 44, —9) —0.50
L. SLF 28 (—26, 5, 31) —0.51 fornix 13 (1,-8,17) —0.50
L. SLF 22 (—38, 5,19) —0.56 R. CCg 13 (18,37, 8) —0.48

L, left; R, right; CST, corticospinal tract; CCg, genu of corpus callosum; SLF, superior longitudinal fasciculus; ILF, inferior longitudinal fasciculus; CCs, splenium of corpus

callosum. The threshold was P < 0.05 (FWE corrected), and cluster size =10 mm?®.

I significant negative age-vs-FA correlations

positive age-vs-RD and age-vs-AD correlations

negative age-vs-RD and age-vs-AD correlations

FIGURE 3 | Maps of age-vs-radial diffusivity (RD) and age-vs-axial diffusivity (AD) correlations across subjects in clusters exhibiting statistically significant age-vs-FA
correlations. The clusters include: the bilateral CST (A,B), the genu of the CC (C,D,J,L), the fornix (K), the left SLF (E,F,H), the left ILF (I), and the right splenium of
the CC (G). Age-vs-RD and age-vs-AD correlations were shown on the left and right sides, respectively, of each subfigure. The dark blue color indicates statistically
significant negative age-vs-FA correlations; the yellow color indicates positive age-vs-RD and -AD correlations; the light blue color indicates negative age-vs-RD and
-AD correlations. To illustrate the pattern (positive or negative), rather than the strength, of age-vs-RD and -AD correlations, the two correlation maps were not
thresholded. It can be observed that nearly all statistically significant negative age-vs-FA correlations were due to positive age-vs-RD and negative age-vs-AD
correlations, and the only exception was the age-vs-FA correlation in the fornix (K), where the age-vs-AD correlation was also positive.

degeneration of the fornix (Lebel et al., 2012). Further studies
based on longitudinal data, rather than cross-sectional data, as
was used in the current study, are needed to test the hypothesis.

Brain Age Estimation

Using multivariate pattern analyses, several studies have been
performed on brain age estimations based on MRI and
reported relatively high accuracies (Dosenbach et al, 2010;

Brown et al, 2012; Mwangi et al, 2013; Erus et al.,, 2015;
Tian et al., 2016). Of particular interest, the study by Mwangi
et al. (2013) was based on DTI data of subjects aged
4-85 years, and the study by Erus et al. (2015) was based
on DTI data of subjects aged 8-22 years. As both studies
included child and adolescent subjects, whose brain structures
undergo great changes, successful brain age estimations are
expected.
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TABLE 2 | Statistically significant age-vs-mean diffusivity (MD), -axial diffusivity (AD) and -radial diffusivity (RD) correlations.

Region Cluster (mm?3) Coordinate (peak) R (peak) Region Cluster (mm?) Coordinate (peak) R (peak)
Correlations with MD

L. CST 15 (-6, —21, —14) —0.62 R. CST 10 (18, =9, 40) 0.52
L.CCg ihl (-7, 23, -5) 0.62

Correlations with AD

L. CST 16 (=12, =25, —12) -0.59 L.CST 11 (—24, —19,0) —0.58
L.CST 14 (—7, =22, —14) —0.64

Correlations with RD

R. CST 39 (19, =11, 39) 0.56 L. CCb 19 (-=15,9, 32) 0.49
L.CCg 27 (—18,32,17) 0.52 R.CCg 18 (7,24, —5) 0.64
R.CST 23 21, —16, 43) 0.50 L.CCg 14 (~7,28, —5) 0.63
R.CCg 21 (19, 37, 14) 0.50 R. CST 10 (19, —22, 37) 0.48

L, left; R, right; CST, corticospinal tract; CCg, genu of the corpus callosum; CCh, bodly of the corpus callosum.

size >10 mm®.

The threshold was P < 0.05 (FWE corrected), and cluster
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FIGURE 4 | Brain age estimations based on FA (A), mean diffusivity (MD) (B), AD (C) and RD (D). The plot of estimated vs. chronological ages based on each DTI
metric was shown on the upper panels, and predictions based on 500 permutations were shown on the lower panels of each subfigure. The predictions were
evaluated by the Pearson’s correlation coefficients between the estimated and permuted chronological ages. The red lines on the lower panels indicate the
estimation based on non-permuted ages (corresponding to the R-values on the upper panels). Each bar on the lower panels indicates the number of correlations
(between the estimated and permuted chronological ages) within the given range, which was set relative to the correlation based on non-permuted ages (indicated
by ared line) at a step of 0.1. It can be seen that no better prediction was obtained in any of the 500 permutations based on FA, AD and RD, and three better
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The current study included only young and middle-aged
adults, whose brain structures have traditionally been deemed
to be relatively stable. Our results indicate that, in contrast
to the opinion that the microstructural changes from early to
mid-adulthood are rather subtle as to be negligible, these changes
were specific enough to decode individuals™ ages (Figure 4). In
combination with the findings of statistically significant age-
vs-DTI-metrics correlations, the present results highlight the
necessity of considering age effects in related studies. Specifically,
in studies including adult subjects covering large age span
(Welcome and Joanisse, 2014; Boltzmann et al., 2017), possible
age effects should be considered carefully, otherwise spurious

results possibly reflecting age-effects, rather than the effect under
investigation, may be obtained.

The brain age estimation based on FA was not as good as
that based on RD (Figure 4). Specifically, the correlation between
the estimated and chronological ages based on FA (0.62) was
weaker than that based on RD (0.68), and the MAE based on FA
(7.28 years) was larger than that based on RD (6.66 years). This is
a bit unexpected, as the age-vs-FA correlation was the strongest
at the global-level (Figure 1), and the number of statistically
significant voxels was the largest in voxel-wise statistical analyses
(Tables 1, 2). We suggest that strong FA-vs-age correlations do
not necessarily mean better brain age estimations. That is, if there

Frontiers in Human Neuroscience | www.frontiersin.org

August 2017 | Volume 11 | Article 393


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Tian and Ma

Microstructural Changes in Mid-Adulthood

existed strong associations among the FA changes of different
voxels, for an extreme example, the FA changes of all statistically
significant voxels were fully correlated with each other, then the
contributions of all statistically significant voxels to brain age
estimations would be just the same as that of a single voxel. This
suggestion is in line with the finding that the changes of FA in
a tract often go together with changes in other tracts, while the
changes of MD are weakly associated among each other (Lovdén
etal.,, 2014). In addition, the present results were consistent with
those in the study by Mwangi et al. (2013), in which brain age
estimation based on FA was also poorer than that based on RD.
Further studies are needed to evaluate the hypothesis.

Methodological Issues

Quite a few studies reported nonlinear changes of the DTI
metrics in most white matter tracts of the human brain
throughout life (Hasan et al., 2009; Westlye et al., 2010; Lebel
et al,, 2012; Sexton et al., 2014). In those studies, nonlinear
models work well, as substantial microstructural changes of
the human brain occur with maturation and aging, and the
changes are obviously nonlinear throughout life. In those studies,
it was often the changes with maturation and aging that play
predominant roles (e.g., driving the evolution curve; Lebel et al.,
2012; Zhao et al., 2015), though the maximum/minimum of the
DTI metrics were often reported to occur during 25-45 years old
(Lebel et al., 2010, 2012).

In the current study, we chose to use linear models because
of the following two facts: (1) we observed no obvious nonlinear
relationship between age and any DTT metric by visual inspection
(Figure 1); and (2) when we modeled the mean of each DTI
metric as a quadratic function of age (A x (age — B)? + Q),
absurd results were obtained (Supplementary Figure S1): based
on the current dataset, the maximum of mean FA was estimated
to occur at —18.92 years (Supplementary Figure S1A), and the
minimum of mean RD was estimated to occur at 18.87 years
(Supplementary Figure S1D), which was much earlier than those
reported in literatures (Lebel et al., 2010, 2012). These results
based on nonlinear models indicate that wrong conclusions may
be drawn if nonlinear models were used inappropriately. With
the use of linear models, the nonlinear changes of the DTT metrics
with age, if there are, could not be detected. Therefore, it should
be strengthened that the present results reflect only “overall
tendencies” of the changes of the DTT metrics (e.g., FA decreases
with age) from early to mid-adulthood.

There are several other methodical issues that should be
addressed. First, the current study was based on cross-sectional
data, rather than longitudinal data. As cross-sectional data can
provide only one measurement per subject, possible bias may
occur. In fact, we could not rule out the possibility that the
current results may, to some degree, be influenced by such
factors as cohort effects, which are inevitable in studies based on
cross-sectional data. Future longitudinal studies may be better
able to depict the trajectories of the microstructural changes
of the human brain from early to mid-adulthood. Second, the
estimation errors of the DTI metrics in crossing fibers are
not negligible. Therefore, the statistically significant regional
age-related correlations observed in the current study, especially

those in crossing fibers, should be further evaluated, for instance,
by incorporating measures of intervoxel coherence (Bennett
etal., 2010). Third, with the use of TBSS, later statistical analyses
and brain age estimations were all restricted to major white
matter tracts. TBSS may benefit reducing false positives (Smith
et al., 2006; Mwangi et al., 2013), but some true positives may
be excluded, as it is possible that age-related correlations exist
in regions away from major white matter tracts. Finally, gender
effects were not specially considered in the current study, as there
was no significant difference in age between the two genders
(t = 1.08, p = 0.28). Indeed, when we included gender as a
covariate into our global-level statistical analyses, little change
was observed on the age-vs-FA, -MD, -AD and -RD correlations:
they changed from —0.44, 0.077, —0.38 and 0.30 to —0.43, 0.078,
—0.36 and 0.29, respectively.

CONCLUSIONS

We observed that the negative age-vs-FA correlations were
associated primarily with negative age-vs-AD and positive age-
vs-RD correlations. In addition, we observed earlier changes
of such fibers as the CCg, the CST, the fornix and the SLF
with aging relative to other fibers. The brain age estimation
results showed that even the microstructural changes from
early to mid-adulthood alone are sufficiently specific to decode
individuals’ ages. Overall, this study provided convincing
evidence that considerable microstructural changes of the human
brain occur from early to mid-adulthood, and it is necessary to
consider age effects in related studies.
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