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The idea that structural white matter connectivity constrains functional connectivity

(interactions among brain regions) has widely been explored in studies of brain networks;

studies have mostly focused on the “average” strength of functional connectivity.

The question of how structural connectivity constrains the “variability” of functional

connectivity remains unresolved. In this study, we investigated the variability of resting

state functional connectivity that was acquired every 3 h within a single day from 12

participants (eight time sessions within a 24-h period, 165 scans per session). Three

different types of functional connectivity (functional connectivity based on Pearson

correlation, direct functional connectivity based on partial correlation, and the pseudo

functional connectivity produced by their difference) were estimated from resting state

functional magnetic resonance imaging data along with structural connectivity defined

using fiber tractography of diffusion tensor imaging. Those types of functional connectivity

were evaluated with regard to properties of structural connectivity (fiber streamline

counts and lengths) and types of structural connectivity such as intra-/inter-hemispheric

edges and topological edge types in the rich club organization. We observed that the

structural connectivity constrained the variability of direct functional connectivity more

than pseudo-functional connectivity and that the constraints depended strongly on

structural connectivity types. The structural constraints were greater for intra-hemispheric

and heterologous inter-hemispheric edges than homologous inter-hemispheric edges,

and feeder and local edges than rich club edges in the rich club architecture. While each

edge was highly variable, the multivariate patterns of edge involvement, especially the

direct functional connectivity patterns among the rich club brain regions, showed low

variability over time. This study suggests that structural connectivity not only constrains

the strength of functional connectivity, but also the within-a-day variability of functional

connectivity and connectivity patterns, particularly the direct functional connectivity

among brain regions.

Keywords: functional magnetic resonance imaging, resting state functional connectivity, partial correlationmatrix,
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INTRODUCTION

One of the important questions about the brain is the emergence
of dynamic functionalities from a stable structure. A growing
number of studies have recently been conducted to explore
this structure-function relationship in terms of the large-scale
brain network, composed of nodes (interaction units) and their
interactions, called edges (Honey et al., 2009; van den Heuvel
et al., 2009; Hermundstad et al., 2013; Goni et al., 2014). Most
of these studies are facilitated by two non-invasive neuroimaging
techniques, resting state functional magnetic resonance imaging
(rs-fMRI) for functional networks (Biswal et al., 1995; Greicius
et al., 2003; Raichle and Snyder, 2007) and diffusion tensor
imaging (DTI) (Basser et al., 1994) for structural networks (see
Park and Friston, 2013 for a review).

In studies with those imaging techniques, functional networks
are strongly coupled to or constrained by structural networks.
For example, Honey et al. (2009) and Hermundstad et al. (2013)
have shown strong positive correlations between structural
connectivity (fiber streamline counts of DTI tractography) and
functional connectivity (cross-correlations among regional fMRI
signals). Most of the studies that explored structural constraints
on the functional brain networks (Honey et al., 2009; van den
Heuvel et al., 2009; Hermundstad et al., 2013; Goni et al.,
2014) were based on the assumption of stable functional over
the time. However, recent studies have shown the dynamic
nature of functional connectivity, even during a single session
of rs-fMRI acquisition (Chang and Glover, 2010; Cribben et al.,
2012; Handwerker et al., 2012; Hutchison et al., 2013; Kucyi et al.,
2013; Allen et al., 2014; Calhoun et al., 2014; Monti et al., 2014;
Zalesky et al., 2014), which raises new questions. Do large fiber
bundles interconnecting two brain regions mediate temporal
variability in functional connectivity, or reduce the variability
of functional connectivity between the two regions? Do the
structural constraints on functional connectivity differ across
edge types? These questions of how the structural connectivity
is associated with the “variability” or dynamicity of functional
connectivity remain unresolved.

Several studies have explored structural constraints on the
variability of functional connectivity (Liao et al., 2015; Liegeois
et al., 2016; Zhang et al., 2016). Liao et al. (2015) reported
that homologous inter-hemispheric functional connections
have lower temporal variability than heterologous inter-
hemispheric connections. Intra-modular edges showed lower
variability of functional connectivity than inter-modular edges
(Zhang et al., 2016). Liegeois et al. (2016) showed increased
similarity of the structural network to less efficient (in message
passing in the graph theory) and to more highly modular
functional network states during periodic functional network
fluctuation. These studies have explored short-time range
(micro-state) variability of conventional (Pearson-correlation
based) functional connectivity over the structural connectivity
within a single session of 10min.

In the current study, using rs-fMRI data acquired every 3 h
within a day (Park et al., 2012), we investigated the structural
constraints on the variability of temporal meso-scale functional
connectivity in the three following aspects.

First, we explored the variability of three different types
of functional connectivity measures. Currently, Pearson
cross-correlation coefficients across an fMRI time series are
conventionally used as a gauge of the functional connectivity
between two brain regions. However, this measure cannot
factor out any latent effects of a third and/or other nodes that
simultaneously modulate the paired nodal activities (Gerstein
and Perkel, 1969) (Figure 1A). This makes the interpretation
of the functional connectivity, whether they are from the direct
connections per se or from an indirect polysynaptic induction
or modulatory effects, unclear. In order to evaluate direct
interactions (or connectivity), researchers have utilized a partial
correlation analyses of fMRI time series (Marrelec et al., 2006;
Smith et al., 2011). As explained in Figure 1A, the partial
correlation-based functional connectivity (pFC) may not exist at
edges where Pearson correlation-based functional connectivity
(FC) exists. We call the differences between FC and pFC as
pseudo-functional edges (pseudo-FC), which are edges where
FC exists but pFC does not. These three types of functional
connectivity (FC, pFC, and pseudo-FC) reflect different aspects
of functional interactions and may reveal distinctive variability
over the structural white matter connectivity (SC).

Second, we associated the variability of functional connectivity
and structural connectivity properties according to structural
edge types. Particularly, we subdivided structural edges into
the intra-hemispheric edges, which connect regions within
each hemisphere, homologous inter-hemispheric edges,
which connect inter-hemispheric homologous regions, and
heterologous inter-hemispheric edges. This subdivision has
previously been used to explore structural constraints on within-
session variability of functional connectivity (Liao et al., 2015;
Shen et al., 2015b). Studies have also implicated topological
edge (type)-specific variability of functional connectivity in
the resting brain. For instance, Zalesky et al. (2014) reported
that temporal variations in functional network properties occur
mostly in inter-modular edges. Thus, we also explored the
contribution of the topological properties of structural edges
to the variation in functional connectivity. More specifically,
we differentiated structural edges according to a rich club
architecture (van den Heuvel and Sporns, 2011), which has been
used to explain brain function in the respect of global integration
of segregated brain regions (van den Heuvel and Sporns, 2013;
Collin et al., 2014; Jang et al., 2017; Liang et al., 2017). Rich club
organization includes highly interconnected rich club nodes
as hubs, feeders (edges) connecting with rich clubs, and locals
(edges) connecting non-rich club nodes and feeder nodes (van
den Heuvel and Sporns, 2011). In this architecture, rich club
hubs play not only centers of local segregation but centers for
global integration. In this respect, we considered that the rich
club architecture may well be association with variable functional
connectivity compared to community structures defined by
modularity optimization (Newman, 2006), which primarily
focus on functional segregation.

Third, we evaluated the variability of multivariate edge
involvement patterns, which are a set of functional interactions,
in subnetworks. A single functional edge in a network does not
make a brain function by itself, but it needs to participate in
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FIGURE 1 | The procedures employed for the functional connectivity variability analysis.(A) The three types of functional connectivity: FC, pFC, and pseudo-FC.

Functional connectivity was defined by Pearson correlation coefficient (FC) and partial correlation (pFC). Pseudo-functional connectivity (pseudo-FC) was defined as

the difference between FC and pFC, i.e., the edges where FC exists but pFC does not. Pseudo-FC can be derived with polysynaptic connections or common

feed-forward projections without direct interactions between two regions. (B) The analyses used in this study were as follows: (1) the acquisition of resting state fMRI

data at eight different time points during a day and DTI data, (2) calculation of three types of functional connectivity (i.e., FC, pFC, and pseudo-FC) and structural

connectivity (i.e., log-transformed fiber counts), (3) correlation analyses between intra-class correlations (ICCs, stability) of the functional connectivity and structural

connectivity according to edge properties (fiber counts and lengths), edge types (intra-hemispheric and inter-hemispheric homologous and heterologous edges), and

topological edge types under rich club architecture, and (4) evaluations of the multivariate edge involvement pattern similarity under the rich club architecture. The

multivariate pattern similarity was evaluated by calculating the average similarities of the connectivity matrices within subnetworks of the rich club nodes across the

different time points within a day. Note that variability was evaluated with similarity measures (1–similarity).

a subnetwork, which is a multitude of edges that temporarily
congregate together in a certain context (McIntosh, 2000;
Shanahan, 2012). This hypothesis is supported by the discovery
of a pool of network subcomponents that are embedded in
the resting brain (Park et al., 2014). Accordingly, we explored
the within-a-day variations of functional interaction patterns
in different types of subnetworks, including subnetworks of
hubs (i.e., rich clubs), feeders, and locals in the rich club
organization.

MATERIALS AND METHODS

Data and Image Processing
In this study, we reanalyzed the data set reported in Park
et al. (2012). Briefly, data from 12 healthy, right-handed
participants (9 males and 3 females, mean age 25.42 ± 2.84

years) were used in this evaluation. Each subject was scanned
using resting-state fMRI protocol for 5.5 min at eight different
times of the day: 19:00 (1st day), 21:00, 1:00 (2nd day), 7:00,
10:00, 13:00, 16:00, and 19:00. All patients provided written
informed consent before procedures and this study received
Institutional Review Board of Yonsei University Severance
Hospital.

Resting-state fMRI data were acquired axially using T2*
weighted single shot echo planar imaging (EPI) sequences a 3.0
Tesla MRI scanner (Siemens Tim Trio, Erlangen, Germany):
voxel size, 3.0 × 3.0 × 3.3mm3; slice number, 32 (interleaved);
matrix, 64 × 64; slice thickness, 3.3mm; repetition time (TR),
2,000ms; echo time (TE), 30ms; and field of view, 192mm. Each
330-s scan produced 165 fMRI images. During each resting-state
fMRI scanning session, subjects were instructed to keep their
eyes closed, without falling asleep or thinking about something
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FIGURE 2 | Mean functional connectivity strength and its stability according to edge types. Spatial patterns of mean functional connectivity (A) and of functional

connectivity stability (i.e., ICC) (B). Mean and ICC of FC and pFC according to the inter- and intra-hemispheric edge types (C–F) and according to topological edge

types in rich-club organization (G–J). FC: Pearson correlation-based functional connectivity, pFC: partial correlation-based functional connectivity.

specific. After the scanning, subjects were asked to report their
overall physical condition including sleepiness.

All participants stayed freely within the institute with a routine
light exposure during the scanning day with an instruction of
abstaining from highly demanding physical or mental works,
alcohols, or nicotine. Each participant was emphasized not to
sleep during each scan and no participants slept according to self-
reports after scanning. Since this study is aimed to investigate
within-a-day variability of routine functional networks rather
than the circadian rhythm, we did not tightly control factors
relating to circadian oscillations or time-of-day effects.

A high-resolution structural data set was also taken from
each subject using a magnetization-prepared rapid acquisition
gradient echo (MP-RAGE) three-dimensional T1-weighted

sequence (voxel size, 0.9 × 0.9 × 1.0mm3; TR, 2,300ms;
TE, 3.08ms). Diffusion tensor images were obtained using
single-shot echo-planar acquisition from 45 non-collinear, non-
coplanar diffusion encoded gradient directions with the following
parameters: 128× 128 acquisition matrix with 70 slices, 220-mm
field of view, 1.72 × 1.72 × 2mm3 voxels, TE 60ms, TR 7.384 s,
b-factor of 600 s/mm2, without cardiac gating. Foam pads were
used to reduce head motion during all MRI data acquisition.

fMRI data preprocessing was conducted using statistical
parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/,
Wellcome Trust Centre for Neuroimaging, London, UK) (Friston
et al., 1994). After discarding the first 5 scans due to some stability
issues, all EPI data were preprocessed by correcting for the delay
in the acquisition time between different slices, and correcting
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FIGURE 3 | Relationships between the stability of functional connectivity and structural connectivity according to edge types. The relationships between functional

connectivity strength and structural connectivity (SC, defined by log-transformed fiber counts) for whole brain edges (A) and for intra-hemispheric edges and for

inter-hemispheric homologous/heterologous edges (B). The relationships between intra-class correlations (ICCs, stability) of functional connectivity and

log-transformed fiber counts in the different edge types (C,D). FC: Pearson correlation-based functional connectivity, pFC: partial correlation-based functional

connectivity. N.S. represents “no significant difference.”

for head motion by realignment of all consecutive volumes to
the first image of the session. The realigned images were co-
registered to T1-weighted images, which were used to spatially
normalize functional data into a template space using non-linear
transformation. We did not conduct spatial smoothing on the
fMRI data to avoid inflation of local connectivity and clustering.

Functional Network Construction
Figure 1B summarizes all the evaluation processes conducted
in this study. We extracted fMRI time series from the 90
regions of the AAL map. FMRI time courses were processed
through (1) regressing out effects of six rigid motions and their
derivatives, and three principal components the white matter and
the cerebrospinal fluid mask segmented using SPM12; (2) spike
detection and despiking based on four times of the median
absolute deviation; and (3) band-pass filtering (0.009–0.08Hz)
(Weissenbacher et al., 2009; Power et al., 2012; Taylor et al., 2014;
Thomas et al., 2014).

All procedures were performed using in-house multimodal
brain network analysis software, MNET (multimodal brain
network analysis toolbox; Yonsei University, http://neuroimage.
yonsei.ac.kr/mnet). We defined individual functional networks

using two different methods; (1) Pearson correlation
matrix (i.e., FC) and (2) regularized estimation of partial
correlation matrix (i.e., pFC) among 90 regional mean fMRI
time-series.

A graphical LASSO (least absolute shrinkage and selection
operator) method was used to estimate pFC (Huang et al.,
2010). Graphical LASSO aims to estimate a sparse matrix 2 (i.e.,
pFC matrix), maximizing the penalized Gaussian log-likelihood
function as below:

L(2)− λ||2||1=log||2|| − tr(2S)− λ||2||1

where ||·||, tr(·), and ||·||1 each denotes the determinant, trace,
and L1 norm operator of the matrix, S is the sample covariance
matrix, and λ is a regularization parameter controlling the level
of sparsity for estimate of T. To determine optimal regularization
parameter, λ, we applied stability approach to regularization
selection (StARS) (Liu et al., 2010). For each session, StARS
compared stabilities for λ candidates from 0.01 to 0.5 by
increasing 0.01. FC and pFC were Fisher’s r-to-z transformed
before variability analyses.
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FIGURE 4 | Stability of pseudo-FC. (A) The spatial distribution of pseudo-FC. The relationships between the mean functional connectivity of FC and log-transformed

fiber counts (left) and between the stability (ICC) of FC and log-transformed fiber counts (right) for pseudo edges (B) and direct edges (C). (D) Pattern similarity of FC

within a subnetwork of pseudo functional edges and within a subnetwork of direct functional edges. The dots in (B,C) are colored according to the fiber lengths where

we set greater than 100 to 100 mm for effective color-coding since such connections were very rare in our data.

As explained in the Introduction, we defined “pseudo
functional edges” as a set of edges where FC exists but pFC does
not and “direct functional edges” as edges where both FC and
pFC exist. The threshold of the Pearson correlation coefficients
for FC was set to P < 0.05 (Bonferroni corrected) for each
subject in each session. PFC does not require any threshold since
graphical LASSO drives the weak connectivity to zero during
the estimation process. Pseudo-FC indicates FC over the pseudo
functional edges.

Structural Network Construction
We constructed structural and functional networks based on
nodes defined by the 90 cerebral regions of the automated
anatomical labeling (AAL) map (Tzourio-Mazoyer et al., 2002).
Despite its scale effect on network properties (Zalesky et al., 2010)
and regional inhomogeneity issues in functional networks (Park
et al., 2013; Gordon et al., 2016), use of AAL map would make
this study comparable with many previous studies.

To construct a structural network, we followed the approach
that combined structural parcellation and whole brain white
matter tractography (Park et al., 2004). We conducted automated
fiber tracking of the diffusion tensor images using DoDTI
(Yonsei University, http://neuroimage.yonsei.ac.kr/dodti), with
the fourth order Runge-Kutta method and constructed whole
white matter fiber bundles at∼300,000 white matter seed points.
The stopping criteria for fiber tracking included a low fractional

anisotropy (<0.2) and a rapid change of direction (>60 degree
per 1mm).

After registering AALmap and fiber tractography using linear
affine transformation, fiber bundles crossing the AAL labels were
extracted. Structural connectivity (SC) was defined as a fiber
count between two brain regions on the AAL atlas, similarly to
previous studies (Honey et al., 2009; van den Heuvel and Sporns,
2011; Hermundstad et al., 2013). A fiber length between a pair
of two regions was defined by an average length of all fibers that
interconnect the two regions.

After empirical evaluation of the distribution of fiber
counts, we log-transformed fiber counts to improve the
normality of the fiber count distribution, which is required
for correlation analysis, more specifically, correlation
analysis with functional connectivity measures in this
study.

Edge Types in the Structural Network
We evaluated functional connectivity in terms of classifications
based on two criteria—(1) the location of connections: intra-
hemispheric, homologous inter-hemispheric and heterologous
inter-hemispheric edges, and (2) the topological role: rich club,
feeder, and local edges in light of the rich club architecture.
Homologous inter-hemispheric edges refer to inter-hemispheric
edges that connect homologous (corresponding) brain
regions in the contra-lateral hemispheres while heterologous
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inter-hemispheric edges refer to the ones that connect
heterologous brain regions across hemispheres.

Rich club edges were defined in the following steps. A network
is called a rich club organization if the core nodes in the network
are more strongly interconnected than expected by chance with
a high degree of k. Such nodes are referred to as rich club nodes
(van den Heuvel and Sporns, 2011). Rich club coefficient is used
to determine whether the network has rich club organization
or not by comparing the values of the network in question and
the values of a randomly selected network (van den Heuvel and
Sporns, 2011). Over a range of degree threshold, k, rich club
coefficient, φ, is defined as follows:

φ
(

k
)

=
2E>k

N>k(N>k − 1)

where rich club coefficient, φ
(

k
)

, is the ratio of actual number
of edges between remaining nodes, E>k, and the total number of
possible edges, N>k(N>k − 1), between them, after removing all
nodes with a degree less than k. Since the point of detecting rich
clubs is to “categorize” each edge according to its topological role
with other regions, rather than its fiber count levels, we calculated
rich club coefficient in the binarized structural network as used
in some previous studies (van den Heuvel and Sporns, 2011;
Ball et al., 2014). Normalized rich club coefficient, φnorm, was
calculated as φnorm(k) = φ(k)/φrand(k), where φrand(k) is the
average value of φ(k) across 1,000 degree-preserving randomly
generated networks. We performed one sample t-test with null
hypothesis of φnorm

(

k
)

= 1 for each k and applied Bonferroni
correction in the testing to control multiple testing across all
examined levels of k. The presence of rich club organization
is then determined if φnorm

(

k
)

> 1 for any range of k (P <

0.05, Bonferroni corrected). Nodes with a significant k degree
on group-averaging structural connectivity (satisfying that fibers
present for 50% subjects at least) were appointed as rich club
nodes. After determining the rich club nodes, we categorized
structural edges into three types: (1) edges between rich clubs
(rich club edges), (2) edges between a rich club and a non-rich
club (feeder edges), and (3) edges between non-rich clubs (local
edges) (van den Heuvel and Sporns, 2011). See Figure 5B.

Within-a-Day Variability Measures for
Functional Connectivity
To evaluate temporal variability, we adopted conventional
“stability” indices of FC and pFC networks using two types of
measures; (1) intra-class correlation (ICC) for univariate stability
of edge and (2) Pearson correlation coefficient for a similarity
measure of multivariate patterns. In the correlation analyses with
SC, ICC, and Pearson correlation coefficient were Fisher’s r-to-z
transformed to improve normality.

Intra-Class Correlation (ICC)
We measured within-a-day stability (= 1—variability) on each
functional edge using within-subject variance (σ 2

w), separated
from between-subject variance (σ 2

b
), and ICC (Friedman L. et al.,

2008; Caceres et al., 2009; Deuker et al., 2009), across eight
different sessions. Two types of variances were estimated in a

two-way mixed effect model and ICC was calculated using two
variances in the model (Caceres et al., 2009) such as

ICC =
σ 2
b

σ 2
b
+ σ 2

w

=
MSB−MSE

MSB−
(

k− 1
)

MSE

where MSB and MSE represent mean squares of between-
and within-subject factors, and k represents the number of
sessions. ICC differs from repeated measures analysis of variance
(ANOVA) testing F0 =MSJ/MSEwhereMSJ represents themean
squares of between-sessions factors (herein, the time-of-day).
Results of the ICC were empirically interpreted as (1) highly
variable, ICC < 0.4; (2) fairly variable, 0.4 ≤ ICC < 0.5; or
(3) highly stable, ICC≥ 0.5 in accordance with our previous work
(Park et al., 2012).

Similarity for Multivariate Edge Involvement Patterns
In order to evaluate the variability of subnetwork patterns, we
defined the within-a-day similarity (= inverse of variability) of
the multivariate patterns. For each subnetwork (edges belonging
to each edge type), all edges in the subnetwork comprised
a functional connectivity vector within each session for each
individual. The similarity of the multivariate edge involvement
was defined as the average value of Pearson correlation
coefficients between functional connectivity vectors of all pairs
of eight sessions (see Figure 1B).

Structural Constraints on the Variability of
the Functional Connectivity and Variability
of Multivariate Edge Involvement Patterns
1) The Relationship between Structure Connectivity and

Functional Connectivity Variability according to Structural
Edge Types: In order to explore the relationship between
structural connectivity and the variability of functional
connectivity according to structural edge types, we calculated
a Pearson correlation coefficient between the ICC of
functional connectivity (i.e., FC and pFC) and the fiber
counts across edges at edges in each structural edge
type (intra-hemispheric, homologous/heterologous inter-
hemispheric edges, and the rich club, feeder, and local
edges in the rich club architecture). In this evaluation, we
used structural connectivity averaged at a group level to
define different edge types for the evaluation of functional
connectivity in a common space and to compare structural
connectivity with the group summary statistic (such as
ICC) for functional connectivity. Therefore, fiber counts
used in the current study indicate group averages of log-
transformed fiber counts in the individual space. Similarly,
the (average) strength of functional connectivity indicates
functional connectivity averaged over the sessions and the
subjects.

2) The Relationship between Structure Connectivity and FC
Variability according to Pseudo and Direct Functional Edges:
To explore the variability of pseudo-FC, we evaluated
a Pearson correlation coefficient between the ICC of
FC and fiber counts across edges over the group-level
pseudo functional edges and over the direct functional
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FIGURE 5 | Relationships between stability of functional connectivity and structural connectivity according to topological edge types in rich club organization.

(A) Significant rich club organization in the range of degree thresholds, 16 ≤ k ≤ 24 (gray shade; P < 0.05, Bonferroni corrected). Black line indicates time series of

group-averaging rich club coefficients with changing degree threshold of k. Light gray line indicates time series of mean rich club coefficients for 1,000 random

networks and red line and its error bar represent mean normalized rich club coefficients and its standard error of mean. (B) Rich club nodes by a degree threshold of

k = 18 and three kinds of structural edges (i.e., rich club, feeder, and local edges). (C) Relationships between strength of FC and log-transformed fiber counts in rich

club, feeder, and local edges for FC. (D) Relationships between strength of pFC and log-transformed fiber counts in rich club, feeder, and local edges for FC.

(E) Relationships between stability (ICC) and strength of FC (gray circles lines) and pFC (red circles and regression lines) and log-transformed fiber counts in rich club,

feeder, and local edges. N.S. indicates no significance. THL, thalamus; PUT, putamen; PRCU, precuneus; HP, hippocampus; SFGmed, medial superior frontal gyrus;

PrCG, precentral gyrus; STG, superior temporal gyrus; INS, insula; SPG, superior pariental gyrus; TPsup, superior temporal pole; CAU, caudate; L, left; R, right.

edges. Pseudo functional edges in the group level were
defined to be the edges that more than half of the
group have FC without pFC. Meanwhile, direct functional
edges in the group level were defined to be the edges
that more than half of the group have both FC and
pFC.

3) Variability of Multivariate Edge Involvement Patterns:
We evaluated the variability (= 1—similarity) of the
multivariate edge involvement patterns of FC and pFC
for rich club edges (Figure 6A). The variability of
feeder edge involvement patterns was also examined
for each rich club node (Figure 6A). We also evaluated

the variability of the multivariate edge involvement
patterns of FC within a subnetwork of pseudo functional
edges and within a subnetwork of direct functional
edges.

RESULTS

Functional Variability According to
Structural Edge Types
Figures 2A,B present the mean functional connectivity and
ICC patterns for FC and pFC networks. Mean functional
connectivity and stability of functional connectivity differed
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according to edge types in both FC and pFC. The edge type
dependency was grossly similar between FC (Figures 2C,E,G,I)
and pFC (Figures 2D,H,F,J). For example, the inter-hemispheric
homologous edges showed the highest mean functional
connectivity in both FC and pFC (Figures 2C,D). Significant
differences in mean functional connectivity were detected
between intra-hemispheric and inter-hemispheric homologous
edges (FC: p = 1.6 × 10−45, pFC: p = 6 × 10−220), between
intra-hemispheric and inter-hemispheric heterologous edges
(FC: p = 1.7 × 10−5, pFC: p = 4 × 10−13), between inter-
hemispheric homologous and heterologous edges (FC: p = 4.7
× 10−51, pFC: p = 1 × 10−283), and between feeder and local
edges (FC: p = 4 × 10−8, pFC: p = 1 × 10−7) in both FC
(Figures 2C,G) and pFC (Figures 2D,H).

For both FC and pFC, ICC of functional connectivity showed
significant difference between feeder and local edges (FC: p = 2
× 10−4, pFC: p = 9 × 10−11), and between rich club and local
edges (FC: p = 4 × 10−3, pFC: p = 1 × 10−5) (Figures 2I,J).
However, pFC only showed significant difference in ICC
between intra-hemispheric and inter-hemispheric homologous
edges (p= 2× 10−10), between intra-hemispheric and inter-
hemispheric heterologous edges (p = 4 × 10−4), and between
inter-hemispheric homologous and heterologous edges (p = 1 ×
10−18) (Figure 2F).

Fiber counts were positively correlated with strengths of FC
and pFC in all edge types (Figures 3A,B), except for homologous
inter-hemispheric edges (Figure 3B), where significantly higher
in the intra-hemispheric edges than in the heterologous inter-
hemispheric edges (p < 5 × 10−3) (Figure 3B). These positive
relationships were similarly found in FC and pFC. However,
fiber counts show positive correlation with stability (i.e., ICC) in
pFC more than in FC (Figure 3C). More specifically, functional
connectivity in an edge with a higher number of fiber bundles
showed significantly higher ICC in both pFC (r = 0.3, p =

4 × 10−45) and FC (r = 0.14, p = 1 × 10−10) and the
relationship was much stronger in pFC than in FC (p = 1 ×

10−15) (Figure 3C). Such stronger positive relationship in ICC of
pFC was consistently found in intra-hemispheric edges (r= 0.29,
p = 3 × 10−27) and heterologous inter-hemispheric edges (r =
0.33, p = 6 × 10−19) but not in homologous inter-hemispheric
edges (Figure 3D).

ICC of pFC was positively correlated with fiber length only in
heterologous inter-hemispheric edges (r = 0.15, p = 1 × 10−4).
Meanwhile, ICC of FC show no relationship with fiber lengths
in intra-hemispheric edges and inter-hemispheric edges (p >

0.005; Bonferroni correction across 10 tests was applied with p
< 0.05). Homologous inter-hemispheric edges did not show any
relationship between ICC and both fiber counts and lengths in
both FC and pFC.

Variability of Functional Connectivity in
Pseudo and Direct Functional Edges
Pseudo functional edges were mostly found in the temporal lobe
(Figure 4A). Fiber counts showed significantly lower positive
correlation with mean strength of FC in pseudo functional edges
than in direct functional edges (p = 4 × 10−16) (Figures 4B,C).
Fiber counts were also positively correlated with ICC of FC

in direct functional edges (r = 0.16, p = 2 × 10−11) and
the relationship did not appear in pseudo functional edges
(Figures 4B,C). FC patterns showed higher variability (=lower
pattern similarity) across sessions in pseudo functional edges
than in direct functional edges (p= 2× 10−11) (Figure 4D).

Variability According to Topological Edge
Types in Rich Club Structures
Our structural network data show a rich club-like organization
with degree thresholds of k = 16 to k = 24, where normalized
coefficients are significantly greater than 1 (p < 0.05, Bonferroni
corrected) (Figure 5A). In constructing rich clubs, we choose a
degree threshold of k = 18 since it showed the most significant
value (p = 7 × 10−5). We found 19 rich club nodes (degree
threshold of k= 18, Figure 5B); the bilateral putamen, thalamus,
insula, hippocampus, and precuneus and the left superior frontal
and right superior parietal gyrus, all of which are areas supported
by previous studies (van den Heuvel and Sporns, 2011; Kim
et al., 2014), and the bilateral superior temporal gyrus, left middle
temporal gyrus, left supplementary motor area, right superior
temporal pole, right precentral gyrus, and right caudate.

No relationship was found between fiber counts and ICC
of FC in all types of rich club edges, feeder edges, and local
edges (Figure 5C). Although ICC of pFC was not correlated with
fiber counts in rich club edges, ICCs of pFC were significantly
correlated with fiber counts in the feeder edges (r = 0.26, p =

4 × 10−6) and local edges (r = 0.25, p = 2 × 10−5) without
a statistical difference between these two correlations. Also, the
strength of FC and pFC showed significant positive correlations
with fiber counts in feeder edges (FC: r = 0.45, p = 6 × 10−17;
pFC: r = 0.48, p = 9 × 10−20; no difference between two) and
local edges (FC: r = 0.34, p = 1 × 10−8; pFC: r = 0.33, p = 2 ×
10−8; no difference between two) (Figures 5D–E).

While rich club edges showed significantly higher stability
(ICC) of functional connectivity in FC than in pFC (p < 0.05,
Bonferroni corrected), multivariate similarity analysis of edge
patterns (or subnetworks) in rich club edges showed higher
stability in pFC than in FC (p= 2× 10−10) (Figure 6B).

Among rich club nodes, the bilateral thalamus, putamen,
precuneus, and hippocampus and right superior temporal gyrus
showed more stable multivariate patterns of feeder functional
connectivity in pFC than in FC (p < 0.05, Bonferroni corrected)
(Figure 6C).

DISCUSSION

By evaluating the variability of functional connectivity over
the course of “several hours within a single day”, we found
that structural connectivity generally constrained both the
strength and the variability of functional connectivity and
multivariate edge involvement patterns, particularly for
sparse direct functional connectivity (i.e., pFC), within a
day. More specifically, the structural constraints on the
variability of functional connectivity differed according to
structural edge types, differentiating heterologous inter-
hemispheric and intra-hemispheric edges from homologous
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FIGURE 6 | Stability of multivariate edge involvement patterns for rich club and feeder edges. (A) Multivariate edge involvement pattern in a subnetwork composed of

rich club edges and the pattern in a subnetwork composed of feeder edges for each rich club node. (B) Univariate edge stability (mean ICC) of functional connectivity

and temporal similarity of multivariate edge involvement patterns for rich club edges. (C) Stability of feeder edge involvement patterns for a subnetwork of each rich

club node, where star (*) indicates significant difference between pattern stability in FC and stability in pFC. THL, thalamus; PUT, putamen; PRCU, precuneus; HP,

hippocampus; STG, superior temporal gyrus; SPG, superior parietal gyrus; L, left; R, right.

inter-hemispheric edges, and feeder and local edges from rich
club edges.

Variability of pFC Depends Strongly on
Fiber Counts Except for Homologous
Inter-Hemispheric Edges and Rich Club
Edges
In accordance with previous studies (Honey et al., 2009;
Hermundstad et al., 2013), we found that the structural

connectivity (particularly fiber counts) constrained the

“strengths” of both FC and pFC. We further revealed strong
structural constraints on the within-a-day “variability” of
functional connectivity, which were more prominent in pFC
than FC and differed across different edge types.

Except for stable homologous inter-hemispheric edges, fiber
counts generally affected the variability of pFC, as well as the

strength of pFC, across time within a single day. Similarly,
the variability of pFC at feeder edges and local edges under

the rich club topology was constrained by the fiber counts. In
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those edges, a larger number of fiber bundles sustains a more
stable level of direct functional connectivity across time points
in a single day. Conversely, edges that were supported by a
smaller number of fibers showed higher variability. This strong
dependency of within-a-day variability of pFC on fiber counts
is consistent with previous studies on the relationship between
“micro-state variability” of FC and fiber counts (Zalesky et al.,
2014; Liao et al., 2015; Zhang et al., 2016), as explained in
Introduction.

Fiber lengths generally showed no relationship with the
variability of pFC except for a very weak relationship in the
heterologous inter-hemispheric edges. These findings are similar
to previous studies (Misic et al., 2014; Shen et al., 2015a,b), where
the variability of functional connectivity was associated with fiber
counts but not with inter-regional distance.

Variability of pFC is Independent of Fiber
Counts in Homologous Inter-Hemispheric
Edges and Rich Club Edges
In contrast to the intra-hemispheric edges and heterologous
inter-hemispheric edges, homologous inter-hemispheric edges
did not show any relationship between fiber counts and the
variability of functional connectivity in both pFC and FC.
Homologous inter-hemispheric edges, which correspond to
dense callosal fibers (Hofer and Frahm, 2006; Jarbo et al.,
2012), have a stronger structural basis compared with other
types of edges (Shen et al., 2015b). However, fiber counts did
not proportionally reduce the pFC variability in these dense
structural edges. Similarly, rich club edges, which have strong
structural connectivity among rich club nodes, did not show a
significant correlation between pFC variability and fiber counts.
Both homologous inter-hemispheric edges and rich club edges
have highly dense fibers (high structural connectivity). Within
these dense edges, the variability of functional connectivity was
not proportionally constrained by fiber counts. It is possible that
fibers in a dense edge may not be homogeneous and may lead
to dynamic variations of functional connectivity among pairs
of multiple subregions in the two regions that the dense edge
interconnects (Park et al., 2013; Gordon et al., 2016). Thus,
in edges with strong structural connectivity, the variability of
functional connectivity may not only be regulated by fiber counts
but also depend on some other factors such as a functional
nodal composition (subcomponents) and functional role of each
node in the brain. Therefore, the relationship between structural
connectivity and variability of functional connectivity is more
than a simple generalization that higher structural connectivity
leads to lower temporal variation of functional connectivity.
However, the details remain to be explored in the future study.

FC Diverges from pFC in the Dependency
of Variability on Structural Connectivity
The “strengths” of both FC and pFC were highly constrained
by the SC (fiber counts). However, the structural constraint on
the “variability” of functional connectivity was only significant
in pFC, not in FC (Figure 3C). This is prominent in
intra-hemispheric and heterologous inter-hemispheric edges.

Although no significant correlation was found between the
variability of FC and SC (fiber counts) in all of the edge types
(rich club, feeder, and local edges), the variability of pFC (but not
FC) at feeder edges and local edges was constrained by the fiber
counts.

The divergence of FC from pFC was manifested in the
pseudo functional edges (non-zero FC edges over zero pFC),
the characteristics of which were firstly explored in this
study. Although the mean functional connectivity strength
in the pseudo functional edges showed a weak relationship
with fiber counts, the within-a-day variability did not show
any relationship with fiber counts, which contrasted with the
functional connectivity in direct functional edges (where showed
significant correlations with fiber counts). Furthermore, pseudo
functional edges exhibited highly variable FC patterns across
sessions within a day, compared to direct functional edges.
These results suggested that pseudo functional edges dynamically
emerge according to various neural contexts possibly through
polysynaptic pathways or common modulation.

Variability of the Multivariate Edge
Involvement Patterns for Subnetworks
A particular brain function consists of a dynamic congregation
of edges and a single edge may be dynamic as it involves
dynamic brain functions at different time points. However, the
current result implies that the patterns of how single edges
congregate together to compose dynamic functions are stable.
This is supported by the extraction of common edge patterns
from the resting state fluctuations (Park et al., 2014).

Most individual edges in the rich club organization showed
dynamic FC and pFC across times within a day. While each
edge had higher variability in pFC than in FC, the variability of
multivariate edge involvement patterns of pFC was significantly
lower than that of FC. In particular, the edge involvement
patterns of pFC in the rich club edges across the time samples
were very stable, despite the high univariate variability of pFC
at each rich club edge (Figure 6B). Meanwhile, FC showed
reverse directions, relatively low univariate variability but high
multivariate variability. Considering the “degeneracy” of the
brain system (Edelman and Gally, 2001; Price and Friston, 2002),
the relatively stable FC in each edge might be composed of
different configurations of dynamic direct interactions (pFC).
This divergence of FC from pFC was clearly seen in the patterns
of the feeder edges for rich club nodes in the thalamus, putamen,
precuneus, and hippocampus. Those rich club nodes showed
more stable feeder connectivity patterns of pFC than cortical
rich club nodes (Figure 6C). These results imply that the pFC
variations depend on the topological role of the edge and are
modulated by the different levels of structural connectivity.

The variability of the functional network is an increasingly
important issue, as functional brain networks are widely used
to characterize individual personality (Barnes et al., 2014; Finn
et al., 2015) and identify brain diseases (Smith et al., 2009;
Fox and Greicius, 2010; Laird et al., 2013; Sadaghiani and
Kleinschmidt, 2013; Stam, 2014). Thus far, the variability of
functional networks has been shown mainly using a multivariate
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approach, for example, the correlation of elements in the
functional connectivity matrix (Finn et al., 2015), global network
properties (Bullmore and Sporns, 2009, 2012) of the “Pearson-
based correlation matrix” averaging-out within a session, and
ICA analysis (Calhoun et al., 2001; Beckmann et al., 2005).
Meanwhile, dozens of reproducibility studies have conducted
test-retests of Pearson correlation-based functional network
measures (e.g., Braun et al., 2012). The highly stable edge
involvement patterns in the feeder edges of the pFC network
(and not in the FC network) is consistent with previous studies
that showed stable characteristics of multivariate functional
composition (Calhoun et al., 2001; Beckmann et al., 2005).

The current results suggest that pFC is superior and more
sensitively reflects the dynamic functional nature of the whole
brain network compared with FC.

Methodological Issues
In brain network studies, the inclusion of a large number of
brain regions, relative to a conventional number of observations,
may prevent reliable estimation of partial correlation, which can
be solved using regularization techniques reducing very small
edge values to zero (Friedman J. et al., 2008; Huang et al.,
2010; Varoquaux et al., 2010; Smith et al., 2011). Thus, the
regularization in a partial correlation approach is suitable in most
fMRI-based brain network studies, especially when applying a
sliding window approach to investigate brain network dynamics
with a small number of observations (Cribben et al., 2012;
Allen et al., 2014; Calhoun et al., 2014; Monti et al., 2014).
In order to apply such regularization, it is required to select
the regularization amount as a parameter, which is related to
network sparsity. In this study, we used a criterion, StARS, which
selects an optimal regularization amount, giving more reliable
and sparse network based on random sampling (Liu et al., 2010).
StARS estimates more accurately and more similar sparsity to
the true network than AIC, BIC, and cross-validation approaches
(Liu et al., 2010). However, it should be noted that the partial
correlation approach, despite the sparsity estimation strategy,
may underestimate the real connectivity in the brain, which
should not be ignored in the interpretation of the results using
this method.

In spite of potential inter-individual variations in structural
connectivity, we used the group-averaged structural connectivity
(averaged across 12 subjects) to associate it with the average
strength of the functional connectivity (averaged across total
of 12 subjects and 8 sessions) or variability of the functional
connectivity defined using ICC in the group level. This makes
it possible to evaluate dynamic functional connectivity in a
common space (particularly for the sparse connectivity) and
to compare structural connectivity with the group summary
statistic (such as ICC) for functional connectivity. It mitigates the
missing fibers or false alarm fibers during fiber tractography in
the individual space.

Compared to FC, pFC was generally more variable than FC
for all edge types. It is possible that pFC may reflect dynamic
nature of the brain connectivity more than FC. However, we
cannot disregard the possibility arisen from the characteristic
of pFC estimation, which utilizes non-linear shrinkage around

zero. This non-linear shrinkage makes it difficult to evaluate
mean and variability of pFC in a way comparable to those of FC
(a continuous metric). Accordingly, we evaluated variability of
the edge by associating with structural connectivity rather than
comparing mean strength and variability of pFC with FC.

The current study was conducted with fMRI signals without
global signal regression (GSR). Since the effects of GSR on
functional connectivity still remain controversial (Murphy et al.,
2009; Chai et al., 2012), we conducted the same analysis with
signals obtained after GSR and presented the results in the
Supplementary Materials. Overall results and tendencies were
highly similar between signals obtained with GSR and the ones
obtained without GSR (Supplementary Materials). When we
conducted the current evaluation with normalized structural
connectivity by dividing fiber counts by mean regional volume
sizes (average numbers of voxels at two regions), the results were
highly consistent with the results from the current evaluation
(Supplementary Materials).

The fundamental cause of variability in functional
connectivity within a day is not yet fully understood. There
have been several researches on the effects of sleepiness on
functional connectivity (Verweij et al., 2014; Kaufmann et al.,
2016; Zhu et al., 2016). Effects of the circadian rhythm or time of
day may also affect variability of functional connectivity. Instead
of considering those factors as unwanted signals, we regard
those factors as potential sources of within-a-day variability of
functional connectivity. However, we could not control for the
confounding factors inevitable in the data acquisition in the
laboratory setting, which is different from everyday environment.

In summary, these results show that structural connectivity
generally constrains not only the strength of the functional
connectivity but also the variability of the functional connectivity.
The structural constraints on the variability of three different
types of functional connectivity differ according to edges
properties and topological edge types. The edges in the pFC
network more sensitively reflect dynamic functionality, which
is constrained by structural connectivity but are more stable
in the pattern of congregation, compared with FC. Studies
of edge involvement patterns using multivariate properties in
brain networks have been important in providing a detailed
understanding of how the brain works. How functional
connectivity differs at specific time points within a day requires
further study, and the results will expand our understanding of
the time of day effects on functional brain connectivity.
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