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In cognitive network neuroscience, the connectivity and community structure of the

brain network is related to measures of cognitive performance, like attention and

memory. Research in this emerging discipline has largely focused on two measures of

connectivity—modularity and flexibility—which, for the most part, have been examined in

isolation. The current project investigates the relationship between these two measures

of connectivity and how they make separable contribution to predicting individual

differences in performance on cognitive tasks. Using resting state fMRI data from 52

young adults, we show that flexibility and modularity are highly negatively correlated.

We use a Brodmann parcellation of the fMRI data and a sliding window approach for

calculation of the flexibility. We also demonstrate that flexibility and modularity make

unique contributions to explain task performance, with a clear result showing that

modularity, not flexibility, predicts performance for simple tasks and that flexibility plays

a greater role in predicting performance on complex tasks that require cognitive control

and executive functioning. The theory and results presented here allow for stronger links

between measures of brain network connectivity and cognitive processes.

Keywords: flexibility, modularity, resting-state fMRI, task complexity, individual differences, brain network

connectivity

INTRODUCTION

Research in cognitive neuroscience has typically focused on identifying the function of individual
brain regions. Recent advances, however, have led to thinking about the brain as consisting of
interacting subnetworks that can be identified by examining connectivity across the whole brain.
This emerging discipline of cognitive network neuroscience has been made possible by combining
methods from functional neuroimaging and network science (Bullmore et al., 2009; Sporns, 2014;
Medaglia et al., 2015; Mill et al., 2017). Functional and diffusionMRImethods provide a rich source
of data for characterizing the connections—either functionally or structurally—between different
brain regions. Using these data, network science provides mathematical tools for investigating the
structure of the brain network, with brain regions serving as nodes, and the connections between
brain regions serving as edges in the analysis.
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Under this framework, the structure of the brain network
can be characterized with a variety of measures. For example,
one measure, network modularity, captures the extent to which
a network has community structure, by dividing the brain
into different modules that are more internally dense than
would be expected by random connections (Newman, 2006).
A different measure, network flexibility, characterizes how
frequently regions of the brain switch allegiance from onemodule
to another over time (Bassett et al., 2010). Going forward, a major
challenge of cognitive network neuroscience is to determine the
relationship between measures of brain network structure and
cognitive processes (Sporns, 2014).

Relating individual differences in brain network structure to
behavioral performance on cognitive tasks provides one tool for
addressing this challenge. Both modularity and flexibility have
been shown to correlate with variation in cognitive performance.
Previous empirical research from our laboratory (Yue et al., 2017)
and others (Cohen and D’Esposito, 2016) suggest an interaction
between measures of network structure and performance on
simple vs. complex tasks. For example, previous studies have
shown that individual differences in modularity correlate with
variation in memory capacity (e.g., Stevens et al., 2012; Meunier
et al., 2014). This work has been extended in several recent studies
(Cohen and D’Esposito, 2016; Yue et al., 2017), which report
a systematic relationship between an individual’s performance
on a range of behavioral tasks. Both studies report a cross-over
interaction; individuals with lower network modularity perform
better on complex tasks, like working memory tasks (n-back
or operation span), that likely require communication across
different brain networks, while individuals with higher network
modularity perform better on simpler tasks, like reaction to
exogenous cues of attention, simple visual change detection,
or low level motor learning. This interaction is predicted by
theoretical work on modularity in biological systems (Deem,
2013) which finds that at short time scales, systems with
higher modularity afford greater fitness than systems with lower
modularity, while at longer times scales, systems with lower
modularity are preferred. At the same time, many recent studies
have reported that individual variation in network flexibility
can explain a host of performance measures, skill learning (e.g.,
Bassett et al., 2010, 2013), cognitive control (e.g., Alavash et al.,
2015; Braun et al., 2015), and mood (Betzel et al., 2016). Indeed,
brain network flexibility has been identified as a biomarker of the
cognitive construct of cognitive flexibility (Braun et al., 2015).

These prior investigations have focused on either modularity
or flexibility as a network measure. Some of the studies have
investigated quite different cognitive processes for modularity
(e.g., attentional control) and flexibility (e.g., mood). On the
other hand, other studies have focused on similar constructs
(e.g., working memory for modularity and cognitive control
for flexibility or motor learning for both). Thus, these studies
leave open the question of the extent to which modularity
and flexibility underlie different or similar cognitive abilities.
There is an intuitive basis for thinking that they reflect
different capacities, as flexibility relates to how much brain
networks change over time, and modularity relates to differences
in interconnectivity. However, such a conclusion would be

premature, since each of these previous studies measured
modularity and flexibility in isolation, without considering
whether the other measure could also explain variation in
the same cognitive performance and whether each contributes
independently when the contributions of both are considered
simultaneously. No study has directly addressed the basic
question of the relationship between modularity and flexibility1.
This relationship might be one key to understanding how
different measures from network neuroscience relate to different
cognitive functions.

The current study investigated the relationship between
flexibility and modularity, demonstrating a strong relationship
between the two measures and presenting a theoretical
framework that explains this relationship. Despite this
correlation, we argue that modularity and flexibility still
reflect distinct cognitive abilities. Specifically, previous theory
suggests that highmodularity should result in better performance
on simple tasks while low modularity should result in better
performance on complex tasks (Deem, 2013). This same theory
suggests that flexibility should be negatively correlated with
performance on simple tasks and positively correlated with
performance on complex tasks, and so we investigated the
relationship between flexibility, modularity and performance on
a battery of simple and complex cognitive tasks. Based on both
theory and previous empirical results, we predict that higher
brain modularity and/or lower flexibility is related to better
performance on simpler tasks while lower brain modularity
and/or higher flexibility is related to better performance on more
complex tasks.

METHODS

Participants
Participants were 52 (18–26 years old, Mean: 19.8 years; 16
males and 36 females) students from Rice University with
no neurological or psychiatric disorders. Subjects were given
informed consent in accordance with procedures approved by
the Rice University Institutional Review Board. Subjects were
compensated with $50 upon their participation in both the
behavioral and imaging sessions.

1There are several recent studies that have focused on the relationships between

static and dynamic measure of connectivity that are tangentially relevant to

our current investigation. Thompson and Fransson (2015) focus on variation in

the connectivity between brain regions. They used a sliding time-window of 90

seconds and calculated the correlation coefficients between regions during each

time window. They calculated the mean and variance of the connectivity time-

series for each subject and pair of connections. Their results showed that the

mean and variance of fMRI connectivity time-series scale negatively. Betzel et al.

(2016) examined variation in connectivity over time, using a sliding window to

identify time periods when functional connectivity deviates significantly from

the connectivity found for data from the whole session. These time periods

with greater deviance showed higher modularity compared with time periods in

which the functional connectivity is closer to the average. Both papers suggest

some relationship between static and dynamic measure of functional connectivity,

though neither investigates the relationship between whole brain flexibility and

modularity across individual subjects.
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Resting-State fMRI
Imaging Data Acquisition
A high-resolution T1-weighted structural and three resting state
functional scans were acquired during a 30-min session using a
3T Siemens Magnetom Tim Trio scanner equipped with a 12-
channel head coil. Scanning was done at the Core for Advanced
Magnetic Resonance Imaging (CAMRI) at Baylor College of
Medicine. A T1-weighted structural scan was collected first,
followed by three consecutive 7-min functional scans. In between
runs, subjects were instructed to remain lying down in the
scanner and were informed that the next run would begin shortly.
All 52 subjects participated in the imaging session, which lasted
about 30min. The T1-weighted structural scan involved the
following parameters: TR = 2,500ms, TE = 4.71 ms, FoV =

256mm, matrix size = 256 × 256, voxel size = 1 × 1 × 1 mm3..
Functional runs were three 7-min resting-state scans obtained by
using the following sequences: TR = 2,000ms, TE = 40 ms, FoV
= 220mm, voxel size = 3 × 3 × 4 mm, slice thickness = 4mm.
A total of 210 volumes per run each with 34 slices were acquired
in the axial plane to cover the whole brain.

Preprocessing
Image preprocessing was conducted using afni_proc.py script
from example 9a of AFNI_2011_12_21_1014 version software
(Cox, 1996) and recommended preprocessing pipelines by Jo
et al., 2013. Each functional run was preprocessed separately,
including de-spiking of large fluctuations for some time points,
slice timing and head motion correction. Then each subject’s
functional images were aligned to that individual’s structural
image, warped to the Talairach standard space, and resampled to
3-mm isotropic voxels. Next, the functional images were spatially
smoothed with a 4-mm full-width half-maximum Gaussian
kernel. A whole brain mask was then generated and applied for
all subsequent analysis. A multiple regression model was then
applied to each voxel’s time series to regress out several nuisance
signals, including third-order polynomial baseline trends, six
head motion correction parameters and six derivatives of head
motion2. The outliers censoring process recorded the time
points in which the head motion exceeded a distance (Euclidean
Norm) of 0.2mm with respect to the previous time point,
or in which >10% of whole brain voxels were considered
as outliers by AFNI’s 3dToutcount. Then, the recorded time

2Some preprocessing pipelines suggest regressing out signal from white matter

and ventricles, under the assumption that any signal measured in these regions

must be nuisance signal. However, other recent studies have suggested that BOLD

response detected in the white matter reflects a local physiological response, which

would suggest that regressing out white matter signal is unwarranted (Gawryluk

et al., 2014). Aurich et al. (2015) have shown that different preprocessing strategies

can have impact on some graph theoretical measures. While there is the concern

that white matter activity reflects something other than a nuisance signal, we

still went ahead and ran analyses in both ways. It is worth mentioning here that

when we regressed out WM and CSF signal, the correlations between flexibility

and task performance dropped substantially. We reason that if WM and CSF are

simply nuisance variables, then removing them should not remove the relationship

between flexibility and the behavioral measures of interest. Therefore, the main

results are presented from data where WM and CSF signal were not regressed out

and in our supplementary materials in Table 2 we present the data from WM and

CSF signal regressed out.

points in each brain voxel were censored by replacing signal
at these points using linear interpolation. A multiple regression
model was then applied to each voxel’s time series to regress
out several nuisance signals, including third-order polynomial
baseline trends, six head motion correction parameters, and
six derivatives of head motion3. In order to reduce the effects
of low frequency physiological noise and to ensure that no
nuisance-related variation was introduced, a bandpass (0.005–
0.1Hz) filtering was conducted in the same regression model
(Biswal et al., 1995; Cordes et al., 2001; Hallquist et al., 2013;
Ciric et al., 2017). The residual time series after application of the
regression model were used for the following network analyses.

Network Re-construction, Modularity, and Flexibility

Calculation

Network re-construction
The whole brain network was re-constructed based on different
functional and anatomical brain parcellations including others
used in the resting state literature (Power et al., 2011; Craddock
et al., 2012; Glasser et al., 2016; Gordon et al., 2016). The full
set of results for all parcellation schemes is reported in the
Supplementary Material. The results are largely consistent across
parcellation scheme, but were the clearest with the anatomical
parcellation from the 84 Brodmann areas (BA) (42 Brodmann
areas for left and right hemispheres, respectively). Therefore,
results from the BA anatomical parcellation are reported
below. First, Brodmann area masks were generated using the
TT_Daemon standard AFNI atlas (Lancaster et al., 2000), from
AFNI_2011_12_21_1014 version. Then the mean time series for
each area was extracted by averaging the preprocessed time series
across all voxels covered by the corresponding mask. In the
network, each Brodmann area served as a node and the edge
between any two nodes was defined by the Pearson correlation
of the time series for those two nodes. For each subject and
each run, edges for all pairs of nodes in the network were
estimated, resulting in an 84 × 84 correlation matrix. While the
modularity values varied within subject across the three runs,
calculating modularity values from each of the run separately and
then averaging together those three modularity values was highly
correlated [r = 0.92, p = 1.8∗10∧(−22)] with the modularity
value obtained from a correlation matrix that averaged the
correlations across the three runs. Thus, the averaged correlation
matrix across three runs was later used to calculate modularity
for each subject by applying the Newman algorithm (Newman,
2006).

Modularity
Modularity is a measure of the excess probability of connections
within the modules, relative to what is expected by chance. To
calculate modularity, we first took the absolute values of each

3There is an ongoing debate about the best practices for motion correction, which

is outside of the scope of the current study (Power et al., 2015; Ciric et al., 2017).

Since we are calculating measures of flexibility, censoring out time points and

leaving gaps in the data would have not been the best practice. Therefore, we

replaced censored signal from time points in which the head motion exceeded a

distance (Euclidean Norm) of 0.2 mm relative to the previous time point using

linear interpolation.
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correlation and set all the diagonal elements of the correlation
matrix to zero. Since fewer than 0.05% of the elements in the
matrix were negative and their absolute values were relatively
small, taking absolute values did not have a major effect on the
results. To show that taking the absolute values did not have
major effects on the results, the correlation between modularity
and flexibility from raw data is also reported. The resultingmatrix
was binarized by setting the largest 400 edges (i.e., 11.47% graph
density) in the network to 1 and all others to 0. To show that
the results were persistent with the cutoff, we also considered
300 (8.61%) and 500 edges (14.34%). The non-linear filtering
afforded by the binarization process has been argued to improve
detection of modularity, by increasing the signal-to-noise ratio
(Chen and Deem, 2015). Modularity was defined as in Equation
(1) below, where Aij is 1 if there is an edge between Broadmann
areas i and j and zero otherwise, the value of ai = 6jAij is the
degree of Brodamann area i, and e = ½6iai is the total number
of edges, here set to 300, 400, and 500, respectively. Newman’s
algorithm was applied to the binarized matrix to obtain the
(maximal) modularity value and the corresponding partitioning
of Brodmann areas into different modules for each subject.

M =
1

2e

∑

all module areas i,j

∑

within this module

(

Aij −
aiaj

2e

)

(1)

Flexibility
Different methods have been proposed for calculating flexibility,
either from methods that rely on modeling the networks as a
multi-layer ensemble (Bassett et al., 2010; Mucha et al., 2010),
or from a sliding window approach, in which the scan session is
divided into overlapping sub-intervals, modularity is calculated
over each sub-interval and each of the parcellation of brain
regions into modules is compared across adjacent windows
(Hutchison et al., 2013). Here we adopt this latter approach
for calculating flexibility, as this sliding window analysis is the
most commonly used strategy for examining dynamics in resting-
state connectivity (see Hutchison et al., 2013 for a discussion).
Flexibility was calculated from the time series data by following
a sliding window with 40 time points (Figure 1A). This sliding
window of 40 points was chosen because the autocorrelations
returned to zero at around time 40 (see Supplementary Figure 3)
as well as being a length within the norm of previous studies
(Leonardi and VanDe Ville, 2015; Zalesky and Breakspear, 2015).
For each window we obtained a correlation matrix as shown
in Figure 1B. Figure 1C reflects the computation of Ci(t), the
record of which module the ith Brodmann area is in, at time
window t, 1≤t≤165. Flexibility for a given Brodmann area of
a given subject is the number of changes in the value of Ci(t)
across the 165 time windows of length 40. Note that the labeling
of the modules can change between time points. Therefore,
to account for this effect, we relabeled module numbering so
that the difference, defined as the number of areas that have
Ci(t+1) 6=Ci(t), i = 1–84 is minimized. The assumption behind
this is that the allegiance of areas either only have a minimal
change, or no change at all because between adjacent windows
there is only one time point out of 40 that has changed. This
minimized distance is considered the real difference between

windows (Figures 1C,D). A detailed illustration of the relabeling
process is in Figure 1E. Flexibility for a given subject is
the average of flexibility values from three runs across all
Brodmann areas for that subject. The data from the three runs
were not concatenated. Such concatenation would introduce a
discontinuity in the time series data, include machine artifacts
at the beginning of each run, and lead to spurious correlations in
the dynamics. Several recent studies have raised questions about
the use of this sliding window approach for calculating network
flexibility (Hindriks et al., 2016, Kudela et al., 2017). In particular,
these studies raise issues about the ability to differentiate signal
from noise with small time series of resting-state data. We can
address this concern with our data by correlating the flexibility
values obtained from each of the three runs across participants. If
these flexibility values simply reflect fluctuations caused by noise,
then correlations should not be observed across runs. However,
flexibility values are significantly correlated with each other (p <

0.03, see Supplementary Information), indicating signal has been
detected in the data.

Behavioral Tasks
Previous empirical research from our laboratory (Yue et al., 2017)
and others (Cohen and D’Esposito, 2016) suggests an interaction
between measures of network structure and performance on
simple vs. complex tasks. This interaction is supported by
theoretical work on modularity (Deem, 2013) which finds that
at short time scales, biological systems with higher modularity
are preferred over systems with lower modularity, while at
longer times scales, biological systems with lower modularity
are preferred. Relating this theory to brain modularity and
performance on cognitive tasks, we predict that higher brain
modularity would be related to better performance on simpler
tasks while lower brain modularity would be related to better
performance on more complex tasks. For the purposes of the
current research, this simple vs. complex task distinction is
operationalized in the following way: complex tasks are those
tasks in which executive attention and cognitive control (the
ability to ignore preponderant distractors while performing
correctly the task at hand) are required to properly perform
the task. Simple tasks are those tasks whose performance does
not depend on these operations. Because of the engagement
of cognitive control, complex tasks typically require longer
processing times than simple tasks. The full battery of tasks is
described below. Complex tasks in our battery include measures
that require shifting between tasks [operation span (Unsworth
et al., 2005) and task-shifting], attentional control (visual arrays;
Shipstead et al., 2014), short-term memory maintenance as well
as controlled search of memory (digit span; Unsworth and Engle,
2007), and the resolution component of the ANT, which taps
into the coordination of perception and cognitive control. Simple
tasks include the alerting and orienting components of the ANT,
which measure automatic responses to exogenous attentional
cues (Corbetta and Shulman, 2002) and the traffic light task,
which is a measure of response to low level visual properties. To
limit the number of behavioral measures in the analysis, improve
the reliability of the dependent measure, and to tap into the
cognitive mechanisms shared by the tasks (Winer et al., 1971;
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FIGURE 1 | (A) Flexibility calculation using a sliding window method with 40 time points. (B) For each window a correlation matrix was obtained. (C) Computation of

the record of which module the ith Brodmann areas was in C1(t) at time point window t, 1≤t≤165. (D) Relabeling of the allegiance of Brodmann areas was done to

account for the fact that the labeling of the modules can change between time points. This relabeling process was done to ensure that the difference defined as the

number of areas that have Ci(t+1) 6= Ci(t) (i = 1–84) was minimized. (E) A detail of the relabeling process is shown here. The red star indicates that the permutation for

window (t+1) “2 1 3 1” is the closest to the window t labeling “2 1 3 3”. The relabelling process will choose the starred permutation for window (t+1).

Nunnally and Bernstein, 1994), two composite scores, simple and
complex, were calculated for the 40 subjects who participated in
all of the tasks described below. These composites were computed
by summing the z-scores (z-scores were calculated by subtracting
the mean from each individual score and dividing it by the
standard deviation) for the performance measures for the simple
and complex tasks. It is important to note that sorting the tasks in
a dichotomous manner is merely a practical procedure and not a
suggestion that cognitive control cannot be a continuous process
as has been suggested in previous work (Rougier et al., 2005).
Future work will be to examine cognitive control as a continuous
mechanism of varying degrees.

Operation span
Subjects were administered the operation span task (Unsworth
et al., 2005) to measure their working memory capacity. This
task has been shown to have high test-retest reliability, thus
providing a stable measure in terms of the rankings of individuals
across test sessions (Redick et al., 2012). In this task, for each
trial, participants saw an arithmetic problem, e.g., (2 × 3)+1,
and were instructed to solve the arithmetic problem as quickly
and accurately as possible. The problem was presented for 2
s. Then, a digit, e.g., 7, was presented on the next screen.
Subjects judged whether this digit was a correct solution to the
previous arithmetic problem by using a mouse to click a “True”
or “False” box on the screen. After the arithmetic problem, a
letter was presented on the screen for 800 ms that subjects were
instructed to remember. Then the second arithmetic problemwas
presented, followed by the digit and then the second letter, with

the same processing requirements for both arithmetic problem
and letter, and so forth. At the end of each trial, subjects were
asked to recall the letters in the same order in which they were
presented. The recall screen consisted of a 3× 4 matrix of letters
on the screen and subjects checked the boxes aside letters to
recall. Subjects used the mouse to respond to the arithmetic
problem and to recall letters. The experimental trials included set
sizes of six or seven arithmetic problem—letter pairs. There were
12 trials for each set size, resulting a total of 156 letters and 156
math problems. The six and seven set size trials were randomly
presented.

Before the actual experiment, a practice session was
administered to familiarize subjects with the task. The practice
session consisted of a block involving only letter recall, e.g.,
recalling 2 or 3 letters in a trial, a block involving only arithmetic
problems, and a mixed block in which the trial had the same
procedure as in the experimental trials, i.e., solving the arithmetic
problems while memorizing the letters, and recalling them at the
end, but with smaller set sizes of 2, 3, or 4. The response times for
math problems and accuracy for arithmetic problems and letter
recall were recorded. The operation span score is the accuracy for
letter recall, calculated as the number of letters that were recalled
at the correct position out of total number of the presented letters.
The maximum span score is 156.

Visual arrays task
A visual arrays task was used to tap visual short-term memory
capacity. In this task, subjects were instructed to fixate at the
center of the screen. Arrays of 2–5 colored squares at different
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positions on the screen were presented for 500ms, followed by a
blank screen for 500ms, and then bymulti-colored masks for 500
ms. A single probe square was then presented at one of locations
where the colored squares had appeared. Subjects had to judge
whether the probe square had the same or different color as the
one at the same position. The order of different array sizes was
random. Each array size condition had 32 trials, half of which
were positive response trials and half negative. The visual short-
term memory score was calculated by averaging the accuracy
across all array sizes.

Digit span
In this task a list of numbers were presented in auditory form at
the rate of one number per second and participants were required
to memorize them. After presenting the last number in the list, a
blank screen prompted participants to recall the numbers in the
order in which they were presented by typing on the keyboard.
Participants were given five trials for each set size starting at
two. The program would terminate if participants got fewer than
3 correct trials for that set size (60% accuracy). Digit span was
calculated by estimating the list length at which the subject would
score 60% correct using linear interpolation between the two set
sizes that spanned this threshold.

Task-shifting task
In this task, participants responded to an object according to a
preceding cue word. The object was either a square or a triangle,
and the color of the object was either blue or yellow. If the cue
was “color,” participants pressed a button to indicate whether the
object was blue or yellow, and if the cue was “shape,” they pressed
a button to indicate whether the object was a square or a triangle.
The same buttons were used for the two tasks. The response time
was recorded from the onset of the object. For half of the trials,
the cue was the same as that in the previous trial, a repeat trial,
and for the other half, the cue changed, a switch trial. For each
condition, to take into account both response time and accuracy
in a single measure, we calculated the inverse efficiency (IE) score
(Townsend and Ashby, 1985) defined as mean RT/proportion
correct. The task shifting cost was measured as the difference
in inverse efficiency score between the repeat and switch trials.
We also adjusted cue-stimulus interval (CSI), which is the time
between onset of the cue and onset of the object, using CSIs of
200, 400, 600, and 800 ms. However, as the effect of modularity
on IE did not differ for different CSIs, the data were averaged
across CSI. In total, there were 256 repeat trials and 256 switch
trials.

Attention network test
The Attention Network Test (ANT; Fan et al., 2002) was used
to measure three different attentional components: alerting,
orienting, and conflict resolution. In this task, subjects responded
to the direction of a central arrow, pressing the left or right
mouse button to indicate whether it was pointing left or right.
The arrow(s) appeared above or below a fixation cross, which was
in the center of the screen. The central arrow appeared alone on
a third of the trials and was flanked by two arrows on the left
and two on the right on the remaining two third of trials. The

flanking arrows were evenly split between a condition in which
they pointed in the same direction as the central one, a congruent
condition, and a condition in which they pointed in the opposite
direction, an incongruent condition. In the neutral condition,
there were no flanking arrows. On three-quarters of the trials,
the arrow(s) were cued by an asterisk or two asterisks, which
appeared for 100 ms on the screen. The interval between offset of
the cue and onset of the arrow was 400 ms. There were four cue
conditions: (1) no cue condition, (2), a cue at fixation, (3) double-
cue condition, with one cue above and the other below fixation
and (4) spatial-cue condition, where the cue appeared above or
below the fixation to indicate where the arrows would appear.
Thus, the task had a 4 cue × 3 flanker condition factorial design.
The experimental trials consisted of three sessions, with 96 trials
in each session, and 8 trials for each condition. For half of all
trials, arrows were presented above the fixation and for the other
half below. Also, for half of the trials, the middle arrow pointed
left and for the other half right. The order of trials in each session
was random. Before the experimental trials, 24 practice trials
with feedback were given to subjects that included trials of all
types.

Response times and accuracy were recorded. Mean RT for
each condition for each subject was computed based on correct
trials only. As with task shifting, we calculated the inverse
efficiency (IE) score for each condition. The alerting effect was
computed by subtracting the IE for the no cue condition from
the IE for the double cue condition. The orienting effect was
computed by subtracting the IE for the center cue condition
from the IE for the spatial cue condition. The conflict effect was
computed by subtracting the IE for the congruent condition from
the IE for the incongruent condition. Tomake the direction of the
conflict effect the same as that of alerting and orienting effects,
we reversed the sign of conflict effect. Thus, the more negative
the conflict effect value, the greater the interference from the
incongruent flankers.

Traffic light task
In this task, subjects saw a red square in the center of screen,
which was replaced after an unpredictable time delay (from 2
to 3 s) by a green circle. Subjects pressed a button as quickly as
possible when they saw the green circle. There were 25 trials in
total. Mean response time was calculated for each subject.

All 52 subjects participated in the operation span and task-
shifting tasks. Forty-three of them participated in the ANT task
and visual short term memory task, and 44 subjects participated
in the traffic light task and digit span task, as these were done
in a different session, and not all subjects returned to participate
in all tasks. The interval between neuroimaging and behavioral
sessions varied from 0 (i.e., measuring resting-state fMRI and
behavior on the same day but during different sessions) to 140
days.

Methods for Linking Brain and Behavior
To limit the number of behavioral measures in the analysis,
improve the reliability of the dependent measure, and to tap into
the cognitive mechanisms shared by the tasks (Winer et al., 1971;
Nunnally and Bernstein, 1994), two composite scores, simple and
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complex, were calculated for the 40 subjects who participated
in all of the tasks described above. These composites were
computed by summing the z-scores (z-scores were calculated by
subtracting the mean from each individual score and dividing
it by the standard deviation) for the performance measures for
the simple and complex tasks. A series of planned comparisons
were evaluated, drawn from the theoretical literature. Because
these tests are all based on a priori hypotheses, no correction
for multiple comparisons was necessary. The present study
examined the relationship between modularity and flexibility,
modularity with simple and complex task performance, and
flexibility with simple task and complex task performance by
calculating Pearson product-moment correlation coefficients.
Additionally, in order to measure the unique contribution
of modularity and flexibility on simple and complex task
performance, partial correlation analyses were used in which the
effect of one variable was controlled for to examine the effect of
the other.

RESULTS

Correlations of Modularity and Flexibility
Using Brodmann areas as nodes and functional connectivity
between these nodes (determined from resting state fMRI) as
the measure of the strength of edges, we determined modularity
and flexibility for each subject. Figure 2A depicts the relationship
between modularity and flexibility across our 52 participants. For
the 400-edge analysis, modularity values ranged from 0.33 to
0.59, with a mean of 0.47 (standard deviation 0.056) on a scale
from 0 to 1.0. Flexibility values ranged from 27 to 43 with a mean
of 32.38 (standard deviation 3.40). A strong negative correlation
r = −0.78 (p < 0.001) was obtained between these two
mathematically different measures, modularity and flexibility,
which had not been previously reported. The analysis for the
300- and 500-edge yielded negative correlations of r = −0.81 (p
< 0.001) and r = −0.74 (p < 0.001), respectively. In order to
show that taking the absolute value does not have a major effect
on results, a strong correlation was also found between flexibility
and modularity from raw non-binarized data (r =− 0.647,
p < 0.001). Results from other functional and anatomical
brain parcellations including others used in the resting state
literature (Power et al., 2011; Craddock et al., 2012; Glasser
et al., 2016; Gordon et al., 2016) are reported in Supplementary
Table 1.

Consistency of Constituent BAs in
Modules and Flexibility across BAs
Previous research has shown variability in brain regions, with
some regions exhibiting higher connectivity variability and
other regions showing lower variability (Allen et al., 2014),
as well as inter-subject variablility in functional connectivity
(Mueller et al., 2013). As is shown in Figure 2B, which
aggregates flexibility across subjects for each BA, the same
pattern was observed in our data set. Some BAs more frequently
changed module alignment across time, and therefore had higher
flexibility scores, than others. Regions with higher flexibility
include the anterior cingulate cortex, ventromedial prefrontal

FIGURE 2 | (A) The relationship between modularity and flexibility across 52

participants. r = −0.78 (p < 0.001). The y-axis shows the averaged flexibility

values over all Brodmann areas across subjects. The x-axis shows modularity

values, the excess probability of connections within the modules, relative to

what is expected at random (B) Illustration of flexibility measures over cortical

structures. Brodmann areas with higher flexibility are shown in red and those

with lower flexibility are shown in yellow.

cortex, orbitofrontal cortex, and dorsolateral prefrontal cortex
bilaterally, regions typically associated with cognitive control
and executive functions. Regions with lower flexibility are
those regions involved in motor, gustatory, visual, and auditory
processes such as postcentral gyrus, primary motor cortex,
primary gustatory cortex, and secondary visual cortex. The
regions with higher and lower flexibility from the Brodmann
areas anatomical atlas discussed here are similar to those
obtained when calculating flexibility from functional atlases
(Craddock et al., 2012; Supplementary Figure 2). In general,
the regions showing lower consistency in module assignment,
as measured by the average distance of an individual’s modular
organization to the modular organization of the group-average
data (distance is described in Yue et al., 2017) were the same
regions showing greater flexibility (r = 0.606, p < 0.001). One
concern for interpreting these analyses is that Brodmann areas
vary in size; therefore it is possible that the heterogeneity in
the size of the regions could affect the results. However, in an
additional analysis, the size of each BA was partialled out and the
correlation between a region’s flexibility and its distance from the
average modular organization remained, indicating that size did
not have an effect on the results.
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Relationship with Cognitive Performance
For task-shifting, there were 52 subjects but one performed at
chance level of accuracy and one other showed a shift cost more
than three standard deviations above the group mean. Thus,
these two participants were excluded from the analysis. For the
visual arrays and ANT task 43 subjects participated and for
the digit span task and the traffic light there were 44 subjects.
Task-shifting results demonstrated that there was a task shifting
effect [mean shift cost = 194 ms, SD; t(49) = 14.54 ms, p <

0.0001]. The mean accuracy for the visual arrays task was 89.5%,
with a standard deviation of 5.4%. This result has been reported
previously (Cowan, 2000). The mean capacity for digit span was
4.26, with a standard deviation of 0.94. The results from the
ANT task demonstrated a significant alerting effect [mean =

43 ms/proportion correct, SD: 28 ms/proportion correct; t(42)
= 10.14, p < 0.001], a significant orienting effect [mean =

49 ms/proportion correct, SD: 29 ms/proportion correct; t(42)
= 10.89, p < 0.001], and a significant conflict effect [mean =

139 ms/proportion correct, SD: 42 ms/proportion correct; t(41)
= 21.26, p < 0.001], replicating previous findings (Fan et al.,
2002). The group mean RT from the traffic light task was 227
ms, with a standard deviation of 17ms. All tasks (except for
alerting) had medium to high reliabilities. The Spearman-Brown
prophecy reliabilities were 0.85 for operation span, 0.84 for visual
arrays task, 0.90 for digit span, 0.68 for shifting task, 0.55 for
conflict measure of ANT task, 0.38 for orienting measure of ANT
task, and 0.94 for the traffic light task. The reliability for the
alerting measure of ANT task was −0.31, thus this measure was
eliminated from further consideration.

Scores from the seven remaining behavioral tasks were
converted into z-scores by subtracting the group mean from
the individual score and dividing it by the standard deviation.
They were then combined to create a simple composite score
that included an orienting measure of the ANT task and the
traffic light task and a complex composite score composed of
the operation span task, visual arrays task, digit span task,
shifting task, and a conflict resolution measure from the ANT
task. Specifically, we found that all five complex tasks’ measures
correlated significantly with the complex composite score (r =
0.63, p < 0.001 for operation span; r = 0.49, p = 0.001 for
visual arrays; r = 0.72, p < 0.001 for digit span; r = 0.58, p <

0.001 for conflict from the ANT task; r = 0.37, p = 0.018 for
shifting), but were not significantly correlated with the simple
composite score (r = −0.25, p = 0.13 for operation span; r
= 0.27, p = 0.09 for visual arrays; r = 0.08, p = 0.63 for
digit span; r = 0.06, p = 0.7 for conflict from the ANT task;
r = −0.15, p = 0.34 for shifting). For the simple composite
score, given that only two measures went into the composite, the
correlations between the individual measures and the composite
were necessarily high and equivalent (r = 0.73, p < 0.001 for
orienting measures of the ANT task; r = 0.73, p < 0.001 for
the traffic light task) The scores from the simple tasks were not
significantly correlated with the complex composite score (r =
0.03, p= 0.84 for orienting measures of the ANT task; r=−0.03,
p = 0.87 for the traffic light task). The correlation between the
simple and complex composite scores was near zero (r = 0.005,
p= 0.98).

A priori correlation analyses revealed a non-significant
negative correlation between modularity measured with 400
edges and the complex composite (r = −0.26, p = 0.108). For
simpler tasks, individuals with highmodularity performed better,
with a significant positive correlation between modularity and
the simple composite (r= 0.34, p= 0.030). As might be expected,
given the strong negative correlation between modularity and
flexibility, there was a significant positive correlation between
flexibility measured with 400 edges and the complex composite (r
= 0.42, p= 0.007) and a non-significant negative correlation with
the simple composite (r = −0.20, p = 0.215). The same pattern
was observed at different edge densities (see Table 1).

Despite the strong correlation between flexibility and
modularity, it is possible that they make independent
contributions to explaining individual differences in cognitive
performance. As shown in Figure 3 and Table 1, the magnitude
of the correlation coefficient between modularity and the
simple task composite is larger than the correlation coefficient
between flexibility and simple task composite, across edge
densities. The opposite pattern is true for the complex tasks. The
correlation coefficient between flexibility and task performance
is higher than the correlation coefficient between modularity
and task performance. This pattern is partly confirmed by partial
correlations analysis controlling for the effect of modularity and
flexibility on task performance measured in a network with 400
edges to determine the significance of the unique contribution
of each. For the simple task composite, the partial correlation

for modularity was significant (r = 0.32, p = 0.046), but that for

flexibility was not (r = 0.13, p = 0.44). The partial correlation

for the complex task composite and flexibility was significant (r

= 0.36, p = 0.022), but that for modularity was not (r = 0.13,

p= 0.39).

DISCUSSION

The present results show that the two measures of brain network
structure that are treated as independent in the literature—
flexibility and modularity—are actually highly related. Still,
each seems to make independent contributions to cognitive
performance, withmodularity contributingmore to performance

TABLE 1 | The correlation coefficients for simple and complex tasks at different

edge densities.

Number of edges Correlation coefficient

Simple tasks Complex tasks

MODULARITY

300 0.25 (p = 0.121) −0.38 (p = 0.016)

400 0.34 (p = 0.030) −0.26 (p = 0.108)

500 0.34 (p = 0.033) −0.28 (p = 0.076)

FLEXIBILITY

300 −0.27 (p = 0.090) 0.38 (p = 0.016)

400 −0.20 (p = 0.215) 0.42 (p = 0.007)

500 −0.12 (p = 0.447) 0.44 (p = 0.004)
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FIGURE 3 | Modularity and Flexibility predict different performance during simple and complex tasks. The two graphs on the left and right illustrate the relationship

between simple and complex composite scores (calculated by summing the z-scores for the performance measures for the simple and complex tasks) and modularity

(green) and flexibility (red). This relationship is represented by the magnitude of the coefficient between modularity and task performance and flexibility and task

performance for simple (left) and complex (right). The center of the figure depicts the theoretical prediction relating performance to task complexity for individuals

with high and low modularity (green curve) and flexibility (red curve).

on simple tasks, and flexibility contributing more to performance
on complex tasks.

The first major finding in the current study is that two
prominent network neuroscience measures—modularity and
flexibility—have a strong negative relationship across individuals.
In some sense, this finding is consistent with previous studies
that have examined relationships between static and dynamic
measure of connectivity. For example, Thompson and Fransson
(2015) focused on variation in the connectivity between brain
regions. They used a sliding time-window of 90 s and calculated
the correlation coefficients between regions during each time
window and then calculated the mean and variance of that
coefficient for each connection across all subjects. Connections
with a higher mean connectivity tended to have a low variance
and vice-versa. Unlike this previous work, the current study
focuses on measures that take into account the entire brain
network, with modularity a static measure of whole-brain
network structure, and flexibility a dynamic measure of whole-
brain network structure. Instead of analyzing variation across
individual connections, we analyzed variation across individual
subjects. We found a negative relationship between static and
dynamic measure of functional connectivity.

How might we account for this strong negative correlation
between flexibility and modularity? An intuitive explanation
for the negative correlation between flexibility and modularity
derives from a dynamical systems perspective that views
different configurations of brain regions as attractor states,
with modularity measuring the depth of the attractor states
(Smolensky et al., 1996). Flexibility measures how frequently the
brain transitions between states. Deeper states will naturally be
more stable and resistant to transitions, leading to a negative
correlation between modularity and flexibility. Given the high
degree of correlation between these two measures, it is difficult
to interpret findings in the literature that report only one of
these measures in isolation. In order to test that the relationship

between modularity and flexibility is not due to a method-
based explanation, we tested this relationship from randomized
signal and compared that of the human subjects to that of an
artificial network where modularity is matched to the modularity
values from the human subjects. Figure 4 shows that the negative
correlation coefficient we observed for the 52 human subjects was
more than just a method-based correlation.

However, it would be incorrect to conclude that flexibility
and modularity are simply two measures of the same property
of the brain network. The second major result from the current
investigation is that flexibility and modularity make independent
contributions to explaining task performance and, therefore,
are likely to link to different cognitive processes. Specifically,
our results suggest that flexibility may reflect cognitive control
processes (Bassett et al., 2010, 2013), while modularity may reflect
simple processes like reaction to exogenous cues of attention,
simple visual change detection, or low level motor learning. The
regions that show the highest flexibility (Figure 2B) are those that
have been previously implicated in control and/or multimodal
processes. The complex tasks used in the current study all
require aspects of control such as switching between tasks,
response selection, and maintaining working memory, while
the simple tasks do not. Assuming flexibility indexes cognitive
control capacity, we can explain why variation in flexibility
plays a larger role in explaining performance on complex tasks.
Modularity, on the other hand, seems to explain performance
for simple processes. That is, network systems that are highly
modular favor performance related to simple processes. This
result has been shown in previous work from our laboratory
(Yue et al., 2017) and in Cohen and D’Esposito (2016). Strong
within-module connections favor low level processing while
strong between-module connections favor high order processing.
However, the unique contribution of modularity and flexibility
on task performance needs further work with greater sample
sizes.
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FIGURE 4 | Observed correlation between modularity and flexibility with 52 participants (black bar) compared with the distribution of the correlation between

modularity and flexibility from simulations of an artificial network in which modularity is matched to the modularity values from the human subjects (white bars). The

observed correlation falls well outside of the distribution of correlations from the random data.

In contrast to the complex tasks, flexibility is only weakly
related to performance on simple tasks, for these simple
tasks, there is a clear contribution of modularity on task
performance, even as the contribution of flexibility is partialled
out. One interpretation of this finding is that simple tasks
tend to rely on only a single network module (Cohen and
D’Esposito, 2016; Yue et al., 2017). Stronger connections within
that module yield better performance on these tasks, while
stronger connections between that module and other network
modules have a negative impact on performance for these
simple tasks. Given that higher modularity scores correspond to
higher within module connections and lower between module
connections, higher modularity should be related to better
performance on simple tasks that rely on a single network
module.

However, flexibility has previously been reported to have
strong relationships with the ability to learn even in very simple
motor tasks (Bassett et al., 2010). How can we account for
these seemingly contradictory results? One possibility is that
the methods for measuring flexibility differ between the two
studies, with the current study using a sliding-window method
for calculating flexibility while Bassett and colleagues rely on a
multi-layer dynamic modeling approach. There remains open
debate about how to appropriately measure network flexibility
from resting state data (Hindriks et al., 2016, Kudela et al., 2017).
However, it seems unlikely that these methodological differences
would flip the direction of the correlation, with individuals
who have higher than average flexibility values by one metric
consistently showing lower than average flexibility values by the
other, or vice versa. A more theoretically interesting possibility
is that the initial stages of learning even simple skill benefits from
cognitive control operations, making tasks appear more complex.
Therefore, at the initial stages of learning, it is beneficial to have
a more flexible brain (Bassett et al., 2013). As learning progresses
and the task becomes automatized, cognitive control is no longer
necessary and the task becomes simpler. Following the theory
depicted in Figure 2, as learning progresses, flexibility should

decrease and modularity should increase, as has been previously
observed (Bassett et al., 2013, 2015).

There are several methodological concerns that arise from
the current study. However, we contend that while additional
studies should address these limitations, they are unlikely to
reverse the two main findings first, that modularity and flexibility
have a strong negative correlation and second, that modularity
and flexibility make separable contributions to explaining task
performance. One concern is that the negative correlation
between modularity and flexibility could have a method-
based rationale. In order to ensure this was not the case, we
tested the relationship between modularity and flexibility for
randomized signal and compared it to that of human subjects
as well as to an artificial network where modularity values
matched those of the human subjects. As shown in Figure 4,
the negative correlation coefficient between modularity and
flexibility observed in our 52 human subjects was more than
just a method-based correlation. A second concern is that there
was wide variability in the time that elapsed between collecting
the behavioral measures and resting state fMRI data (from 0 to
140 days). Yue et al. (2017) report that the correlations between
modularity and task performance weaken with a greater time
between behavioral testing and resting state fMRI. Therefore,
including longer elapsed times in our analysis did in fact
weaken the relationship between either modularity or flexibility,
and performance during the individual tasks (Supplementary
Table 3). However, this concern will have no effect on the
relationship between modularity and flexibility, two measures
that are calculated over the same set of resting-state fMRI
data, and the elapsed time is identical for both flexibility and
modularity and the behavioral results. It is unclear how variation
in time between behavioral testing and neuroimaging could
explain why flexibility has a strong association with complex
task performance and modularity has a stronger association with
simple task performance. A third concern is that motion artifacts
have been known to introduce signal biases in the resting state
data and individuals vary in the extent to which theymove during
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scanning (For a review see Ciric et al., 2017). However, our
analyses of the relationship between modularity, flexibility and
task performance regressed out individual differences in motion
(time series with excessive motion) during scanning. Therefore,
the results of the current study are not simply an artifact of
individual differences in motion. Still, the issue about motion
and connectivity relationship is an area that requires more
investigation. For a review of recent systematic comparisons of
various motion correction practices see (Ciric et al., 2017). In
terms of the measures available to study brain network and
cognitive function relationships, the current study focused on
two, modularity and flexibility, which were appropriate for the
questions explored here. Future studies should examine other
types of networkmeasures such as the degree of local information
integration, global information segregation, local properties such
as the degree centrality of a node, or core periphery organization
in order to arrive at a complete picture (Medaglia et al.,
2015).

A final concern raised by the current study is how the
measures of network organization vary as a function of
brain parcellation scheme. Specifically, the results reported
here focused on an anatomical atlas (Brodmann’s areas).
Other functionally-defined atlases were used to calculate both
modularity and flexibility (see Supplementary Table 1) but
were not related to behavioral measures because Yue et al.
(2017) report the strongest correlations between modularity
in the BA parcellation and performance. Similarly, we found
that the correlation between modularity and flexibility was
significant with all parcellations considered, but highest for the
BA parcellations. Other studies have reported low correlations
consistency between functional and anatomical atlases. For
example, Cohen and D’Esposito (2016) reported that the
correlation between modularity from an anatomical parcellation
and a simple sequence tapping task was significant but not with
modularity from a functional atlas (Cohen andD’Esposito, 2016).
Across at least several studies, anatomical atlases appear to be
better at characterizing brain networks than functionally defined
atlases. Since previous work has argued that inappropriate
node definition might mischaracterize brain regions which have
distinctive functions (Wig et al., 2011), and found that nodes
derived based on task-based fMRI studies did not align well
with anatomical parcellations (Power et al., 2011), one might
have expected the opposite—that is, that using network nodes
determined at least in part from functional activations (e.g.,
Glasser et al., 2016) would be better for cognitive network
neuroscience than anatomically defined atlases. Given the results
of the current study and work from other labs, the question of
the best parcellation scheme for cognitive network neuroscience

remains an open one. However, it is beyond the scope of the
current study.

CONCLUSION

For cognitive network neuroscience to advance, better links
between measures of network structure to cognitive and
neural computations must be developed (Sporns, 2014). The
theory and results presented here, disentangling the effects of
two commonly, but interrelated measures, are one step. By
considering how different measures of brain structure relate to
each other and relate to variation in performance, we can start
to develop stronger links between the cognitive and the network
sides of this new approach.
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