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Since the turn of the millennium, a large number of computational models of visual
salience have been put forward. How best to evaluate a given model’s ability to predict
where human observers fixate in images of real-world scenes remains an open research
question. Assessing the role of spatial biases is a challenging issue; this is particularly true
when we consider the tendency for high-salience items to appear in the image center,
combined with a tendency to look straight ahead (“central bias”). This problem is further
exacerbated in the context of model comparisons, because some—but not all—models
implicitly or explicitly incorporate a center preference to improve performance. To address
this and other issues, we propose to combine a-priori parcellation of scenes with
generalized linear mixed models (GLMM), building upon previous work. With this method,
we can explicitly model the central bias of fixation by including a central-bias predictor
in the GLMM. A second predictor captures how well the saliency model predicts human
fixations, above and beyond the central bias. By-subject and by-item random effects
account for individual differences and differences across scene items, respectively.
Moreover, we can directly assess whether a given saliency model performs significantly
better than others. In this article, we describe the data processing steps required by our
analysis approach. In addition, we demonstrate the GLMM analyses by evaluating the
performance of different saliency models on a new eye-tracking corpus. To facilitate the
application of our method, we make the open-source Python toolbox “GridFix” available.

Keywords: naturalistic scenes, eye movements, saliency models, evaluation metrics, fixation probability, GLMM

INTRODUCTION

Computational models of visual attention are used to derive predictions about the spatial
distribution of eye fixations in a scene, which can then be compared to observed human
fixations. An important issue concerns the methods that are used to determine how
well a given model captures human behavior (Wilming et al., 2011; Borji et al, 2013a;
Bylinskii et al, 2015). The goal of the present article is to present a new method
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that addresses a number of key issues that have made model
evaluation and comparison challenging in the past.

Models of visual attention (Frintrop et al., 2010, for review)
can be grouped as models that emphasize either bottom-up
(or stimulus-driven) or top-down (or context-driven, or goal-
driven) guidance of attention (cf. Itti and Borji, 2014). In this
context, bottom-up guidance is essentially used synonymously
to “salience.” Intuitively described, salience defines how much
an element of the scene, be it an object or a region, stands
out from its neighboring parts (Borji and Itti, 2013). Bottom-
up models typically use low-level features in the process of
building a saliency map, as initially proposed by Koch and
Ullman (1985). The first implementation of a saliency map was
provided by Itti et al. (1998). Since then, the notion of bottom-
up attention and visual salience has given rise to many new
computational models (Rothenstein and Tsotsos, 2008; Borji and
Itti, 2013; Kimura et al., 2013, for reviews). The architecture of
many saliency map models is influenced by the neurobiology
and psychophysics of human and primate vision. A current
trend is the emergence of saliency models with deep learning
architectures, which outperform traditional models (Bylinskii
etal., 2016b). Review chapters by Riche and Mancas provide brief
systematic descriptions of bottom-up saliency models for static
(Riche and Mancas, 2016a) and dynamic (Riche and Mancas,
2016b) images.

An attractive feature of saliency map models is that, once
implemented, they are “image-computable.” That is, they can
be applied to any image and produce output that can be tested
against experimental data. Under the assumption that visual
salience guides where observers look in an image, eye movement
data are frequently used to validate predictions of bottom-up
saliency models. Thus, one would compare the fixation data
recorded from observers viewing the same stimuli as given to the
model to the saliency map produced by the model.

Given the ever-increasing number of saliency models that are
being developed, the challenge is to determine which model(s)
provide(s) the best approximation to human observers eye
fixations. In fact, Itti and Borji (2014) conclude in their review
that “carrying out standardized evaluations is important to
ensure that the field keeps moving forward” (p. 1147). Various
metrics have been used for model evaluation and comparison.
Borrowed from signal detection theory (Green and Swets,
1966), the Area Under the Receiver Operating Characteristics
(ROC) Curve, referred to as AUC, is the most widely used
metric for evaluating saliency maps (e.g., Borji et al, 2013a).
There are different implementations available dealing with some
limitations of the classical approach (Riche, 2016b, for review).
Other metrics include Spearman’s Correlation Coefficient (Toet,
2011), Pearson’s Correlation Coeflicient (Ouerhani et al., 2004),
Normalized Scanpath Salience (Peters et al., 2005), Kullback-
Leibler Divergence (Kullback and Leibler, 1951; Rajashekar et al.,
2004), Earth-Mover’s Distance (Rubner et al., 1998; Pele and
Werman, 2008; Judd et al., 2012b), and a measure of information
gain (Kiimmerer et al., 2015).

A detailed discussion of the metrics used in saliency model
evaluation is provided elsewhere (Wilming et al., 2011; Emami
and Hoberock, 2013; Le Meur and Baccino, 2013; Riche et al.,

2013; Sharma, 2015; Bylinskii et al., 2016a; Riche, 2016b).
Bylinskii et al. (2016a) review a number of recent papers that have
compared different saliency models across different metrics and
datasets (Toet, 2011; Zhao and Koch, 2011; Borji et al., 2013a,b;
Emami and Hoberock, 2013; Le Meur and Baccino, 2013; Riche
etal., 2013; Li et al., 2015; see also Sharma, 2015; Riche, 2016c¢).

Assessing the performance of visual salience algorithms is not
without challenges (Bruce et al., 2015; Rahman and Bruce, 2015).
Borji et al. (2013a) contemplate: “Perhaps the biggest challenge
in model comparison is the issue of center-bias.” (p. 59). The
central bias of fixation describes the well-established finding that
observers fixate more often toward the center of the image than
its edges (Mannan et al., 1996; Parkhurst and Niebur, 2003; Tatler
et al., 2005; Clarke and Tatler, 2014; Nuthmann and Einhiuser,
2015). Interestingly, there is also a feature bias such that most
photographs of scenes have a bias toward higher salience in
the center than around the edges of the images (“photographer
bias”). Tatler (2007) demonstrated that the central fixation bias in
scene viewing is not explained by such centrally located features;
this implies that the coincidence of central fixation bias and
photographer bias remains a possible confound for the evaluation
of saliency models. Regarding model evaluation, the best solution
to the issue of center bias is to design suitable evaluation metrics
(Borji et al., 2013a), an approach we adopt here.

A critical aspect of model evaluation and comparison is that
scores are typically based on average performance over a dataset
of images (Itti and Borji, 2014, for discussion). The dataset
(Riche, 2016a, for a survey) is often hand-picked, and it may
contain significant biases (Torralba and Efros, 2011). Average
measures can be dominated by trivial cases. Not only that,
departure from average performance may provide important
diagnostic information for model development (Kiimmerer et al.,
2015). To address these issues, we propose a method that can
capture whether scene items vary in the extent to which image
salience affects fixation selection.

As a new model evaluation method, we propose to combine a-
priori parcellation of scenes with generalized linear mixed models
(GLMM). This approach builds upon our previous work in which
we combined a scene-patch analysis with GLMM (Nuthmann
and Einhduser, 2015). The scene-patch analysis allowed for
describing the relationship between (continuous) image feature
values and fixation probability. GLMM were used to estimate
the unique contribution of various image features to fixation
selection: luminance and luminance contrast (low-level features);
edge density (a mid-level feature); visual clutter and image
segmentation to approximate local object density in the scene
(higher-level features). The GLMM results revealed that edge
density, clutter, and the number of homogenous segments in
a patch can independently predict whether image patches are
fixated or not. Importantly, neither luminance nor contrast had
an independent effect above and beyond what could be accounted
for by the other image features.

Our previous work in Nuthmann and Einhauser (2015) can be
described as addressing the question of what features should be
part of the saliency map. Here, we adopt this approach to evaluate
how well a given saliency map model predicts where human
observers fixate in naturalistic images, above and beyond what
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can be accounted for by the central bias of fixation. Moreover,
we can assess directly whether a given saliency model performs
significantly better than others. In the GLMMs, by-subject and
by-item random effects account for individual differences and
differences across scene items.

In the remainder of the article, we first describe the data
processing steps required by our analysis approach. Next, we
demonstrate the GLMM analyses by evaluating the performance
of different saliency models on a new eye-tracking corpus.
To facilitate the application of our method, we provide the
open-source Python toolbox GridFix which performs the data
processing steps that are needed for the GLMM analyses.

MATERIALS AND METHODS

Participants, Apparatus, and Materials
Analyses were based on data from a new corpus of eye
movements during scene viewing and sentence reading. We
analyzed the scene-viewing data from 42 young adults (8 men
and 34 women) between the ages of 18 and 29 years (mean
age = 22.1 years). The young participants were students at
the University of Edinburgh. Another 34 older adults from the
community contributed to the eye-movement corpus; the 17 men
and 17 women averaged 72.1 years of age (range = 66 years to 83
years). The data from the older participants were not included in
the present analyses. All participants had normal or corrected-to-
normal vision. They received monetary compensation for their
participation. The study was carried out in accordance with the
recommendations of the Psychology Research Ethics Committee
of the University of Edinburgh with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Psychology Research Ethics Committee of the
University of Edinburgh.

Each participant viewed 150 color photographs of real-world
scenes, which were presented in random order to them. Most of
these images (136) depicted indoor scenes, which were rich in
objects and relatively cluttered. The scene images were chosen
such that they were also suitable for a related study in which a new
set of young and older adults searched for a pre-defined object in
the scene. Scenes were presented on a 21-inch CRT monitor with
a screen resolution of 800 x 600 pixels and subtended 25.78°
horizontally x 19.34° vertically at a viewing distance of 90 cm.
Eye movements were recorded using an SR Research EyeLink
1000 Desktop mount system. It was equipped with the 2,000 Hz
camera upgrade, allowing for binocular recordings at a sampling
rate of 1,000 Hz for each eye. Data from the right eye were
analyzed. The experiment was implemented with the SR Research
Experiment Builder software.

Design and Procedure

Each trial started with a centrally located pre-trial fixation
cross, which acted as a fixation check. Afterwards, the scene
was presented for 6s. Participants were instructed to commit
the scene to memory. To probe participants’ scene encoding,
test questions were pseudo-randomly distributed throughout the
experiment and occurred on 30 of the trials. These questions

examined memory for specific objects in the scenes (e.g., “Was
there a book?”).

Data Analysis

Gaze raw data were converted into a fixation sequence matrix
using SR Research Data Viewer. Saliency maps were computed in
MATLAB 2014a (The MathWorks, Natick, MA). Data processing
for this article was programmed in MATLAB. The code was
then re-implemented and generalized in the new open-source
toolbox GridFix!, which was programmed in Python (version 3.4;
http://python.org). Statistical analyses were performed using the
R system for statistical computing (version 3.2.2; R Development
Core Team, 2015). For GLMM:s we used the glmer program of the
Ime4 package (version 1.1-10, Bates et al., 2015b) supplied in R.
By default, glmer uses a combination of Nelder-Mead and bobyqa
optimizers.

Overview of Analysis Steps

We propose a new method for the quantitative evaluation of
saliency models, which requires four analysis steps (see Figure 1).
First, for each image one or more saliency maps are constructed
via image processing. To this end, researchers use software and
code made available by the authors of published saliency models.
In the GridFix toolbox, collections of images (scenes and/or
saliency maps) are represented as an ImageSet object, which
assigns a unique image ID to every image. Through this ID, each
scene image is associated with the corresponding saliency maps
as well as the fixation data. Moreover, it allows the user to easily
adapt the same analysis to different sets of images/maps, simply
by exchanging objects. For the present analyses, the saliency map
of each image was normalized to the same range, arbitrarily
chosen as [0,1]; the GridFix toolbox provides both original as well
as normalized values.

In the second step, each photograph is parcellated into local
image regions. For the present example analyses, we use an 8 x
6 grid yielding 48 quadratic scene patches, with each grid cell
spanning 3.2° x 3.2° (100 x 100 pixels). For each patch, a local
saliency value is then extracted from a given saliency map. Local
saliency is defined as the mean over the saliency map’s values
within each grid cell. Users of the GridFix toolbox need to specify
both the image size and the grid cell size. GridFix then generates
a regular grid as a set of binary masks, which are stored as a
RegionSet object and used to select the corresponding pixels from
a given image or saliency map. This allows for easy comparison
of results for different grid sizes for example, simply by changing
the parcellation objects and by recomputing the predictor matrix.

Third, the empirical eye-fixation data are mapped onto the
scene analysis grid. This requires constructing an observation
matrix based on the experimental design and the fixation data.
For the present data, the complete observation matrix would
comprise 302,400 rows (150 images x 42 subjects x 48 grid
cells). However, there were eight missing trials. Accordingly, the
GridFix toolbox creates the observation matrix based on trials
for which fixation data exist (302,016 rows). For each observer,
image, and image patch, GridFix can calculate two categorical

!"The GridFix toolbox is available at https://zenodo.org/record/998554.
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FIGURE 1 | Main steps of data processing performed by the GridFix toolbox. (A) One of the images used in the study. (B) A saliency map (Adaptive Whitening
Saliency) for this image, with the analysis grid overlaid. Note that brighter areas indicate higher visual salience. (C) Mean saliency values for the grid cells, color-coded.
(D) Image grid with vectors (in blue) connecting the center of the grid cell with the center of the image. (E) Gaze path from one subject over the image in (A).

(F) Coding of this subject’s eye fixations in the image grid.

response variables on demand. A binary variable is coding
whether a given image patch was fixated (1) or not (0) throughout
the trial. In addition, a count variable records the total number
of fixations that fell on a given scene region throughout the trial
(incl. immediate refixations and later revisits).

Fourth, we use GLMM to assess the impact of visual salience
on selecting image patches for fixation. To facilitate the statistical
analyses, GridFix outputs the GLMM predictors as a comma-
separated file that can be loaded into R. GridFix also generates
basic R source code to load the toolbox output and to analyze
the data using GLMM. This code is provided to facilitate initial
explorations; in most cases, it will need to be adjusted to the
individual data and design as appropriate.

Computation of Image Salience

For each image, three different saliency maps were computed.
First, we used Itti et al’s (1998) implementation of Koch
and Ullman’s (1985) computational architecture extending the
Feature Integration Theory (Treisman and Gelade, 1980).
Specifically, we used the MATLAB code that is most faithful to the
original model and its parameters as provided as the “simpsal”
model in the graph-based visual saliency (GBVS) paper (Harel
et al.,, 2007). We refer to this model as IKN98.

Second, we used the Adaptive Whitening Saliency (AWS)
model, which is based on the variability in local energy
as a measure of salience (Garcia-Diaz et al,, 2012a,b). The
AWS model was chosen because it was ranked first in its

ability to predict where observers look in static and dynamic
natural scenes in a recent comparative study (Borji et al,
2013a). We used the MATLAB implementation provided by the
authors at http://persoal.citius.usc.es/xose.vidal/research/aws/
AWSmodel.html, using a scaling factor of 1.0 to the unmodified
version of each image in its pixel intensity representation. Except
for the scaling factor, which has a default value of 0.5 to reduce
computation time for large images, default parameters as set in
the authors’ implementation were used.

Third, we used the graph-based visual saliency (GBVS)
model (Harel et al, 2007), with source code downloaded
from http://www.vision.caltech.edu/~harel/share/gbvs.php. The
model was introduced as an alternative to the then standard
IKN98 model. The GBVS model consists of two components:
a measure of local dissimilarity and a directed graph between
local nodes. In a first step, local activations are computed
based on local dissimilarity, in a second “normalization” step
activity is concentrated on a few nodes, effectively sparsifying
the resulting salience representation. Equating the nodes with
image locations, GBVS predicts fixation patterns on natural
scenes. Unlike IKN98 and AWS, GBVS has an intrinsic central
bias, as the inner nodes have more connections to other
nodes than the nodes toward the image boundaries. Thus,
the salient regions at the center of the image receive more
weight than the peripheral regions. The built-in central bias
makes GBVS an interesting test case for our model evaluation
method.
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TABLE 1 | Taxonomy of central-bias variables calculated by the GridFix toolbox.

Isotropic Aspect ratio Anisotropic
. 2 2
Euclidean Cy.euclidean = \/ (xg =xc)” + (vg —ye) /v
Parameters v=1 v=h/w=0.75 v=0.45
Rank 5 2 1
2 2
. (xg —Xc) (vg —yc)
Gaussian C, jan = —€xp | — —
g.,gaussian P |: ( 20)(2 2(7)(2 N
Parameters 02 =023 v=1 02 =023 v=075 02 =023, v=045
Rank 7 6 4
Taxicab Cg.taxicab = [Xg —Xc| + g — yc|
Rank 3

Formulas indicate how the distance between the center of each grid cell (x4, yg) and image center (xc, yc) is calculated for each variable. h/w, height/width of image. For additional
parameters (oXZ, horizontal variance for Gaussian variables; v, anisotropy parameter), we used the values suggested by Clarke and Tatler (2014) as a default. Rank numbers represent
the ordering of central-bias predictors according to GLMM analyses presented in Figure 4.

Euclidean, isotropic Euclidean, aspect ratio

Taxicab

Euclidean, anisotropic

Gaussian, isotropic Gaussian, aspect ratio

FIGURE 2 | Visualization of the central-bias variables calculated by the GridFix toolbox. Color coding indicates normalized distance of corresponding cell centers to
image center (brighter is more peripheral; dark blue: smallest distance, normalized to O; yellow: largest distance, normalized to 1).

Gaussian, anisotropic

Central Bias

A major advantage of our evaluation method for saliency models
is that we can explicitly model the central bias of fixation by
including a central-bias predictor in the GLMM. Motivated by
previous research, GridFix provides different alternatives for
both Euclidean as well as Gaussian distance-to-center variables
(Clarke and Tatler, 2014, for review). Moreover, we provide the
taxicab distance as a natural alternative when using a grid.

In the GridFix toolbox, central bias is treated in the same way
as local image features: a local feature value for each grid cell
is calculated, indicating the distance of each cell’s center to the
center point of the image. These distance values can be added as
a predictor to the GLMM. Upon creation of a CentralBiasFeature
object, the user can specify which distance measure to use
(i.e., “euclidean,” “gaussian,” or “taxicab”) along with further
parameters (e.g., for anisotropy; see below). Table 1 summarizes
the taxonomy of the central-bias variables. Moreover, Table 1

includes the formulas for calculating the different distance-to-
center variables, and Figure 2 provides a visualization.

For each of the Euclidean distance-to-center variables,
GridFix determines the distance between the center of the
respective grid cell and the center of the image (blue vectors
in Figure 1D, see also Figure 2 in Nuthmann and Einhéuser,
2015). Similarly, the “taxicab” predictor is generated using the
distance between each cell center and the center of the image
along the horizontal and vertical image axes. This distance
is called taxicab or Manhattan distance because it is the
distance a taxi would drive in a city like Manhattan where
the buildings are laid out in square blocks and the straight
streets intersect at right angles (Craw, 2010). Alternatively, the
user can choose a Gaussian central-bias variable. For each grid
cell the distance to center is read off from a two-dimensional
Gaussian distribution which is centered over the midpoint of the
grid.
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Using the definitions above, the Euclidean and Gaussian
central-bias variables correspond to isotropic measures,
assuming equal spread of fixation positions in the horizontal and
vertical dimensions. For example, Zhao and Koch (2011) fitted
an isotropic Gaussian to their fixation data to account for central
bias, i.e., they fitted a covariance matrix with equal horizontal
and vertical variance. GridFix offers two additional alternatives.
First, the Euclidean or Gaussian distance-to-center measure
can be scaled to the aspect ratio of the image. This option is
motivated by previous research in which a Gaussian scaled to the
aspect ratio of the images was used (Judd et al., 2012b). Second,
GridFix provides an optional anisotropy parameter v, which
acknowledges that fixation positions in scene viewing typically
show a greater spread of fixations horizontally than vertically
(Clarke and Tatler, 2014).

To calculate Gaussian central-bias input variables GridFix
needs parameter values that describe the variance of the
two-dimensional Gaussian distribution. The default values
correspond to the recommendations by Clarke and Tatler (2014).
Specifically, the parameter for the variance of the Gaussian
defaults to 02 = 0.23 (in units of half the image width). For
the anisotropic Gaussian and Euclidean measures, the scaling
parameter for the vertical dimension defaults to v = 0.45%.
Thus, for the anisotropic Gaussian central-bias input variable the
vertical variance vo? is set to 0.10 (0.45 * 0.23). Of course, users
can also derive these parameter values from their own data—
following the procedure in Clarke and Tatler (2014)—and submit
them as arguments to GridFix.

We note that aspect-ratio variables and anisotropic variables
are identical if v equals the inverse of the aspect ratio (e.g.,
v = 0.75 for aspect ratio 4:3). To ease comparison with a
given Euclidean distance-to-center predictor, in the GLMMs any
Gaussian central-bias predictor should be entered with a negative
sign, such that increasing values correspond to more peripheral
locations. GridFix does this automatically such that distance
values do not need to be inverted.

Generalized Linear Mixed Models

Generalized linear mixed models (Barr, 2008; Jaeger, 2008; Bolker
et al.,, 2009; Moscatelli et al., 2012; Agresti, 2013; Demidenko,
2013) are used to determine the impact of image salience
on fixation probability in scenes. An advantage of GLMM is
that they avoid information loss due to prior averaging over
items or subjects; hence we can model the data at the level
of individual observations. The probabilities and/or counts are
modeled through a link function. For binary data (1 fixated, 0 not
fixated), there are three common choices for link functions: logit,
probit, and complementary log-log (Agresti, 2013; Demidenko,
2013). For the present analyses, we use the logit transformation of
the probability, which is the default for glmer. Thus, in a binomial
GLMM parameter estimates are obtained on the log-odds or
logit scale, which is symmetric around zero, corresponding to a
probability of 0.5, and ranges from negative to positive infinity.
Consequently, negative log-odds correspond to probabilities p
< 0.5. On the other hand, fixation count data are multinomial

2Note that v = 1 for isotropic central-bias variables.

response variables, which are modeled using a poisson GLMM
with a log link function (Agresti, 2013). For the GLMMs we
report regression coefficients (bs), standard errors (SEs), and
z-values (z = b/SE).

The input variables (i.e., the variables that are measured)
and predictors (i.e., the terms that are entered into the GLMM)
of interest in this study are saliency and central bias, both of
which were measured on a continuous scale. For the GLMM
analyses, both input variables were centered by subtracting the
sample mean from all variable values and scaled by dividing
the variables by their sample standard deviations. As a result,
the input variable had a mean of 0 and a standard deviation of
1. This standardization (z-transformation) converts the original
units to units of standard deviations. In the case of approximately
normal distributed input variables, about 95% of the values are
within £2 units. Standardization of input variables results in
the estimation of standardized slopes, which are comparable in
magnitude within models as well as between models (Schielzeth,
2010). In GridFix, unstandardized variables are exported to R,
but the generated R source code by default includes code to
standardize all input variables before inclusion in the GLMM.

Mixed models are statistical models that incorporate both
fixed effects and random effects (Bates, 2010). The fixed effects of
interest in the present context are local saliency and central bias,
along with the intercept. Wald z-tests for GLMM:s test the null
hypothesis of no effect by scaling parameter estimates by their
estimated standard errors and comparing the resulting z-statistic
to zero (Agresti, 2013). The intercept represents the overall
fixation probability, describing the proportion of scene patches
observers selected for fixation. A significant positive slope for
saliency is indicative of a reliable impact of image salience on
fixation probability. Similarly, a significant negative slope for
central bias substantiates that fixation probability decreases with
increasing distance from image center.

Random effects represent subjects’ or items’ deviations from
the fixed-effect parameters (Bates, 2010). The intercept has
two random components, one varying from subject to subject
and one varying from scene item to scene item. The random
intercepts allow for the fact that some observers sample more
scene patches on average than others, and their fixation coverage
is higher (on average) for some scenes than for others. In
principle, the variance-covariance matrix of the random effects
not only includes random intercepts but also random slopes
as well as correlations between intercepts and slopes. Random
slopes account for variance between subjects and between items
for fixed effects in the GLMM. Including by-subject random
effects is also a way of accounting for individual differences
(Kliegl et al., 2011). For example, by including a by-subject
random slope for local saliency we can assess the degree to which
subjects vary in their response to image salience. Similarly, the
by-item random slope for local saliency captures whether scene
items vary in the extent to which image salience affects fixation
selection. The by-item random slope for central bias describes
whether scene items differ in eliciting more eye fixations at the
center of the image compared to the periphery. The maximal
random-effects structure also includes correlations between
variance components. To give an example, we may expect a

Frontiers in Human Neuroscience | www.frontiersin.org

October 2017 | Volume 11 | Article 491


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

Nuthmann et al.

Saliency Model Evaluation Using GLMM

correlation between the random intercept and the random slope
for central bias—both for scene items and observers—such that
the more patches were fixated, the smaller the central fixation bias
(Nuthmann and Einhiuser, 2015).

The selection of an appropriate random-effects structure
requires some care. The random intercept model has the simplest
structure in that it includes random intercepts for subjects and
items only. When random variances are present in the underlying
populations, not including corresponding random slopes in the
statistical model inflates Type I error rates (Schielzeth and
Forstmeier, 2009). Thus, the researcher may conclude that a
supposed effect exists, when in fact it does not. Therefore, some
authors recommend that all models should be “maximal,” with
all possible random slopes and correlation parameters included
(Barr et al., 2013). However, if the variances of some random
effects are very small, fitting a maximal model can lead to a
significant loss of statistical power (Matuschek et al., 2017). Thus,
the assumed protection against Type I errors can come at the
cost of a considerable increase in Type II error rate. Moreover,
the number of model parameters associated with random factors
grows quadratically with the number of variance components.
Thus, for more complex designs the maximal random-effects
structure may be too complex for the information contained
in the data (Bates et al, 2015a). If the maximal model is
overparameterized or degenerate relative to the information in
the data, it typically fails to converge.

How can model complexity be reduced without taking the
risk of inflating the Type I error? One recommendation is to
replace the maximal model with a zero-correlation parameter
(zcp) model in which the random slopes are retained but the
correlation parameters are set to zero (Barr et al., 2013). Thus,
in the zcp model random slopes and intercepts are assumed
to be independent (Barr et al, 2013; Bates et al, 2015b). A
perhaps more elaborate alternative is to build a “parsimonious”
model, which contains only variance components and correlation
parameters that are supported by the data (Bates et al., 2015a).
Parsimonious models appear to improve the balance between
Type I error and statistical power (Matuschek et al., 2017).

A parsimonious model can be determined by using a standard
model selection criterion. Common model selection criteria
are the likelihood ratio test (LRT), the Akaike Information
Criterion (AIC, Akaike, 1973), and the Bayesian Information
Criterion (BIC, Schwarz, 1978). The LRT compares two
different models to determine if one is a better fit to the
data than the other. In the present context, LRTs are used
to decide if a particular random effect should be included
in the model by evaluating, for example, whether dropping
that effect from the maximal model leads to a significantly
worse fit of the model. The log-likelihood increases with
goodness of fit. The AIC (Burnham et al, 2011, for review)
corrects the log-likelihood statistic for the number of estimated
parameters. The BIC additionally corrects for the number of
observations. The AIC and BIC both decrease with goodness
of fit.

Random effects and their correlations can be tested using
backward or forward model selection (Barr et al, 2013).
Backward selection starts with the maximal or most complex

model, whereas forward selection typically starts with a random-
intercepts-only model. Whether random effects are warranted
is essentially an empirical question (Judd et al., 2012a); there is
no one-size-fits-all solution, and this is why the GridFix toolbox
only generates basic R code to facilitate initial explorations. As
a rule of thumb, model complexity can be reduced by removing
parameters that are zero (or very close to zero) and by removing
nonsensical estimates of correlation parameters (i.e., values of
—1 or +1). In principle, any of the special cases discussed above
(random intercept model, zcp model, maximal model) could be
identified as a parsimonious model.

We conclude this section by previewing our model selection
strategy for the results reported below. For the one-predictor
GLMMs (step 1) we report maximal GLMMs. For the Central-
Bias—Saliency GLMMs (step 2), each testing one of the saliency
maps, we report maximal models as well (with one exception,
see Footnote 4). Exploring these two-predictor GLMMs further,
the results section concludes with a comprehensive set of
control analyses, part of which were designed to compare the
maximal models with corresponding zcp models and random
intercept models. When using one of the Central-Bias—Saliency
GLMMs to discuss individual differences and item effects (step
3), we explicitly compare the maximal model to both the zcp
model and the random intercept model. For the most complex
Central-Bias—Saliency comparison GLMM (step 4) we report a
parsimonious model. For model comparisons, we report LRTs
which are complemented by AIC and BIC as appropriate.

RESULTS

The analyses are presented in four main sections. First, we report
one-predictor GLMMs that assess the effects of image salience
and central bias in isolation. Second, we test Central-Bias—
Saliency GLMMs to explicitly address the relationship between
image salience and center bias for a given saliency model.
Based on these two-predictor GLMMs, we then demonstrate
how individual differences and item effects can be accounted
for by including random effects in the GLMMs. Next, we build
a comparison GLMM, which allows for testing whether the
performance differences between the three saliency models are
statistically significant. For these example analyses, we specify
binomial GLMMs that model whether a given image patch was
fixated or not.

The fixation on the fixation cross typically extended into the
period of scene presentation and fell on one of the centrally
located image patches. This initial fixation was excluded from
analysis. The patch it fell on was also excluded from analysis for
this image and observer, irrespective of whether it was revisited
or not (Nuthmann and Einhiuser, 2015)3.

3Two situations are possible. The first one is that the patch was only fixated during
the extended fixation on the pre-trial fixation cross. The second possibility is that
the patch additionally received an immediate refixation or later revisit. Since the
initial fixation is routinely excluded, the first case would be coded as “not fixated,”
the second one as “fixated.” It can be debated whether coding the first case as “not
fixated” is appropriate, as the patch was fixated for some period of time during the
fixation on the pre-trial marker. Therefore, GridFix offers to exclude this patch
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One-Predictor Models

We start by building one-predictor models which each included
one of the three different saliency predictors or one of the seven
different central-bias predictors as fixed effects along with the
intercept. Thus, we assess how well image salience or central
bias alone can be used to predict where human observers fixate.
For example, the AWS-only GLMM includes AWS as the only
fixed effect. In all GLMMs, the intercept represents the overall
fixation probability. For saliency and/or central bias, which are
both continuous input variables, the GLMM fits a linear function
to the data and reports the fixed-effect regression coefficient for
the slope. The slope for saliency is interpreted as the change
in fixation probability (ie., the outcome variable) associated
with a one standard deviation increase in the saliency predictor.
For each GLMM, we also determined the variance explained
by the fixed effect(s) by calculating the marginal R? (Nakagawa
and Schielzeth, 2013; Johnson, 2014). To this end, we used the
r.squaredGLMM function in the MuMIn R package (Barton,
2015).

Each GLMM included the maximal random-effects structure
justified by the design (Barr et al., 2013). For the subject factor,
there were two variance components (intercept and slope) and
one correlation parameter for the possible correlation between
random intercept and slope; the same three variance components
and correlation parameters were included for the random factor
“scene item.”

The three saliency-only GLMMs each tested a different
saliency model (IKN98, AWS, GBVS). For these models, Table 2
provides the parameter estimates for the fixed effects and the
variance-covariance matrix of the random effects. Here, we focus
on the fixed-effect estimates for the standardized regression
slopes (Figure 3, left panel). For each saliency model, the
corresponding GLMM showed a significant effect of local image
saliency on fixation probability. As visual salience in an image
patch increases, fixation probability increases as well. We can
(informally) compare the strength of the saliency effect across
models through the size of the standardized regression coeflicient
in the GLMM (Schielzeth and Forstmeier, 2009, for discussion
in the context of LMMs; Schielzeth, 2010). This comparison
suggests that AWS (b = 0.868, SE = 0.036, z = 24.27, p < 0.001)
and GBVS (b = 0.868, SE = 0.032, z = 27.25, p < 0.001) perform
equally well, with IKN98 performing the worst of the three
saliency models (b = 0.679, SE = 0.028, z = 24.25, p < 0.001).
Similarly, the marginal R? was comparable for AWS (17.42%) and
GBVS (17.70%) but considerably reduced for IKN98 (11.78%).

In addition to the saliency-only GLMMs, we specified one-
predictor GLMMs that each tested one of the seven central-
bias predictors. We also determined the variance explained by
the fixed effect central bias in a given GLMM by calculating
the marginal R?. As expected, in all GLMMs the central-bias
predictor showed a significant negative effect of distance to
center on fixation probability; as the distance from image center
increases, fixation probability decreases. We then used two
measures to rank the central-bias variables: the standardized
regression coeflicient for the fixed effect central bias and the

from analysis as a clean solution. Specifically, by default the patch is coded as
missing value (NaN) and thereby ignored in subsequent analyses.

TABLE 2 | Three saliency-only GLMMs fitting fixation probability for a scene
memorization task.

B SE z p

IKN98

Fixed effects

Intercept —1.1016 0.0292 —37.70 <0.001

Saliency 0.6795 0.0280 24.25 <0.001

Random effects

Groups Name Variance SD Correlation

Subject Intercept 0.01867 0.1366 Intercept
Saliency 0.00321 0.0566 —0.64

Item Intercept 0.05790 0.2406 Intercept
Saliency 0.10249 0.3201 —-0.04

AWS

Fixed effects

Intercept -1.1149 0.0331 —33.71 <0.001

Saliency 0.8678 0.0358 24.27 <0.001

Random effects

Groups Name Variance SD Correlation

Subject Intercept 0.01839 0.1356 Intercept
Saliency 0.00190 0.0436 —0.01

Item Intercept 0.09464 0.3076 Intercept
Saliency 0.18093 0.4254 0.14

GBVS

Fixed effects

Intercept —1.1605 0.0351 —33.10 <0.001

Saliency 0.8678 0.0318 27.25 <0.001

Random effects

Groups Name Variance SD Correlation

Subject Intercept 0.02706 0.1645 Intercept
Saliency 0.01601 0.1265 —0.80

Item Intercept 0.08420 0.2902 Intercept
Saliency 0.09119 0.3020 0.04

Estimates of coefficients, standard errors, and z-ratios for fixed effects and variances,
standard deviations, and correlations for random effects.

marginal R%. Both measures provided the same ranking, which is
illustrated in Figure 4. The effect of central bias was largest in size
for the anisotropic Euclidean predictor, and this predictor also
explained the most variance in the outcome. The lowest values
were obtained for the isotropic Gaussian predictor. As a general
pattern, Euclidean variables did better than Gaussian variables,
and anisotropic variables did better than aspect-ratio variables,
which again did better than the isotropic variables.

Central-Bias—Saliency GLMMs

In the next step, we explicitly address the relationship between
image salience and center bias. Averaged across images, the
scenes used in our study have a modest central feature bias.
In our analysis framework, the central feature bias shows in a
significant negative correlation between the cells’ local saliency
values and their distance from scene center. For our images,
Figure 5 shows the pairwise Spearman’s rank correlation between
saliency and distance from center for the three saliency maps
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Saliency-Only GLMMs

Central Bias — Saliency GLMMs

Saliency Maps
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GBVS
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FIGURE 3 | Saliency-only GLMMs (left) and Central-Bias— Saliency GLMMs (right). The figure visualizes the fixed-effect estimates and standard errors for
standardized regression coefficients (i.e., slopes). The data in the left panel are from three saliency-only GLMMs that each tested a different saliency model (IKN98,
AWS, GBVS). Here, a larger fixed-effects estimate for the slope corresponds to a greater effect of image saliency on fixation probability. The data on the right are from
three Central-Bias— Saliency GLMMs, one for each saliency model. These GLMMs test whether image saliency has an independent effect above and beyond what
can be accounted for by central bias. Each GLMM included the anisotropic Euclidean central-bias predictor, along with the intercept and the saliency predictor. Each
panel in the facet plot presents the data for one saliency model. Specifically, each bar graph depicts fixed-effect estimates for standardized regression slopes for
central bias (left bar) and saliency (right bar). A more negative central-bias coefficient is indicative of a stronger central bias.

T T T T
CentBias Saliency CentBias Saliency

Predictor

(rows) and seven central-bias variables (columns). The strength
of these correlations is lowest for AWS (r = —0.27 to r =
—0.37, p < 0.001), followed by moderate correlations for IKN98
(r = —0.43 to r = —0.50, p < 0.001). The correlations are
particularly large for GBVS (r = —0.78 to r = —0.86, p <
0.001), presumably because this model implicitly incorporates
a center bias. Now, due to this correlation, a saliency-only
GLMM can potentially yield a significant effect of salience
on fixation probability even if salience was irrelevant for
fixation selection. Therefore, we now specify three Central-
Bias—Saliency GLMMs to test whether image salience has an
independent effect above and beyond what can be accounted for
by central bias. Each GLMM included the anisotropic Euclidean
central-bias predictor and the relevant saliency predictor as
fixed effects, along with the intercept. The maximal variance-
covariance matrix of the random effects comprised 12 variance
components and correlation parameters. For the item factor,
there were three variance components (intercept, central-bias
effect, saliency effect) and three correlation parameters for
the possible correlations between each pair of these three
components. For the subject factor, the same six variance
components and correlation parameters were included®.

4For IKN98, the by-subject random effect for saliency was excluded as its variance
was close to zero, leading to convergence problems.

The results are summarized in Table 3 and Figure 3 (right
panel). For all three saliency models, both central bias and
saliency can independently predict whether image patches are
fixated or not. The effect of saliency was again similar in size
for AWS and GBVS (AWS: b = 0.717, SE = 0.037, z = 19.64,
p < 0.001; GBVS: b = 0.696, SE = 0.047, z = 14.66, p < 0.001).
The effect of saliency was again considerably smaller for IKN98
(b = 0.399, SE = 0.030, z = 13.33, p < 0.001). On the other
hand, the effect of central bias was comparable in size for IKN98
and AWS (IKN98: b = —0.590, SE = 0.036, z = —16.27, p <
0.001; AWS: b = —0.556, SE = 0.034, z = —16.15, p < 0.001).
By comparison, the independent effect of central bias was much
reduced for GBVS (b = —0.230, SE = 0.049, z = —4.71, p <
0.001). One way to interpret the GLMM results is that the GBVS
model owes part of its prediction performance to an implicitly
incorporated central bias (cf. Harel et al., 2007). As a result,
the saliency predictor explains variance that would otherwise be
explained by the central-bias predictor.

Random Effects: More than Nuisance

Parameters

The main purpose of the GLMM:s is to estimate fixed effects and
to test their significance. In this framework, we have modeled
subjects’ and items’ deviations from the fixed effects to protect
against Type I errors (Schielzeth and Forstmeier, 2009; Barr
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FIGURE 5 | Pairwise correlation between saliency and distance from center for three different saliency maps (rows) and seven different central-bias variables
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TABLE 3 | Three Central-Bias— Saliency GLMMs fitting fixation probability for a
scene memorization task.

B SE z P
IKN98
Fixed effects
Intercept —1.2084 0.0335 —36.08 <0.001
Central bias —0.5903 0.0363 —16.27 <0.001
Saliency 0.3992 0.0300 13.33 <0.001
Random effects
Groups Name Variance Correlation
Subject Intercept 0.02925 Intercept
Central bias 0.02194 0.82 Central bias
Saliency - - -
Item Intercept 0.05951 Intercept
Central bias 0.11434 0.57 Central bias
Saliency 0.12918 0.00 0.49
AWS
Fixed effects
Intercept —1.2248 0.0382 —32.04 <0.001
Central bias —0.5563 0.0345 —-16.15 <0.001
Saliency 0.7173 0.0365 19.64 <0.001
Random effects
Groups Name Variance Correlation
Subject Intercept 0.03123 Intercept
Central bias 0.02602 0.83 Central bias
Saliency 0.00250 0.43 0.39
Item Intercept 0.10334 Intercept
Central bias 0.08081 0.50 Central bias
Saliency 0.18581 0.20 0.35
GBVS
Fixed effects
Intercept —1.2027 0.0366 —32.84 <0.001
Central bias —0.2301 0.0489 —4.71 <0.001
Saliency 0.6956 0.0474 14.66 <0.001
Random effects
Groups Name Variance Correlation
Subject Intercept 0.03102 Intercept
Central bias 0.01327 0.73 Central bias
Saliency 0.00585 —0.63 -0.36
Item Intercept 0.08580 Intercept
Central bias 0.30123 0.35 Central bias
Saliency 0.30598 0.25 0.82

Estimates of coefficients, standard errors, and z-ratios for fixed effects and variances and
correlations for random effects.

et al, 2013). At the same time, including by-subject and by-
item random effects is also a way of accounting for individual
differences and item effects.

We demonstrate this by using the Central-Bias—Saliency
GLMM for Adaptive Whitening Saliency from the previous
section as an example. To recapitulate, parameters of the
GLMM comprise the fixed-effects estimates and the variances
and covariances of random effects. The random effects are
the differences between individual coeflicients (for subjects and
items) and fixed effects, and have a mean of zero. Mixed models

join the measurements of each subject or item together in
determining how much subjects or items differ from each other
(Gelman and Hill, 2007). To ascertain the reliability of individual
differences and item effects, the maximal GLMM can be tested
against reduced models that are nested within the maximal
GLMM in that they differ in the random effects part.

Individual Differences

Based on the model estimates, “predictions” (conditional
modes) for subject-specific intercepts, the central-bias effect,
and the saliency effect can be computed. Figure 6 displays
these conditional modes for the 42 subjects, sorted by the
effect for the intercept. The horizontal error bars depict 95%
prediction intervals based on the evaluation of the conditional
modes and the conditional variances of the random effects
given the observed data (Bates, 2010; Kliegl et al, 2011).
There are three noteworthy results. First, individual differences
exist for the overall fixation probability (intercept) and also
for the central-bias effect. There are subjects whose prediction
intervals are completely on opposite sides of the zero line, which
represents the corresponding fixed-effect estimate. Second, the
first two panels in Figure 6 reveal a fairly consistent ordering of
subjects’ central-bias effects relative to their intercept effects. This
positive correlation, estimated as 0.83 in the GLMM (Table 3),
substantiates that the more patches were fixated, the smaller the
central fixation bias (Nuthmann and Einhiuser, 2015)°. Third,
prediction intervals for subjects’ saliency effects overlap very
strongly and oftentimes include the zero line. This suggests
that subjects do not vary that much in their response to image
salience. Nevertheless, a GLMM without variance/covariance
components for the saliency effect fits significantly worse than
the complete model [logLik AX(23) =50.21, p < 0.001].

Iltem Effects

Given the great variation in the composition of natural scenes,
inferences about the role of image salience are likely to depend
on the choice of scenes. Previously, it has been shown that effects
of saliency (Borji et al., 2013a) and central bias (Wilming et al.,
2011) on fixation selection depend on image category. Within
the present approach, differences between scene categories may
be accounted for by including scene category as a fixed effect in
the GLMM. In the present experiment, we did not aim for testing
scenes from different categories. Therefore, we chose to account
for between-item differences by including by-item random effects
and correlation parameters (as part of the variance-covariance
matrix). Figure 7 displays the resulting conditional modes for
the 150 scene items, sorted by the saliency effect. We observe
considerable by-item differences on all three fixed effects (from
left to right: saliency, central bias, intercept). For the saliency
effect, large positive values are indicative of a particularly strong
effect of image salience on fixation selection. In contrast, large
negative values represent scenes for which the saliency model
performs particularly poorly.

5The fixed-effects estimate for central bias is negative. A positive conditional mode
of the central-bias effect translates to a less negative central-bias coefficient for this
subject, which is indicative of a weaker central bias.
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To illustrate the by-item saliency effects, Figure 8 shows the
five best and five worst scenes according to the Central-Bias—
Saliency GLMMs. The numbers at the bottom right of each
thumbnail image are the individual item coeflicients, which are
obtained as the sum of fixed-effect estimates and predictions for
random effects (Gelman and Hill, 2007). According to Figure 7,
for AWS the best scene is #26 (top of Figure 7A) and the worst
scene is #139 (bottom of Figure 7A). Interestingly, for scene #139
the coefficient for the saliency effect is effectively zero (coefficient
= fixed effect + random effect; —0.03 = 0.72 £ 0.75), which
means that salience has no impact on fixation selection for this
scene. In addition to presenting results for AWS, Figure 8 also
depicts the five best and five worst scenes for IKN98 and GBVS.

The three saliency models are contrasted in different rows of the
figure. Clearly, there are common scenes for which the tested
saliency models perform particularly well (e.g., #1). However,
even though the IKN98 model performs particularly well on
scene #1, the AWS model still performs better on this scene, as is
evident from the larger individual item coefficient. This is because
AWS performs better than IKN98 overall, as expressed in the
larger estimate for the fixed effect saliency (Table 3).

One reason for the relative success of saliency models in
predicting human gaze behavior is in their ability to predict the
location of objects, which in turn attract attention and the eyes
(Einhduser et al., 2008; Elazary and Itti, 2008; Nuthmann and
Henderson, 2010; Stoll et al., 2015). This is particularly true for
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FIGURE 7 | By-item random effects for the Central-Bias— Saliency GLMM testing Adaptive Whitening Saliency. “Caterpillar plots” for conditional modes and 95%

prediction intervals of 150 scene items for (A) saliency effect, (B) central-bias effect, and (C) mean fixation probability. Scene items are ordered by the saliency effect.

The numbers on the y-axis are the scene IDs.
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Saliency models

Five best scenes

FIGURE 8 | Five best and five worst scenes based on by-item random slopes for image salience. The ranking (1-5 and 150-146) is based on the results from the
three Central-Bias—Saliency GLMMs (Table 3). Rows contrast the three tested saliency models. The three top rows show the five best scenes for a given saliency
model; the five worst scenes are depicted in the bottom half of the figure. For a given thumbnail image, the white inset number at the top left is the scene ID. The
numbers at the bottom right are the individual item coefficients, which are obtained as the sum of fixed-effect estimates and predictions for random effects. Note that
there are common scenes for which the tested saliency models perform particularly well.

models like AWS, which generates some notion of objecthood
using proto-objects and whitening (Garcia-Diaz, 2011).

For the scenes on which the saliency models performed very
poorly, we visually inspected the images, saliency maps, and
fixation data. We could make out three factors that contributed
to poor model performance. First, models perform poorly if the
scene contains many items of similar low-level salience, especially

when their individuation is hard (e.g., scene #149, which contains
many colored fruit). Second, models fail to predict fixations
on objects that distinguish themselves from the background by
features the model has no access to (e.g., the gramophone in
scene #128 has nearly the same physical color as its surround, but
its apparent shininess makes it stand out for human observers).
Third, structures that differ from their surround but mainly
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frame a part of the scene are not fixated as often as predicted
by the models (e.g., the framework in scene #100, which most
models judge to be highly salient, but human fixations are instead
attracted to the centers of the framed regions). As a result,
some scenes (e.g., scene #100) even have negative individual item
coeflicients, which implies that high saliency was associated with
fewer fixations.

Reliability of Individual Differences and Item Effects
The reliability of between-subject and between-item effects
can be assessed through model comparison using LRTs. The
number of possible random effects structures increases with the
complexity of the design. Rather than testing all possibilities, we
contrast our maximal model with two models that have gained
popularity in the literature: the zcp model and the random
intercept model (cf. Bates et al., 2015a). For demonstration
purposes, we will again use the Central-Bias—Saliency
GLMM for Adaptive Whitening Saliency. Compared with
our maximal model, the zcp model estimates the same six
variance components, but it does not estimate the six correlation
parameters.

According to the LRT, the maximal model provided a
significantly better goodness of fit than the zcp model [logLik
A x(zﬁ) = 76.55, p < 0.001], suggesting that there are appreciable
(non-zero) correlations between random effects. In addition,
both AIC and BIC were smaller for the maximal model than
for the zcp model (AIC: 286242-286335 = —93; BIC: 286400-
286431 = —31). On the other hand, the zcp model provided
a significantly better goodness of fit than the random intercept
model [logLik AX§4) = 7,649.2, p < 0.001]; in addition, both
AIC and BIC were much smaller for the more complex zcp
model (AIC: 286335-293976 = —7641; BIC: 286431-294029
= —7598). Thus, the random intercept model is not adequate
for our data.

Central-Bias—Saliency Comparison GLMM
The results from the central-bias—saliency GLMMs suggest
the following rank order of saliency models: IKN98 performs
least well; AWS and GBVS perform better with little difference
between the two. While these analyses are informative, they
do not provide us with a direct indication of whether the

performance differences between the three saliency models are
statistically significant. To achieve this direct comparison, we
specify a GLMM which additionally includes “saliency map” as
a categorical predictor. For this factor, the GLMM compares each
level of the variable to a reference group; that is, one of the
saliency models. We chose AWS as the reference, which allowed
for testing two important group differences. First, fixation
probability for IKN98 can be compared to AWS. Second, we
can test for differences between AWS and GBVS. As before, the
GLMM included image saliency and central bias as fixed effects.
The new addition is that group differences are tested through
interactions.

Most importantly, by including the interaction of local
saliency (continuous predictor) and saliency map (categorical
predictor), the GLMM will first test the effect of local saliency on
fixation probability for the reference saliency map (AWS), which
will be reported as a simple effect. In addition, the GLMM will
test whether this effect was significantly different for either of
the other two saliency maps (interactions). The actual coefficient
for the effect of saliency in the IKN98 saliency model (or GBVS)
can be derived by summing the simple effect coefficient and
the relevant interaction coefficient. Similarly, the fixed effect
for central bias will test the independent effect of central bias
for the reference saliency map (AWS). The interaction between
central bias and saliency map will test whether the effect of
central bias was significantly different for either of the other two
saliency maps. Taken together, the comparison GLMM includes
seven fixed effects (intercept, two main effects, four interaction
coefficients).

For this GLMM, the maximal random-effects structure would
require estimating 56 parameters (by item: random intercept, 6
random slopes, 21 correlation terms; by subject: same as by item).
Since the maximal model did not converge, we set the correlation
parameters to zero (Barr et al., 2013; Bates et al., 2015b). The full
random-effects structure of the zcp model required 14 variance
components to be estimated. For this model, the variances for
four by-subject random effects were estimated as zero. These
were the difference scores describing how subjects’ responses to
IKN98 or GBVS differed from their responses to AWS. Those
four random effects were excluded from the final model. The
results for the final model are summarized in Table 4. Moreover,

TABLE 4 | Estimates of coefficients, standard errors, and z-ratios for fixed effects and variances for random effects for the comparison GLMM in which the effects of
saliency and central bias were simultaneously evaluated for three different saliency maps.

Fixed effects

Random effects, Variance

Predictor B SE z By-items By-subjects
Intercept —1.2157 0.0333 —36.46 0.05601 0.03091
Central bias (AWS) -0.5700 0.0329 —17.33 0.07742 0.02284
Central bias: IKN98-AWS —0.0264 0.0162 -1.63 0.03122 -
Central bias: GBVS-AWS 0.2932 0.0310 9.44 0.13229 -
Saliency (AWS) 0.6622 0.0329 20.10 0.15397 0.00124
Saliency: IKN98-AWS —0.2688 0.0262 —10.24 0.09445 -
Saliency: GBVS-AWS —0.0279 0.0340 -0.82 0.16012 -

Number of observations: 887,172; groups: scene items: 150, subjects: 42. Non-significant coefficients are set in bold (|z| < 1.96, p > 0.05).

Frontiers in Human Neuroscience | www.frontiersin.org

October 2017 | Volume 11 | Article 491


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

Nuthmann et al.

Saliency Model Evaluation Using GLMM

Figure 9 depicts the predicted partial effects of central bias (left
panel) and saliency (right panel) on fixation probability for the
three tested saliency models. The partial effect describes the
effect of the independent variable in question when all other
variables in the model are statistically controlled. For example,
for computation of the partial saliency effect the fixed effect
capturing the central bias was removed, as was any between-
subject and between-item variance. GLMM predictions were
extracted using the keepef function from the remef package
(version 1.0.6.9, Hohenstein and Kliegl, 2014).

Regarding the central-bias effect, there was no significant
difference between AWS and IKN98 (b = —0.026, SE = 0.016,
z = —1.63, p = 0.10). However, the central-bias slope was
significantly less negative for GBVS than for AWS (b = 0.293,
SE = 0.031, z = 9.44, p < 0.001). The actual coefficient for the
independent effect of central bias for GBVS was —0.277 (—0.570
+ 0.293). Relative to AWS (b = 0.662, SE = 0.033, z = 20.10, p
< 0.001), saliency had a significantly reduced effect on fixation
probability for IKN98 (b = —0.269, SE = 0.026, z = —10.24,
p < 0.001). For GBVS, the saliency effect was not significantly
different from AWS (b = —0.028, SE = 0.034, z = —0.82, p =
0.41).

Control Analyses

For the three central-bias—saliency GLMMs, each testing one
of the saliency maps, we performed control analyses to explore
(a) the different central-bias predictors, (b) different grid cell
sizes, and (c) different random-effects structures. Regarding the
resolution of the grid, we repeated the analyses for both a fine
16 x 12 grid as well as a coarse 4 x 3 grid (cf. Nuthmann and
Einhduser, 2015). For all three grid resolutions, including the
default 8 x 6 grid, we repeated the analysis for each of the seven
central-bias predictors. For each of these GLMMs, we tested

three different random-effects structures: (a) maximal model, (b)
zcp model, and (c) the random intercept model. Altogether, 189
central-bias—saliency GLMM:s were specified.

A systematic comparison is beyond the scope of this article.
Instead, we report an informal summary of our observations.
IKN98 consistently performed the worst of the three tested
saliency models. For the GBVS model with its implicitly built-
in central bias, performance depended on the chosen central-
bias predictor in the following way: for six out of seven
central-bias predictors, the independent effect of the central-
bias predictor was either completely gone or even changed sign;
in both cases, GBVS outperformed AWS. By comparison, for
the best-performing (Figure 4) anisotropic Euclidean central-
bias predictor the independent (negative) effect of central bias
was strongly diminished and AWS and GBVS kept performing
equally well (Figure 3, right panel).

When the random-effects structure was varied, the zcp
model and the maximal model consistently yielded very similar
results. Including random slopes along with the random
intercepts consistently increased the standard errors of fixed-
effects estimates. To be clear, the effects of central bias and
saliency were significant in all GLMMs. However, in the random
intercept models the fixed-effects estimates were attenuated with
less standard error (cf. Demidenko, 2013), due to the models not
including random slopes for critical effects. Thus, for the present
eye-movement dataset random intercept models are likely to
be anticonservative when comparing saliency models for which
performance differences are minimal.

DISCUSSION

Given the large number of computational models of visual
salience that exist in the literature, a key question is: how can
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FIGURE 9 | Central-Bias— Saliency Comparison GLMM. The figure visualizes predicted partial effects of central bias (left) and image saliency (right) on fixation
probability in log-odds scale for three saliency models that were included in the comparison (IKN98, red solid line; AWS, green dashed line; GBVS, blue long-dashed line).
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one fairly evaluate all these models? In this article, we propose
a new method which has desirable properties, discussed below.
Our approach makes use of generalized linear mixed modeling,
a powerful statistical technique which has become increasingly
common in psychology and psycholinguistics, but is not yet
widely used in computational vision and modeling.

Baseline and Reference Frame

For existing evaluation methods, the choice of an appropriate
baseline is a non-trivial issue to address (Bylinskii et al., 2016a).
An important advantage of our method is that there is no
requirement to define a baseline (Nuthmann and Einhduser,
2015, for discussion).

Wilming et al. (2011) suggested that—along with the
performance measure—researchers should report the lower and
upper bound for model performance as a reference frame.
Specifically, the authors propose that the predictive power of
the image- and subject-independent central bias constitutes
a (challenging) lower bound for model performance, which
“any useful model has to exceed” (p. 10). Moreover, they use
the consistency of selected fixation locations across different
subjects (inter-subject consistency) as an upper bound for model
performance, following other authors (e.g., Peters et al., 2005;
Harel et al.,, 2007; Einhduser et al., 2008; Kanan et al., 2009).
At the same time, Wilming et al. show that it is possible to
surpass the upper bound by combining subject- and image-
specific information.

New Approach Using Grid and GLMM

Here, we introduce a different (and complementary) approach.
We aimed to derive a method which allows for directly describing
the relationship between image salience and fixation probability,
after controlling for subjects’ tendency to look at the center
of scene images. In this framework, central bias and saliency
are evaluated as predictors in advanced regression models.
The central-bias-only GLMMs can be viewed as representing
the lower bound of model performance. The central-bias-only
GLMMs (Figure 4) can be contrasted with saliency-only GLMMs
(Figure 3, left panel; Table 2). Our analysis of three saliency
models and seven different central-bias variables suggested that
saliency alone could predict fixation selection better than central
bias alone. The one exception was the anisotropic Euclidean
central-bias measure, for which the marginal R?> was larger
than for the IKN98 saliency model (14.26 vs. 11.78%). Now,
the problem with these analyses is that we typically observe
significant correlations between saliency and distance from
center (see Figure 5 for the present data). We can address this
issue by specifying Central-Bias—Saliency GLMMs, which take
this correlation into account and yield partial effects for central
bias and saliency.

Among the saliency models that we tested, GBVS was the
only model with an intrinsic central bias. A joint consideration
of our main and control analyses suggests that the ranking
of the GBVS model relative to the AWS model depended on
which central-bias predictor was used. In the main analyses,
for which we used the best-performing anisotropic Euclidean
central-bias predictor, AWS and GBVS performed equally well.

For all other central-bias predictors, GBVS tended to outperform
AWS. While this dependency warrants further investigation, the
present analyses clearly demonstrate that our method identified
GBVS as a model that already incorporates a center preference to
improve performance. We make the following recommendations
for future research. If possible, the researcher should determine
how the central bias was incorporated in a given saliency model
and then select (or define) an appropriate central-bias predictor
for the GLMM. It is a strength of our approach that it allows for
including different forms of central bias.

Assessing Differences between Groups

The present method can be extended to assess effects of viewing
task, image class, or subject group by including additional fixed
effects in the GLMM. For example, to make full use of our
new eye-movement corpus we can analyze whether older adults
differ from young adults in terms of scene coverage, central bias
and—most of all—the importance of image salience for fixation
selection during scene viewing. To give another example, End
and Gamer (2017) used our method to assess the independent
contributions of social features and physical saliency on gaze
behavior.

Regarding the comparison of saliency models, the method
can be expanded to more than three saliency models. The
comparisons enter the GLMM as contrasts which are chosen
such that they test the comparisons that are of most interest.
More complex GLMMs will lead to more complex maximal
random-effects structures, which may make the selection of an
appropriate random-effects structure more difficult. One way to
mitigate this problem would be to first test between different
families of saliency models and then within the winning model
family.

Random Effects for Subjects and Scene

Items

In experimental research, it is common to treat subjects as
the sole random factor in the analysis (Judd et al., 2012a).
However, in research on real-world scene perception, individual
characteristics of the scene items cannot be ignored. One way
to assess such item variance is to fit a separate model to each
scene item’s data. With this approach there is a risk of overfitting
the data, because data points with extreme values are weighted
too heavily (Gelman and Hill, 2007). In comparison, GLMMs
provide enhanced precision in prediction for items, because a
given model considers the behavior of any given item in the
light of what it knows about the behavior of all the other items,
and shrinks extreme values accordingly (Baayen, 2008). Similarly,
unreliable between-subject variance in the effects is removed
through shrinkage toward the estimate of the population mean
(Kliegl et al., 2011; Makowski et al., 2014). Another advantage
is that GLMMs allow one to generalize to both populations of
subjects and items on the basis of a single analysis (Locker et al.,
2007).

In our study design, subjects and items were completely
crossed with each other such that every subject viewed all 150
scene images. It can be advantageous to test saliency models on
data sets comprising a large number of scenes from different
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categories. In this case, each subject can only provide data for
a subset of items. For example, the CAT2000 dataset comprises
4,000 images of which 800 were presented to a given subject (Borji
and Itti, 2015). Each image was viewed by 24 different observers.
GLMMs can handle data from such designs in which subjects and
items are partially crossed.

Our investigation of random effects in the GLMMs showed
that item variances were much larger than subject variances (cf.
Nuthmann and Einhéduser, 2015). Results for by-item saliency
effects suggested that the saliency models did particularly
well on certain scenes, and completely failed on others.
This further supports the observation that current saliency
models tend to find it difficult to predict fixation selection
for some particular type of stimulus (Borji et al, 2013a).
Knowing on what images their saliency model failed may
help researchers to make informed decisions about how to
improve their model (Kimmerer et al, 2015). Moreover,
the present method could be used to identify images for
which particular predictors are particularly (ir)relevant, and
thus guide the selection of images for experiments that best
discriminate between saliency models. Finally, the analyses
substantiated that the central bias is image and subject
dependent.

Classification of Evaluation Measures and

Desirable Properties

A systematic comparison of our method with existing methods
for the evaluation of saliency maps is beyond the scope of
the present article. Instead, we will situate our method in
existing classifications of evaluation measures. Moreover, we
will discuss how our method fares with respect to desirable
properties for evaluation measures suggested by Wilming et al.
(2011).

Measures can be categorized as location-based or distribution-
based depending on whether the ground truth (here: human
eye fixations) is represented as discrete fixation locations or
a continuous fixation map (Riche et al., 2013; Bylinskii et al.,
2016a). Riche et al. (2013) further distinguish “specific metrics”
and “common metrics” from “hybrid metrics.” Specific metrics
are the ones that were specifically developed for the evaluation
of saliency models. Here, we combine a-priori parcellation of
scenes with a common statistical analysis method (GLMM). To
address our research question, we chose to code observers’ eye
fixations in a grid, which allows for homogeneous, exhaustive
image coverage. Thus, our method is best described as a hybrid
location-based method.

Wilming et al. (2011) derived a set of four desirable properties
for evaluation measures: “few parameters,” “intuitive scale;
“low data demand,” and “robustness.” First, the outcome of an
evaluation measure should not depend on arbitrary parameters
(Wilming et al., 2011). Parameter estimation for GLMMs does
not involve any arbitrary parameters. However, the resolution
of the grid is chosen by the user. We would advise against
using a very small grid cell size. Theoretically, the size of the
grid cells could be reduced to the pixel level. The problem is
that fixation locations are too sparse to directly apply pixel-wise

statistical modeling (Lao et al., 2017). Therefore, fixation data
need to be smoothed to apply pixel-wise modeling. However,
this approach similarly introduces an arbitrary scale, that is
the width of the smoothing kernel (e.g., the standard deviation
of a Gaussian filter), which is no more justified on theoretical
grounds than choosing a cell size for scene parcellation. In
practice, the same heuristics apply to choosing filter kernels
and grid sizes: it is not advisable to choose a size substantially
smaller than the measurement precision, and the size should not
exceed the typical scale of the scene properties or features of
interest.

The second desirable property for a good evaluation measure
is an intuitive scale. Specifically, the measure should inform
about the quality of the prediction, including deviation from
optimal performance (Wilming et al., 2011). GLMMs are
regression techniques. To make the continuous predictors
central bias and saliency comparable within and across models,
we standardized their units to units of standard deviations.
Now that predictors are placed on a common scale (i.e.,
they are commensurate), we can compare the strength of
effects within and across models through the size of the
standardized regression coefficients (Figures 3, 4, 9). Moreover,
the marginal and conditional R?> for GLMM (Nakagawa and
Schielzeth, 2013; Johnson, 2014) provide information about the
absolute model fit in terms of variance explained by the model.
Marginal R? determines variance explained by fixed effects,
and conditional R?* gauges variance explained by both fixed
and random effects. R* ranges from 0 to 1 where 1 represents
a perfect fit. In addition, information criteria like the AIC
and BIC provide an estimate of the relative fit of alternative
models.

The third criterion “low data demand” addresses the fact that
observers make a limited number of saccades when exploring
images of naturalistic scenes (Wilming et al,, 2011). In our
method, we use fixated grid cells as positive instances. In
principle, reliable estimates for the GLMM parameters can be
computed on relatively few data points. Of course, the proportion
of fixated grid cells depends on how explorative an individual
subject’s viewing behavior is. In our analyses, less explorative
individuals had a reduced intercept and increased central bias
(Table 3, Figure 6). In addition, the degree of exploration was
found to vary across scene items (Table3, Figure7). The
proportion of fixated grid cells is likely to depend on the
trial duration as well. The number of saccades to different
scene regions tends to increase with increasing trial duration.
In the present experiment, scenes were presented for 6s. For
datasets from static scene viewing that are included in the
MIT Saliency Benchmark (http://saliency.mit.edu), presentation
duration ranges between 3s (Borji and Itti, 2015) and 15s
(Le Meur et al., 2006). Finally, we remind the reader that
the resolution of the grid—set by the user—will affect the
sparsity (fine grid) or density (coarse grid) of the observation
matrix.

The fourth criterion is “robustness,” which means that a
measure should not be dominated by single extreme values
(Wilming et al., 2011). GLMMs provide robust measurements
in the sense that unreliable between-subject and between-item
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variance is removed through shrinkage toward the estimate of the
population mean (Kliegl et al., 2011; Makowski et al., 2014). In
summary, our method scores well with respect to properties that
are desirable for evaluation methods.

Future Directions

To describe our method, we used three saliency models. Future
studies should aim to test a larger set of saliency models
on different datasets. Moreover, it will be informative to
systematically compare our method with existing ones.

During the last 10 years, saliency models have begun to
diverge into two different classes: models of fixation prediction
and models of salient object or region detection (Itti and Borji,
2014). Fixation prediction models compute a saliency map
that is thought to simulate observers’ eye fixations over the
scene, and their performance can be evaluated with the method
proposed here. Salient object detection or salient region detection
models, on the other hand, attempt to segment the most salient
object or region in a scene (Borji, 2015, for review). Given
the inherent correlation between salient locations in a salient
map and objects (e.g., Nuthmann and Henderson, 2010), a
systematic relationship between eye fixations and salient objects
is conceivable (Li et al., 2014). Future extensions of our approach
will facilitate this research in several ways. First, the GridFix
toolbox can be extended to accommodate irregular regions of
interest (e.g., object outlines). Second, object-based GLMMs
can then be used to test the hypothesis that highly salient
objects are indeed the ones that attract the most fixations.
In our own research, we have used this approach to test
an alternative role of image salience: rather than prioritizing
locations, salience aids prioritization among objects (Stoll et al.,
2015).

Currently, GridFix facilitates analysis of fixation probability
through calculating either a binary variable (1 fixated, 0 not
fixated) or fixation counts. In a future extension, one could
incorporate the temporal aspect of eye guidance in scenes (cf.
Nuthmann, 2017, for review) by coding fixation times associated
with the grid cells or object outlines. Analyzing any measure
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