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A method of reconstructing perceived or imagined music by analyzing brain activity

has not yet been established. As a first step toward developing such a method, we

aimed to reconstruct the imagery of rhythm, which is one element of music. It has

been reported that a periodic electroencephalogram (EEG) response is elicited while a

human imagines a binary or ternary meter on a musical beat. However, it is not clear

whether or not brain activity synchronizes with fully imagined beat and meter without

auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory

imagery of beat and meter, we recorded EEG while nine participants (eight males and

one female) imagined three types of rhythm without auditory stimuli but with visual timing,

and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while

the participants only gazed at the visual timing as a control condition to confirm the visual

effect. Furthermore, we derived features of the EEG using canonical correlation analysis

(CCA) and conducted an experiment to individually classify the three types of imagined

rhythm from the EEG. The results showed that classification accuracies exceeded the

chance level in all participants. These results suggest that auditory imagery of meter elicits

a periodic EEG response that changes at the imagined beat and meter frequency even

in the fully imagined conditions. This study represents the first step toward the realization

of a method for reconstructing the imagined music from brain activity.

Keywords: rhythm perception, EEG analysis, discrete Fourier transform, machine learning, canonical correlation

analysis

1. INTRODUCTION

Auditory perception is one of the fundamental functions of human brain. Several studies have
investigated the reconstruction of auditory images by measuring brain activities while a human
is perceiving auditory stimuli or imaging speech. In the speech domain, silent speech interfaces,
which allow speech communication without vocalization, have been studied intensively in recent
years (Denby et al., 2010; Matsumoto and Hori, 2014; Yamaguchi et al., 2015; Yoshimura et al.,
2016). In terms of music perception, Schaefer et al. (2011) reported that it was possible to detect
which one out of seven types ofmusical styles the participant was listening to based on brain activity.
However, a method for reading the specific structure of perceived music from brain activity has not
been established. Thus, as a first step toward the reconstruction of tangible music, it seems natural
to investigate the reconstruction of perceived rhythm.

When listening to music, a human can naturally perceive rhythm. Sensorimotor
synchronization, such as tapping, dancing, and marching, is the rhythmic coordination of
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perception and movement (Repp, 2005; Repp and Su, 2013).
Rhythm is one of the main elements of music, and its structure is
determined only by a cycle period in the simplest case. Hence, it is
relatively easy to decode rhythm compared to the other elements
of music, such as melody and harmony. Typically rhythm often
refers to one of its sub-constituent elements such as beat and
meter (Thaut et al., 2014). In the literature, beat is often used as
a term which refers to one of a series of perceived pulses which
are subjectively equal units in the temporal sequences (Large and
Kolen, 1994; Kotz et al., 2009), and meter is traditionally defined
as the number of beats between more or less regularly accented
tones (Cooper and Meyer, 1960).

The neural mechanisms of rhythm processing have been
studied for many years. The resonance theory (Large and Kolen,
1994; van Noorden and Moelants, 1999; Large, 2008; Large and
Snyder, 2009) explains that beat and meter perception arise
from neural oscillation resonating to rhythmic stimuli. This
theory has been also supported by several studies that measure
brain activity related to beat and meter perception (Large et al.,
2015). Previous studies related to beat and meter perception have
explored the event-related potentials (ERP) response to auditory
rhythmic stimuli. The ERP, which is a response to an external
stimulus, enables researchers to capture brain activity related to
sensory, cognitive, or motor events (Pritchard, 1981; Demiralp
et al., 1998; Donchin et al., 2000; Sur and Sinha, 2009). The
ERP responses to rhythmic violations vary between strong and
weak beats (Brochard et al., 2003; Snyder and Large, 2005; Potter
et al., 2009), and results of previous studies suggest that brain
activity reflects the perceived metric structure. Schaefer et al.
(2011) reported that when participants imagined accent patterns
to periodic sounds, the ERP response to the accented sounds was
different from that to the unaccented sounds. Nozaradan et al.
(2011, 2012) investigated brain activity during rhythm perception
using a different method than an ERP approach. They analyzed
an amplitude spectrum of an electroencephalogram (EEG) and
reported that neural entrainment to beat and meter can be
captured as a steady-state evoked potential (SSEP), which is a
response to a periodic stimulus (Galambos et al., 1981; Stapells
et al., 1984; Plourde, 2006; Vialatte et al., 2009; Zhu et al., 2010).
The researchers recorded EEG while participants listened to
periodic sound and imagined the meters (binary and ternary) of
perceived beats. The results revealed that meter imagery elicited a
periodic EEG response tuned to the meter frequency (Nozaradan
et al., 2011, 2012). Nozaradan et al. (2011, 2012) claimed with the
analysis of frequency spectra that neural entrainment to themeter
could be captured from brain activity during meter imagery with
exposure to auditory rhythmic stimuli. However, the auditory
stimulus could prevent the participants from performing imagery
tasks. Moreover, although the rhythmic stimuli can elicit the
ERP, the stimuli can contaminate the EEG response to the
meter imagery. In other words, there is a possibility that the
brain response to the stimulus and to the meter imagination
may not be separated. Therefore, it is crucial to investigate
neural entrainment during meter imagery without any auditory
stimulus. Although in the absence of any auditory stimulus,
Jomori et al. (2011) observed relative negative potentials in the
EEG during beat imagery (not meter imagery), they did not

focus on neural entrainment related to the SSEP suggested by
Nozaradan et al. (2011, 2012).

We hypothesized that without the auditory stimulus, neural
entrainment to the imagined beat and meter could be captured
in the EEG. In this study, we recorded EEG while participants
imagined three types of rhythm (unaccented beat, binary meter,
and ternary meter) synchronized with visual timing. We asked
participants to imagine tones at regular intervals for beats
imagery. For the meter imagery, we asked participants to imagine
a metric structure in which specific beats were mentally accented.
For synchronization of beat imagery with EEG recordings, a
movie (see Figure 1 and Supplementary Video 1), or rhythm
game, is shown to participants instead of auditory stimuli
(Nozaradan et al., 2011, 2012). We also recorded EEG while the
participants only gazed at the visual timing (movie) to confirm
the visual effects of the movie. Furthermore, aiming a potential
application to brain machine interfacing (BMI), we performed
classification of imagined rhythm from a single trial EEG to verify
that brain activities differ one type of rhythm imagery to another.

2. METHODS

2.1. Participants
Nine participants (eight males and one female; mean age = 21.8
years, SD= 0.78) in their twenties participated in the experiment.
All participants were healthy and had normal or corrected-to-
normal vision. They provided written informed consent, and the
study was approved by the research ethics committee of Tokyo
University of Agriculture and Technology.

2.2. Movie
During recording, the movie (see Supplementary Video 1) was
displayed on a screen to provide participants the reference tempo
for beat imagery. As shown in Figure 1, a vertical line, horizontal
line, white circle, and a series of moving black circles were
displayed on a screen. In this paper, the white circle is called
a “marker.” The black circles appeared from the right end of
the screen at intervals of 416 ms (approximately 2.4 Hz), and
each black circle was scrolled from the right to the left along
the horizontal line at a constant speed and disappeared when it
reached the left end of the screen. The black circles overlapped
the marker one after another at intervals of 416 ms, and this time
interval was the reference tempo for beat imagery. The duration
of the movie was 12 s. In the movie, 25 black circles appeared in
total. The movie was generated using the PsychToolbox running
under MATLAB R© (MathWorks).

2.3. Experimental Design
Participants were asked to perform a marker-viewing task and
three types of rhythm imagery tasks: a unaccented beat imagery
(defined as isochronous beat imagery without accenting) task,
a binary meter (i.e., metrical accent patterns of strong-weak
isochronous beats) imagery task, and a ternary meter (i.e.,
metrical accent patterns of strong-weak-weak isochronous beats)
imagery task, as shown in Figure 2. Participants performed the
tasks in the following order: marker-viewing, unaccented beat
imagery, binary meter imagery, and ternary meter imagery. The
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FIGURE 1 | Illustration of the movie. A vertical line, horizontal line, white circle

(marker), and black circle were displayed on a screen. The black circles

appeared from the right end of the screen at intervals of 416 ms (approximately

2.4 Hz), and each black circle moved to the left on the horizontal line at a

constant speed and disappeared when it reached the left end of the screen.

order of the rhythmic imagery tasks were not randomized in
order to match the experimental conditions of the previous
work (Nozaradan et al., 2011), although there might have been
potential of practice effects that could increase the performance
on later tasks. There were several minutes of breaks between
tasks to reduce fatigue. In the marker-viewing task, participants
were asked to watch the movie without thinking about anything.
This task was performed to confirm the visual effects of the
movie and compare the results with the rhythm imagery tasks.
Participants were instructed to declare if they were conscious
of the beat, and we excluded the trial and executed it again
in that case. In the rhythm imagery tasks, participants were
asked to watch the movie and to imagine a tone at the moment
each black circle overlapped the marker. Participants were
presented with a pure tone of 333 Hz and memorized the
pitch of the tone before the rhythm imagery tasks. They were
then asked to imagine the tone during the rhythm imagery
tasks for the beats imagery. In the unaccented beat imagery
task, participants imagined beats without accenting as far as
possible. In the binary meter imagery task, participants imagined
a binary meter rhythm, which consisted of two beats, by mentally
accenting every other imaged tone as “strong-weak-strong-
weak-strong....” In the ternary meter imagery task, participants
imagined a ternary rhythm, which consisted of three beats, by
mentally accenting every third imaged tone as “strong-weak-
weak-strong-weak-weak-strong....” Before the first trial of each
meter imagery task, the instructed sequences of accented tones
were presented to participants. The presented audio files are
found in Supplementary Materials (Supplementary Audios 1, 2).
To confirm the evidence of imagery, we adopted the following
“error correction” scheme. In the binary and ternary meter
imagery tasks, since participants were instructed to imagine the
first tone as “strong,” they should imagine the last tone (the 25th
tone) as “strong.” After a trial finished, they were instructed to
declare whether or not they imagined the last tone as “weak,”
which indicated that they failed to imagine the meter at some
point, and thus we excluded the trial and executed it again.

Prior to each of the rhythm imagery tasks, participants
practiced the aforementioned rhythm production by hand
tapping. After the practice, the participants were tested if they
could produce rhythm correctly. Each task consisted of 20 trials.
For each trial, the movie was presented for 12 s. The EEG
recording started at 2 s before the onset of the movie and stopped
when the movie finished.

2.4. EEG Recordings
Participants were comfortably seated in a chair with their
head resting on a support. They were instructed to keep their
eyes fixated on the marker in the display and not allowed
to move their body during recording. We used Ag/AgCl
active electrodes, which were products of Guger Technologies
(g.tec) named g.LADYbird, g.LADYbirdGND (for GND), and
g.GAMMAearclip (for reference, earclip type), to record EEG
data. These were driven by the power supply unit named
g.GAMMAbox (g.tec). As illustrated in Figure 3, 30 electrodes
were located at Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, Fz, FC1, FC2,
FC5, FC6, T7, T8, C3, C4, Cz, CP1, CP2, CP5, CP6, P3, P4, P7, P8,
PO3, PO4, O1, and O2 following the international 10–10 system.
The electrodes for GND and reference were placed on AFz and
A1, respectively. The EEG signals were amplified by MEG-6116
(Nihon Kohden), which applied low-pass and highpass analog
filters for each channel. The cutoff frequencies of the lowpass and
the high-pass filters were set to 300 Hz and 0.08 Hz, respectively.
The signals were sampled by an A/D converter (AIO-163202FX-
USB, Contec) with a sampling rate of 3,000 Hz and recorded with
the Data Acquisition Toolbox of the MATLAB R© (MathWorks).

2.5. EEG Signal Preprocessing
EEG data were visually inspected to remove trials including
artifacts. After the A/D conversion, EEG signals were re-
referenced to the voltage averaged across all the electrodes.
EEG signals were segmented into epochs lasting 10 s from the
onset of beat imagery (at the time when the first black circle
overlapped the marker). EEG epochs were filtered using a third-
order Butterworth band-pass filter from 0.5 to 15 Hz to remove
slow and fast drifts in the recorded signals. EEG epochs were
segmented into four subepochs with a length of 2.5 s, which were
then averaged.

2.6. EEG Amplitude Spectrum Analysis
For each participant and task, the preprocessed EEG with a
length of 2.5 s were averaged across trials. The obtained trial-
average waveforms were transformed in the frequency domain
using a discrete Fourier transform. The frequency resolution
1f of the obtained amplitude spectrum φ(f ) was 0.1 Hz. In
order to remove background noise of the amplitude spectrum,
at each frequency bin, we subtracted the average amplitude
at neighboring frequency bins from the amplitude at given
frequency fp:

8(fp) = φ(fp)−

∑2
n=1

{

φ(fp − n1f )+ φ(fp + n1f )
}

4
(1)
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FIGURE 2 | Illustration of the imagined rhythm structures for the three tasks. The unaccented beat imagery is the imagined isochronic beat of a frequency of 2.4 Hz

without accents. The binary meter imagery consists of two accents: strong-weak, resulting in the meter frequency of 1.2 Hz. The ternary meter imagery has another

accecent pattern: strong-weak-weak, resulting in the meter frequency of 0.8 Hz.

where 8(f ) is the noise-subtracted amplitude spectrum. The
neighboring frequency bins were two frequency bins ranging
from−0.2 to 0 Hz and +0.1 to +0.3 Hz relative to each frequency.

For each task, one-tailed, one-sample Wilcoxon signed-
rank tests were conducted to determine whether EEG signal
amplitudes at frequencies 0.8, 1.2, 1.6, and 2.4 Hz were
significantly greater than zero. These statistical tests were applied
to EEG spectral amplitudes averaged across all scalp electrodes.
Frequencies of 2.4, 1.2, and 0.8 Hz correspond to the beat, the
binary meter, and the ternary meter, respectively. It should be
noted that the frequency of 1.6 Hz is the second harmonic of
0.8 Hz. The amplitude at the frequency of 1.6 Hz, which is the
second harmonic of 0.8 Hz, was also analyzed, since Nozaradan
et al. (2011) reported that the second harmonic was observed
during the ternary meter imagery. In this paper, we refer to these
four frequencies as target frequencies. Furthermore, to inspect
the visual effects of the movie, one-tailed, one-sample Wilcoxon
signed-rank tests were conducted to determine whether EEG
spectral amplitude at the beat frequency (2.4 Hz) in each of the
rhythm imagery tasks was significantly greater than that in the
marker-viewing task. These statistical tests were applied to EEG
spectral amplitudes averaged across the four electrodes in the
occipital area (PO3, PO4, O1, O2) and the other 26 electrodes
in the non-occipital area. The results were considered significant
at a level of p < 0.10.

For each target frequency, a Friedman test was conducted to
compare the effect of type of rhythm imagery on the EEG spectral
amplitudes. The Friedman test was applied to EEG spectral
amplitudes averaged across all scalp electrodes. When the
Friedman test found a significant effect, the pairwise Wilcoxon
signed-rank tests were also performed. The Holm method was
used to counteract the problem of multiple comparisons. The
results were considered significant at a level of p < 0.10.

2.7. Imagined Rhythm Classification Based
on Machine Learning Technique
We performed machine learning-based classification of imagined
rhythm from a single-trial EEG to verify that brain activities differ
from one type of rhythm imagery to another. The purpose of this

classification is to provide more support for the hypothesis that
observed EEG signals under three types of rhythm imagery are
distinct.

2.7.1. Feature Extraction
For feature extraction, we used canonical correlation analysis
(CCA). CCA is the method for analyzing correlation between
two multichannel signals (Hotelling, 1936). Considering
two multichannel signals, CCA finds the linear combination
coefficients that give the largest correlation between x(t) and
y(t). Linear combinations of the two signals are denoted as
X(t) = wT

Xx(t) and Y(t) = wT
Yy(t), respectively, and CCA finds

the weight vectors, wX and wY , which maximize the correlation
between X(t) and Y(t) by solving the following problem:

max
wX ,wY

ρ =
E[X(t)Y(t)]

√

E[X(t)2]E[Y(t)2]

=
wT
XE[x(t)y(t)

T]wY
√

wT
XE[x(t)x(t)

T]wXw
T
YE[y(t)y(t)

T]wY

. (2)

The maximum of correlation coefficient ρ is called canonical
correlation. This maximization problem can be solved by
a generalized eigenvalue problem. We employed the feature
extraction method for steady-state visually evoked potentials
with CCAproposed by Lin et al. (2006), where signal x(t) is the set
of preprocessed EEG signals, and signal y(t) is the set of reference
signals that have the same length as x(t). The reference signal yf (t)
is defined (Lin et al., 2006) as

yf (t) = [sin(2π ft), cos(2π ft)]T (3)

and constructed by sine-cosine waves at the target frequency f .
For f = 0.8, 1.2, 1.6, and 2.4 Hz, we calculated ρf , which is defined
as a canonical correlation between the multichannel EEG signal
x(t) and the reference signal yf (t), and constructed a feature
vector

z = [ρ0.8, ρ1.2, ρ1.6, ρ2.4]
T. (4)
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FIGURE 3 | Electrode positions. Thirty electrodes were located at Fp1, Fp2,

AF3, AF4, F3, F4, F7, F8, Fz, FC1, FC2, FC5, FC6, T7, T8, C3, C4, Cz, CP1,

CP2, CP5, CP6, P3, P4, P7, P8, PO3, PO4, O1, and O2 following the

international 10–10 system.

The value of the canonical correlation ρf depends on frequency
components contained in the EEG signal; for example, the
canonical correlation ρ0.8 would be a larger value when the EEG
signal includes a frequency component of 0.8 Hz. Such a feature
extraction method has been used for frequency recognition of
EEG (Lin et al., 2006; Kimura et al., 2013; Suefusa and Tanaka,
2017).

2.7.2. Classification
Weperformed three-class classification (unaccented beat imagery
vs. binary meter imagery vs. ternary meter imagery) and two-
class classification (unaccented beat imagery vs. binary meter
imagery, unaccented beat imagery vs. ternary meter imagery, and
binary meter imagery vs. ternary meter imagery). Classification
was performed using Support Vector Machine (SVM) (Boser
et al., 1992), which is one of the most popular supervised
machine learning techniques for classification. For three-class
classification, the “one against one” approach was used to solve
the multi-class problem (Knerr et al., 1990). To evaluate the
classification accuracy, we applied leave-one-out cross-validation
(Kohavi, 1995).

3. RESULTS

3.1. EEG Amplitude Spectra
The group-level average of the EEG spectral amplitudes are
shown in Figure 4. The EEG spectral amplitudes were averaged
across all scalp electrodes to enhance the signal component
associated with the imagery of beat or meter. In Figure 4,
peaks of the EEG amplitude can be observed at the frequency
(see Figure 2) corresponding to each task and its harmonic

FIGURE 4 | Group-level average of the EEG spectral amplitudes averaged

across all scalp electrodes. The EEG spectral amplitudes obtained in the

marker-viewing task, the unaccented beat imagery task, the binary meter

imagery task, and the ternary meter imagery task are shown in black line, blue

dashed line, red dashdot line, and green dotted line, respectively. The vertical

lines represent the target frequencies.

frequencies (unaccented beat imagery: 2.4 Hz; binary meter
imagery: 1.2 and 2.4 Hz; ternary meter imagery: 0.8, 1.6,
and 2.4 Hz). It is notable that in each imagery task, a
peak is exhibited at the frequency of imagined beat and
meter.

The topographical maps of EEG spectral amplitude at
0.8, 1.2, 1.6, and 2.4 Hz obtained in each of four tasks are
shown in Figure 5. In the marker-viewing task, dominant
EEG spectral amplitudes at 2.4 Hz were observed in the
occipital area. In each of the rhythm imagery tasks, high
amplitudes at 2.4 Hz were observed not only in the occipital
area but also in the frontal area. In the binary and ternary
meter imagery tasks, relatively high amplitudes at 1.2
and 0.8 Hz, respectively, were observed over a widespread
area.

3.2. Statistical Analyses
3.2.1. One-Tailed One-Sample Wilcoxon Signed-Rank

Tests
We examined whether EEG spectral amplitudes at the target
frequencies were significantly greater than zero. Table 1 shows
the results of one-sample Wilcoxon signed-rank tests applied to
the EEG spectral amplitudes averaged across all scalp electrodes.
Both in the marker-viewing task and in the unaccented beat
imagery task, the EEG spectral amplitudes at 2.4Hz were
significantly greater than zero. In the binary meter imagery task,
EEG spectral amplitudes at 1.2 and 2.4Hz were significantly
greater than zero. In the ternarymeter imagery task, EEG spectral
amplitudes at 0.8 and 2.4Hz were significantly greater than zero.
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FIGURE 5 | The topographical maps of EEG spectral amplitude at 0.8, 1.2, 1.6, and 2.4 Hz obtained in each of the four tasks. We show the group-level average of

the EEG spectral amplitude.

Next, we inspected the effect of visual timing of 2.4Hz
by examining the amplitudes at 2.4Hz of the tasks on the
occipital and frontal areas. The one-sample Wilcoxon signed-
rank tests, which were applied to EEG spectral amplitudes
averaged across the four electrodes in the occipital area, showed
that the amplitude at 2.4Hz in each of the rhythm imagery tasks
was not significantly different from that in the marker-viewing
task (unaccented beat imagery task: z = 1.07, p = 0.29;
binary meter imagery task: z = 0.60, p = 0.54; ternary meter
imagery task: z = 0.67, p = 0.50). The one-sample Wilcoxon
signed-rank tests, which were applied to EEG spectral amplitudes
averaged across the 26 non-occipital electrodes, showed that
the amplitudes at 2.4Hz in unaccented beat and binary meter
imagery tasks were significantly greater than that in the marker-
viewing task (unaccented beat imagery task: z = 2.08, p =

0.037; binary meter imagery task: z = 2.47, p = 0.013).
The amplitude at 2.4Hz in the ternary meter imagery task was
not significantly different from that in the marker-viewing task
(z = 1.16, p = 0.25).

3.2.2. Friedman Test
For each target frequency, a Friedman test was conducted to
compare the effect of type of rhythm imagery (unaccented
beat, binary meter, and ternary meter imageries) on the EEG
spectral amplitudes. The results of the Friedman test for the
average EEG amplitudes over all scalp electrodes are as follows.
Whereas, the effect of type of rhythm imagery on the EEG
spectral amplitudes at 2.4Hz was not significant, Chi-square=
1.56, p = 0.50, the ones at 0.8, 1.2, and 1.6Hz were
significant (0.8Hz: Chi-square = 12.7, p = 0.0018; 1.2Hz: Chi-
square = 6.22, p = 0.045; 1.6Hz: Chi-square = 6.22, p =

0.045).
The results of the pairwise Wilcoxon signed-rank tests

with respect to tasks are shown in Table 2 and can be
summarized as follows. At 0.8Hz (the frequency of the ternary
meter), the amplitude in the ternary meter imagery task was
significantly greater than that in the unaccented beat and the
binary meter imagery tasks (unaccented beat imagery task:
z = 2.76, p = 0.018; binary meter imagery task: z =
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TABLE 1 | Results of one-sample Wilcoxon signed-rank tests that were applied to

EEG spectral amplitudes averaged across all scalp electrodes (*p < 0.05;

**p < 0.01).

Task Target frequency (Hz) z-value p-value

Marker-viewing 0.8 1.07 0.29

1.2 0.10 0.92

1.6 0.37 0.71

2.4 3.10 0.0020**

Unaccented beat imagery 0.8 1.64 0.102

1.2 0.82 0.41

1.6 0.27 0.78

2.4 3.10 0.0020**

Binary meter imagery 0.8 0.061 0.95

1.2 2.08 0.037*

1.6 0.046 0.96

2.4 3.10 0.0020**

Ternary meter imagery 0.8 3.10 0.0020**

1.2 0.012 0.99

1.6 1.25 1.25

2.4 2.34 0.020*

The frequency that corresponds with the imagined beat or meter frequency is italicized.

3.10, p = 0.014). At 1.2 Hz (the frequency of the binary
meter), the amplitude in the unaccented beat imagery task
and the binary meter imagery tasks was significantly greater
than that in the ternary meter imagery task (unaccented beat
imagery task: z = 2.47, p = 0.049; binary meter imagery
task: z = 2.08, p = 0.076). At 1.6 Hz (the frequency
of the second harmonic of ternary meter), the amplitude in
the ternary meter imagery task was significantly greater than
that in the binary meter imagery task (z = 2.34, p =

0.066).

3.3. Imagined Rhythm Classification Based
on Machine Learning Technique
The individual results of the three-class classification are shown
in Figure 6, showing classification accuracies above chance level
(33%) for all participants. The best individual result was 57.7%
correct, and the averaged accuracy across the participants was
49.3%.

The individual results of the two-class classification are
shown in Figure 7, showing classification accuracy above
chance level (50%) for all participants. In the unaccented
beat imagery vs. binary meter imagery classification, the best
individual result was 84.5% correct, and the average accuracy
across participants was 68.3%. In the unaccented beat imagery
vs. ternary meter imagery classification, the best individual
result was 76.9% correct, and the average accuracy across
participants was 68.4%. In the binary meter imagery vs. ternary
meter imagery classification, the best individual result was
77.1% correct, and the average accuracy across participants
was 67.3%.

4. DISCUSSION

Our results showed that each rhythm imagery elicited periodic
EEG responses oscillating at the beat and meter frequency. These
results suggest that mentally imagined beat and meter can be
captured by recording EEG signals. Furthermore, the results
of classification analysis showed that classification accuracy
exceeded chance level in all participants.

4.1. Neural Oscillation at the Beat
Frequency
We first discuss peaks of the amplitude spectra at 2.4 Hz observed
in all the tasks (Figure 4). The one-sampleWilcoxon signed-rank
tests indicated the statistical significance of these peaks (Table 1).
Moreover, the topographical plots at 2.4 Hz shown in Figure 4

showed that in the marker-viewing task, the EEG amplitudes
in the occipital area are stronger than those in the other areas
whereas in the rhythm imagery tasks, strong amplitudes were
observed not only in the occipital area but also in the frontal area.
In other words, at 2.4 Hz in all the tasks, the occipital area showed
strong amplitudes. The results showed that in the occipital areas,
there is no significant difference in the amplitude between the
marker-viewing task and each imagery task. These results suggest
that an increase of the EEG amplitude at 2.4 Hz observed in the
occipital area may be due to the visual effect of the movie on
the visual cortex. In each task, participants kept their eye fixated
on the marker, and the black circle came into their sight at a
certain interval (2.4 Hz), so it may be suspected that this periodic
change of visual information elicited the neural oscillation in the
occipital area.

On the other hand, the result of theWilcoxon signed-rank test
for the amplitudes at 2.4 Hz averaged across the 26 non-occipital
electrodes showed that there is a significant difference in the
amplitude between the unaccented beat or binary meter imagery
task and the marker-viewing task. These results suggest that beat
imagery by imaging periodic tones elicits neural entrainment
to the imagined beat frequency. This is supported by related
findings. According to the Dynamic Attending Theory (Jones and
Boltz, 1989; Large and Jones, 1999), beat perception is explained
as regular fluctuations of attention, and the resonance theory
(Large and Kolen, 1994; van Noorden and Moelants, 1999; Large,
2008; Large and Snyder, 2009) hypothesizes that beat perception
arises from neural oscillation resonating to the beat frequency.
In the current study, participants were asked to periodically
imagine the tones synchronized to the moving black circle.
This periodic tone imagery may cause attention cycle and beat
perception, yielding the observation of neural oscillation at the
beat frequency. Another study reported that when participants
listened attentively to periodic tones, neural oscillation at the
beat frequency was observed in EEG (Nozaradan et al., 2011).
However, the neural oscillation at the beat frequency observed
in the previous study (Nozaradan et al., 2011) could have
contained auditory-evoked potentials. The results of the current
study provide stronger evidence for neural entrainment to beat
than previous studies (Nozaradan et al., 2011) because neural
entrainment to the imagined beat was captured in EEG although
participants were not presented with any auditory stimulus.
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TABLE 2 | The results of the pairwise Wilcoxon signed-rank tests applied to the EEG spectral amplitudes averaged across all scalp electrodes.

Target frequency (Hz) Compared tasks z-value p-value Magnitude relation

0.8 Unaccented beat imagery vs. Binary meter imagery 0.034 0.97 n.s.

Unaccented beat imagery vs. Ternary meter imagery 2.76 0.018* Ternary meter imagery > Unaccented beat imagery

Binary meter imagery vs. Ternary meter imagery 3.10 0.014* Ternary meter imagery > Binary meter imagery

1.2 Unaccented beat imagery vs. Binary meter imagery 0.10 0.92 n.s.

Unaccented beat imagery vs. Ternary meter imagery 2.47 0.049* Unaccented beat imagery > Ternary meter imagery

Binary meter imagery vs. Ternary meter imagery 2.08 0.076+ Binary meter imagery > Ternary meter imagery

1.6 Unaccented beat imagery vs. Binary meter imagery 0.047 0.96 n.s.

Unaccented beat imagery vs. Ternary meter imagery 1.53 0.24 n.s.

Binary meter imagery vs. Ternary meter imagery 2.34 0.066+ Ternary meter imagery > Binary meter imagery

The results of the pairwise Wilcoxon signed-rank tests applied to the EEG spectral amplitudes averaged across all scalp electrodes (+p < 0.10; *p < 0.05).

Another related work investigated brain activity during beat
imagery without any auditory stimulus (Jomori et al., 2011)
and reported that relative negative potentials were observed
in the EEG during beat imagery. Jomori et al. (2011) showed
beat imagery appeared as the ERP, while participants imagined
a beat during a silent recording period following periodic
tones. Negative shift were observed in the period of 100–300
ms after the onset of the imagined beat. However, there was
some doubt whether the participants could imagine the beat
with an accurate tempo in the absence of a reference tempo
during the beat imagery. Moreover, none of the participants
had had any experience or special training in musical activities,
although Janata and Paroo (2006) found that temporal acuity in
auditory imagery was better in participants with more musical
training. Our finding on SSEP as responses without auditory
stimuli suggested stronger evidence on neural entrainment on
imagined beat than the result by Jomori et al. (2011) in the
sense that a reference tempo was always given during beat
imagery.

As shown in section 3.2.1, the amplitude at 2.4 Hz between
the ternary meter imagery task and the marker-viewing task
showed no significant difference by the Wilcoxon signed-rank
test. Although this result may not be strong support for our
hypothesis, this result could be elaborated as follows: It is
speculated that the neural oscillation at 2.4Hz is the sum of the
neural entrainment to the imagined beat and the harmonic of
the neural entrainment to the imagined meter. In general, the
harmonic amplitude of SSEP decreases as the harmonic number
increases (Beck et al., 2007). This finding could also be verified
with the data measured in this paper. In the ternary meter
imagery task, the amplitude at 0.8Hz (the 1st harmonic) was
significantly greater than that at 1.6Hz (the second harmonic) as
a result of the Wilcoxon signed-rank test (z = 2.58, p = 0.0098),
and moreover, the amplitude at 1.6Hz (the 2nd harmonic) was
also significantly greater than that at 3.2Hz (the 4th harmonic)
(z = 2.08, p = 0.037). These results imply that the amplitude of
the 3rd harmonic can be smaller than that of the 2nd harmonic.
Thus, at 2.4Hz, the amplitude of the ternary meter imagery can
be smaller than that of the binary meter imagery. This may be
supportive of the result of our statistical test. However, in order

FIGURE 6 | A bar chart of the three-class classification accuracy. The dashed

line represents chance level of classification accuracy (33 %). An error bar

represents the standard deviation of accuracies.

to examine this issue, it is necessary to analyze EEG during
imagination of the meter that has four or more beats.

4.2. Neural Oscillation at The Binary and
Ternary Meter Frequencies
In the binary and the ternary meter imagery tasks, the significant
peak of the EEG amplitudes at each of the meter frequencies
(binary meter; 1.2Hz, ternary meter; 0.8Hz) was observed
(Figure 4). These results can be explained by the resonance
theory (Large and Kolen, 1994; van Noorden and Moelants,
1999; Large, 2008; Large and Snyder, 2009), which predicts the
perception of metrical accent as higher-order resonance at the
beat frequency. Nozaradan et al. (2011) reported that higher-
order resonance at subharmonics of beat frequency was observed
during meter imagery. This result is the evidence of the high-
order resonance underlying the neural representation of the
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FIGURE 7 | A bar chart of the two-class classification accuracy. The blue,

green, and red bars represent individual accuracy of unaccented beat imagery

vs. binary meter imagery, unaccented beat imagery vs. ternary meter imagery,

and binary meter imagery vs. ternary meter imagery classification, respectively.

The dashed line represents chance level of classification accuracy (50 %).

Error bars represent the standard deviation of accuracies.

meter. In the current study, the participants were asked to
imagine meter by periodically accenting on the beat. Our results
revealed that meter imagery elicited high-order resonance at
subharmonics of the beat frequency, and neural entrainment
to imagined meter could be captured with EEG although
participants were not presented with any auditory stimulus.

The ternary meter imagery task yielded a peak at 1.6Hz and
the second harmonic frequency of 0.8Hz, as shown in Figure 4.
Moreover, the amplitude at 1.6Hz elicited by the ternary meter
imagery was significantly greater than that elicited by the binary
meter imagery (Table 2). This can be also confirmed by the
classification accuracies for binary vs. ternary imageries (red bar
shown in Figure 7) consistently higher than the chance level.
A phenomenon similar to this observation was reported in the
previous study, as Nozaradan et al. (2011) also observed the
significant peak at 1.6Hz during the ternary meter imagery and
discussed two possibilities. One is the effect of harmonics of
the ternary meter frequency (i.e., 2 × 0.8 = 1.6 Hz), and the
other is the cross-modulation product between beat and ternary
meter frequencies (i.e., 2.4 − 0.8 = 1.6 Hz). Differing from
Nozaradan et al. (2011), the current experiment reported, the
experiment in the present paper never used any auditory stimuli;
therefore, our finding supports the hypothesis of the effect of
harmonics. Although the ternary meter imagery (0.8 Hz) can
affect the amplitude at 1.6 Hz as the second harmonic, the
statistical test indicated that there was no significant difference
at 1.6 Hz between unaccented beat and ternary meter imageries.
This could be explained by the decrease of harmonic amplitudes
as discussed in section 4.1.

Next, consider the effects of the unaccented beat imagery
appearing at 1.2 Hz lower than the beat frequency (2.4 Hz).
According to previous works (Bolton, 1894; Vos, 1973; Brochard

et al., 2003; Martin et al., 2007) that investigated the bias of
humans in beat perception, this oscillation could be explained
by the effect of an involuntary binary meter imagery, which
occurred concurrently with the unaccented beat imagery. The
related works (Bolton, 1894; Vos, 1973) reported that even
though listeners attended isochronic and physically identical
tones, they tended to perceive that some tones were accented and
that isochronic tones had a metrical structure like binary meter.

4.3. Imagined Rhythm Classification Based
on Machine Learning Technique
In addition to the conventional statistical tests, the machine
learning based classification analysis revealed that the EEG
during the auditory imagery of rhythm can be correctly classified
at greater than the chance level in all participants (Figures 6,
7). Machine learning techniques were adopted to analyze brain
activity in some previous studies (Tucciarelli et al., 2015; Turella
et al., 2016). The feature values used for the classification depend
on the frequency components contained in the EEG signal;
therefore, these results suggest that the frequency components
contained in the single trial EEG are different among rhythm
imagery tasks. This result with machine learning techniques
provides strong support for our findings. Moreover, the CCA-
based feature extraction has proven quite effective in detecting
steady-state visually evoked potentials, which are responses
to periodic visual stimuli (Chen et al., 2015). The result of
classification based on CCA suggests that this technique can be
applied in novel auditory BMI.

4.4. Possible Effects of Eye Movements
Although participants were asked to keep their eyes fixated on
the marker and not to move their eyes during the task, the
eyes can involuntarily pursue the moving black circles, yielding
electrooculogram artifacts that affect the analysis. It is difficult to
confirm the existence of eye movement only from EEG; however,
we could hypothesize that the entrainment to the meter was not
the result from EEG induced from the imagined meter, but the
effect of eye movement associated with the imagined rhythm.
If this hypothesis was true, the amplitudes closest to the eyes
(Fp1 and Fp2) should have been related to a task. We applied
the Friedman test to compare the effect of rhythm imagery tasks
on the EEG signal amplitudes averaged across Fp1 and Fp2.
As a result, the effect of type of rhythm imagery on the EEG
spectral amplitudes at 0.8, 1.2, and 1.6Hz was not significant
(0.8Hz: Chi-square = 3.56, p = 0.17; 1.2Hz: Chi-square =

0.22, p = 0.89; 1.6Hz: Chi-square = 1.56, p = 0.46). This
rejects the above hypothesis. In other words, there were no eye
movements synchronized to the imagined meter. However, to
confirm the existence of eye movement, it is necessary to measure
the electrooculogram around the eyes.

5. CONCLUSION

In the current study, we investigated neuronal entrainment
to beat and meter, which was imagined without any auditory
stimulus, and found that auditory imagery of rhythm elicited a
periodic EEG response at imagined beat and meter frequency.
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Our results suggest that imagined beat and meter can be decoded
from EEG even in the absence of reference beat sounds. This
study represents the first step toward the realization of a method
for reconstructingmusic using brain activity.We shouldmention
a limitation of our experimental design in terms of the behavioral
evidence of the imagery, as Zatorre and Halpern (2005) and
Hubbard (2010) pointed out the lack of control for the process of
imagery in imagery studies. As described in section 2.3, although
we checked whether or not participants imagine the meters
correctly in a simple manner, the other electrophysiological
studies regarding imagined beat (Jomori et al., 2011) or meter
(Nozaradan et al., 2011) showed no behavioral evidence of the
imagery. Future studies should also consider more appropriate
behavioral tasks to make experimental results more reliable.
Moreover, we should investigate the relation of imagined rhythm
to spontaneous tempo (Large and Gray, 2015).
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