
fnhum-11-00505 October 26, 2017 Time: 17:19 # 1

ORIGINAL RESEARCH
published: 30 October 2017

doi: 10.3389/fnhum.2017.00505

Edited by:
Christopher J. Hasson,

Northeastern University, United States

Reviewed by:
Clint Hansen,

University of Kiel, Germany
Olivier White,

INSERM U1093, Université
de Bourgogne Franche Comté,

France

*Correspondence:
Antonella Maselli

a.maselli@hsantalucia.it

Received: 18 July 2017
Accepted: 06 October 2017
Published: 30 October 2017

Citation:
Maselli A, Dhawan A, Cesqui B,

Russo M, Lacquaniti F and
d’Avella A (2017) Where Are You

Throwing the Ball? I Better Watch
Your Body, Not Just Your Arm!.
Front. Hum. Neurosci. 11:505.

doi: 10.3389/fnhum.2017.00505

Where Are You Throwing the Ball?
I Better Watch Your Body, Not Just
Your Arm!
Antonella Maselli1* , Aishwar Dhawan1,2, Benedetta Cesqui3, Marta Russo3,
Francesco Lacquaniti1,3 and Andrea d’Avella1,4

1 Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy, 2 Department of Biomechanics, Institute of
Sukan Negara, Kuala Lumpur, Malaysia, 3 Department of Systems Medicine and Center of Space Biomedicine, University of
Rome Tor Vergata, Rome, Italy, 4 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University
of Messina, Messina, Italy

The ability to intercept or avoid a moving object, whether to catch a ball, snatch one’s
prey, or avoid the path of a predator, is a skill that has been acquired throughout
evolution by many species in the animal kingdom. This requires processing early visual
cues in order to program anticipatory motor responses tuned to the forthcoming event.
Here, we explore the nature of the early kinematics cues that could inform an observer
about the future direction of a ball projected with an unconstrained overarm throw.
Our goal was to pinpoint the body segments that, throughout the temporal course of
the throwing action, could provide key cues for accurately predicting the side of the
outgoing ball. We recorded whole-body kinematics from twenty non-expert participants
performing unconstrained overarm throws at four different targets placed on a vertical
plane at 6 m distance. In order to characterize the spatiotemporal structure of the
information embedded in the kinematics of the throwing action about the outgoing ball
direction, we introduced a novel combination of dimensionality reduction and machine
learning techniques. The recorded kinematics clearly shows that throwing styles
differed considerably across individuals, with corresponding inter-individual differences
in the spatio-temporal structure of the thrower predictability. We found that for most
participants it is possible to predict the region where the ball hit the target plane, with an
accuracy above 80%, as early as 400–500 ms before ball release. Interestingly, the body
parts that provided the most informative cues about the action outcome varied with the
throwing style and during the time course of the throwing action. Not surprisingly, at the
very end of the action, the throwing arm is the most informative body segment. However,
cues allowing for predictions to be made earlier than 200 ms before release are typically
associated to other body parts, such as the lower limbs and the contralateral arm.
These findings are discussed in the context of the sport-science literature on throwing
and catching interactive tasks, as well as from the wider perspective of the role of
sensorimotor coupling in interpersonal social interactions.

Keywords: biological motion perception, visual cues, predictions, inter-individual variability, overarm throwing,
advanced information, dimensionality reduction, machine learning
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INTRODUCTION

A smooth and successful interaction with the dynamic
environment in which we live requires predictive abilities.
This is true when interacting with inanimate moving objects
(Lee, 1980; Zago et al., 2008), when moving through space
(Regan and Gray, 2000; Hayhoe et al., 2012), as well as when
interacting with other humans (Baldwin and Baird, 2001; Sebanz
and Knoblich, 2009; Ambrosini et al., 2015) or with robotic
agents (Gielniak and Thomaz, 2011; Takayama et al., 2011;
Sciutti et al., 2015).

Interceptive sports that involve striking, hitting or catching
fast moving balls serve as excellent examples of actions in
which predictive strategies are a pre-requisite for successful
performance (van der Kamp et al., 2008; Müller and Abernethy,
2012). Within this context, information available for prediction
can be classified into two different categories: (i) information
associated with the ball trajectory after its separation from the
end effector (Peper et al., 1994; Regan, 2012) and (ii) information
embedded in the kinematics of the throwing action, also known
as advanced information (Farrow et al., 2005; Müller et al., 2006).

Precise predictions can be made based on the ball flight after
ball release. These are used for compensating sensorimotor delays
in interceptive tasks (Davidson and Wolpert, 2005; Zago et al.,
2008) as well as for the fine-tuning of grasping control in catching
(Cesqui et al., 2016). However, depending on temporal and/or
visibility constraints, information from the ball flight alone
does not always allow formulating predictions with sufficient
anticipation so as to successfully intercept the ball trajectory.
Therefore, any other information available to the catcher prior
to ball release that contributes to the estimate of ball path and
kinematics, could be used to enhance interceptive performances.

Sport science literature has shown that expert players are able
to pick up advanced information from an observed throwing
action (Abernethy, 1990b; Abernethy et al., 2008; Aglioti et al.,
2008) and to exploit such information for optimizing their
interception/catching performances (Ranganathan and Carlton,
2007; Renshaw et al., 2007; Mann et al., 2010). More specifically,
it has been shown that advanced information from the throwing
kinematics triggers anticipatory motor responses, such as
directing the end-effector or displacing the whole body toward
the region of space in which the ball is predicted to flight through
(Abernethy, 1990b; Mann et al., 2010). Nevertheless, the nature
of the informative kinematic cues allowing for such predictions
is not well known (Müller et al., 2006). Furthermore, because of
the strong focus on the role of expertise in sport science studies,
the predictive skills of non-expert participants have not been
sufficiently tested yet, if not for the case of predictions based on
the initial ball trajectory (Cesqui et al., 2015).

Beside the context of elite-sports performances, throwing and
catching are fundamental skills in the human motor repertoire
(Haywood and Getchell, 2014), and it is reasonable to assume
that predictive mechanisms are involved in the execution of
interceptive tasks independently on the temporal constraints
intrinsic of fast-ball sports. In fact, recent research has shown that
predictive mechanisms elicited by the observed body kinematics
seamlessly shape interpersonal interaction in a number of

standard social interactive activities (Sartori et al., 2011; Pezzulo
et al., 2013; Ansuini et al., 2014). Reliable predictions about the
intention and outcome of an observed action can indeed be made
because action execution is itself shaped by its final goal and/or by
the physical properties of its target. For example, the kinematics
of the arm and the fingers in a reach-to-grasp action is modulated
by the size and weight of the object to be grasped (Berthier
et al., 1996; Eastough and Edwards, 2007), and changes if one
reaches for a bottle to pour its content or to pass it to someone
else (Ansuini et al., 2008). The key point is that, because the
action is shaped by its final goal, information about the goal is
available to the observer before action execution is completed.
Importantly, this applies to a wide spectrum of ecological motor
behaviors, from simple actions like reach-to-grasp an object, to
more complex ones like throwing a stone to hit a prey or playing
an interactive ball game.

In a recent proposal, Ansuini and colleagues suggested to
approach the problem of intention-from-movement understan-
ding taking “action execution” as a starting point (Ansuini
et al., 2015a). First, the extent to which intentions and goals
shape the spatiotemporal features of action execution must be
characterized. Subsequently, this knowledge can be used to assess
whether and how an observer is able to read the available
information (cues) and to exploit in the planning of adequate
counteractions (Ansuini et al., 2015a). We have adopted this
principled approach to determine which visual cues from an
overarm throwing action are the most informative about the
outgoing ball direction and could therefore guide the interceptive
behavior of a catcher.

In this study, we take on the issue of characterizing the
information embedded in the kinematics of unconstrained
overarm throwing actions in relation to the outgoing ball
direction. We asked twenty non-expert participants to throw a
ball aiming at different targets on a vertical board placed at 6 m
distance. By analyzing full body kinematics off-line, we looked
for the cues about ball direction that are available from the
thrower’s kinematics prior to ball release. Our long-term goal is
to verify whether these visual cues are used by human catchers in
interception tasks.

We designed our analysis to perform a coarse spatial decoding
of the region of space where the ball arrived (Right vs. Left).
In doing so, we adopted a classification approach, using Linear
Discriminant Analysis (LDA), to assess how well different subsets
of kinematic predictors from the throwing action are able to
discriminate whether the ball will fly toward the right or the
left side. This choice is in line with the evidence that, during an
interceptive task, advanced information from a throwing action is
typically coupled to gross-movement responses functional for the
catcher to reach the region of space in which the ball is predicted
to arrive, so as to optimizing successful performances (Abernethy,
1990b; Mann et al., 2010).

In order to address the issue of how early useful information
is available for a potential observer to make reliable predictions
about the ball’s flight, and to determine how such early
information is spatially structured in terms of specific visual cues
from the whole-body kinematics, we applied LDA classification
using different sets of predictors. These include the kinematics
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of individual markers placed on single joints across the whole
participant’s body, and of sets of multiple joint-markers, across
different temporal windows throughout the unfolding of the
throwing action. In doing so, as an intermediate step, we adopted
a spatiotemporal principal component analysis (stPCA) to obtain
a compact description of the considered kinematics.

The rationale for the choice of the described approach is
rooted in the expectation that the obtained results would guide us
in identifying, unbiasedly, the spatiotemporal structure of early
information embedded in throwing actions, and in establishing
how this structure depends on individual throwing styles. On the
long-term this outcome would be useful for exploring to which
extent humans are able to access and use the available visual
cues, as well as for designing artificial agents that optimize their
predictive abilities by exploiting previous knowledge about the
spatiotemporal structure of the information available.

MATERIALS AND METHODS

Participants
Twenty right-handed participants (10 females, 10 males; age:
28.2 ± 6.8 years), with normal or corrected-to-normal vision
and no history of neurological conditions, participated in the
experiment. Handedness was tested with the standard Edinburgh
Handedness Questionnaire (Oldfield, 1971). Upon analysis of the
handedness questionnaire, eighteen participants were classified as
right handed [Lateral Index (LI): 84.8 ± 6.8]. The remaining two
participants were classified as ambidextrous (Laterality Index:
LI = 30 and LI = 26. Data from all twenty participants were
included in the analysis. All participants read and signed an
informed consent prior to their participation and received a
monetary compensation proportional to the full duration of the
experiment.

This study was carried out in accordance with Italian laws
and European Union regulations on experiments involving
human participants. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the Ethical Review Board of the Santa Lucia
Foundation.

Apparatus
A sixteen camera opto-electronic system (OptiTrack,
NaturalPoint, Inc., Corvallis, OR, United States) operating
at 120 Hz was utilized to capture full body positional information
of the participants throwing actions and the corresponding ball
trajectories. Infrared cameras were strategically located to allow
for a large and gap-free calibration volume of 10 × 6 × 3 m3. All
positional data were reconstructed by a dedicated software
(Motive, Optitrack, Natural Point, Inc., Corvallis, OR,
United States). To minimize marker reconstruction artifacts,
participants were required to wear a body fitted velcro suit and a
beanie cap, upon which retroreflective markers (diameter 14 mm)
were attached. Each participant was equipped with a standard
biomechanical marker set consisting of 57 retroreflective
markers. Eight of these markers, located on medial anatomical
joints, were used only for calibration and were removed post

calibration procedure (Supplementary Figure 1). The marker
set allowed for a real-time skeleton animation of the moving
participant and for saving data with automatically labeled marker
trajectories. A customized foam ball (40 g, 90 mm diameter)
was used as a throwing object. The ball was embedded with five
asymmetrically located retroreflective markers and subsequently
a rigid body was created to track the ball trajectory.

Participants had to perform a series of overarm throws,
starting from a fixed initial position. They were instructed to
hit one of four circular targets arranged on a vertical target
board placed at 6 m from the initial position (marked with a
sign on the floor) and to start from a fixed posture (standing
with the arm along the body; as in Supplementary Figure 1).
The four targets were custom made and consisted in white
circles of 40 cm diameter, arranged on a rectangular layout
on the target board. The distances between the centers were
70 cm vertically and 80 cm horizontally. Moreover, the targets
midpoints in the horizontal direction were shifted with respect
to the projected participant’s initial position: the left and right
targets were centered respectively at 60 cm to the left and 20 cm
to the right of the projected initial position of the thrower’s
midline.

The beginning of each trial was signaled with a computer-
generated pure tone sound and by displaying the selected target
on a computer monitor (see Figure 1 – Display Screen). A second
pure tone sound marked the end of the trial after 6 s. In addition,
a USB video camera was located outside the capture volume (see
Figure 1 – video camera) and recorded the target location, the
participant throwing action and the ball trajectory, including its
landing location on the target-board, for the full duration of
the trial. The handling and communication of all of the above
information was managed through a custom Matlab script that
integrated Optitrack Natnet SDK1. The Natnet.NET client/server
architecture allowed seamless communication between Motive
and Matlab (v2014b), allowing for control via Matlab of Motive
commands (e.g., start, stop, capture a new trial, import, etc.). The
connection to the display computer was established using a UDP
connection.

Protocol
Participants were instructed to perform unconstrained overarm
throws to hit one of the four targets on the targets-board, as
indicated on a display at the beginning of each trial.

Participants were first instrumented with the 57 retroreflective
markers for motion capture, a procedure that took about 10 min
on average to be completed. After marker instrumentation,
participants performed a standard warm-up session which
required them to (i) perform multiple overarm shadow throws
(without the ball), (ii) perform overarm throws with the ball
aiming to hit the rectangular board and, lastly, (iii) perform a
minimum of 12 throws, 3 toward each circular target. Participants
were then allowed to train further, until they felt at easy with the
task. The training phase lasted about 5–7 min. The experimental
recording session was initiated right next and had an average
duration of 40 min.

1http://optitrack.com/products/natnet-sdk/
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FIGURE 1 | Experimental setup. A motion capture OptiTrack system with 16 infrared cameras was used to record the kinematics of 20 participants performing
overarm throws. The participants, instrumented with a set of retroreflective markers, performed free overarm throws aiming at one of the four targets arranged on a
wooden board (Targets Board) placed at 6 m from the initial starting position of the thrower. At the beginning of each trial, the actual target to aim for was indicated
on a Display Screen. For each trial, the motion capture from the thrower kinematics and the ball flight was recorded for a duration of 6 s. The picture shows author
MR performing a throw in the experimental setup. Author MR gave her consent for image publication.

The experimental session consisted in a series of 120 throws,
30 for each of the four targets, presented in a pseudorandom
order. No instruction was given regarding how to perform the
throwing movement, nor feedback about performances during
the experiment. To start from a fixed initial position, facing the
targets-board and standing straight, with the arm along the body
and the hands slightly separated from the thighs. Participants
were therefore free to perform a step forward while throwing
(with either of the two legs) or to throw standing at place.
The session was divided into three blocks of 40 trials, although
participants could ask at any moment to take a break if
needed.

Data Processing and Analysis
The positional data of a subset of eighteen markers selected
from the Motive biomechanical markerset and the positional
data extracted from the ball trajectory after ball release were
analyzed in this study. The subset of eighteen markers included
left and right metatarsal (foot), lateral malleolus (ankle), femur
epicondyle (knee), iliac crest (pelvis), acromion (shoulder),
humerus epicondyle (elbow), ulna syloid process (wrist), second
proximal phalanx (hand), seventh cervical vertebra (cv7) and
anterior head (Supplementary Figure 1). The head’s positional
data were obtained as the mean of the right and left anterior head
markers.

Differently from the joint-markers, the ball was tracked as a
rigid body composed of five markers arranged asymmetrically
on the ball surface so to facilitate its grasping. Consequently, the
centroid of the rigid body did not perfectly coincide with the
center of the ball. The positional data of the ball center were then
estimated by fitting, at each recording frame, the available ball
markers positional data onto a sphere of known radius (45 mm).

Altogether, data from 2400 throwing trials were recorded, 120
for each of the 20 participants.

Data Processing
For each trial the positional data from the eighteen joint-markers
selected for the analysis of the throwing motion, as well as
the ball center positional data, were first interpolated using a
cubic spline method (to fill recording gaps), and subsequently
filtered using a zero-lag Butterworth filter of order 5 and low pass
frequency 15 Hz (Matlab filtfilt function). Positional data were
then differentiated (Matlab diff function) to obtain velocities and
accelerations.

Due to the challenging setup, which required to track the
thrower’s whole-body movements together with the ball flight
over a large tracking volume, several trials were excluded due
to poor tracking. Exclusion criteria were of three categories.
First, if one or more of the joint-markers had been assigned
with impossible values or had no recordings assigned, which
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occasionally happened when the skeleton reconstruction was not
successful. Second, if the right-hand tracking was lost at ball
release, which occasionally happened as the ball markers got
confused with the markers on the hands, so that the skeleton
reconstruction of the arm temporarily failed and the ball rigid
body was lost. Third, if the ball recordings had more than 25%
missing frames in the motion capture between ball-release and
ball-board impact (see below). Typically, recording data along
the ball flight trajectory were missing when the ball flew close
to the ceiling, at the boundary of the capture volume, or in the
proximity of the target-board, as the latter introduces occlusions
that limit the cameras field of view in its vicinity. Additionally,
a few trials were excluded when the participants failed to follow
the instruction and performed a step before starting the genuine
throwing action (e.g., repositioning the starting position).

All the data processing, including the automatized exclusion
of bad-trials and the identification of key-events (see below) were
performed with custom-made software coded in Matlab. Overall,
13.8% of the trials were excluded (331 over 2400). On average,
103.5± 14.5 good trials per participant were used for the analysis.
Individual data is listed in Table 1.

Identification of Key-Events
For each trial, we identified three key events: throwing action
onset, ball release and ball-impact on the target-board.

The throwing action onset was defined as the onset of the
throwing hand initial rising movement. The procedure consisted
of the following steps. First, the time at which the hand first

rose 5 cm above the hip was identified based on the hand-hip
distance profile. Next, the onset detection was based on the speed
profile of the throwing hand in a 500 ms interval centered on
this event. This was done to remove movements that occasionally
participants performed before the actual throwing action, e.g.,
swinging arms. The throwing onset was then defined as the point
at which the speed profile intercepts its tangent taken at the
point where the speed reaches 20% of the maximum speed in this
interval (see inset in Supplementary Figure 2).

The exact time of ball release is the time at which the ball
reaches its maximum speed. In fact, once the ball is released, it
is no longer accelerated by the throwing hand and its speed starts
decreasing. However, prior to release, the ball is poorly tracked
as its markers are partially occluded by the holding hand, and
it is not possible to reliably extract its speed profile. Instead, we
considered the hand speed, which is coupled with that of the ball
up to the time of ball release and start decreasing at the time of
ball release. The time of ball release was then estimated as the
time at which the right (throwing) hand speed profile reached its
maximum value in the 500 ms interval centered on the time at
which the hand-ball distances was above a given threshold. Such
threshold was set according to the hand-ball distance calculated
at the beginning of the trial, i.e., when the ball was held in the
hand (see Supplementary Figure 2).

The identification of the ball-impact event was based on an
extrapolation procedure. The ball trajectory was first fitted with a
second order polynomial function in the time interval [150 ms,
450 ms] starting from ball release, and then extrapolated for

TABLE 1 | Average throwing performances and analysis parameters for individual participants.

Participant
ID

Success Rate
[%]

Throw
duration

mean ± SD[s]

Flight time
mean ± SD

[ms]

Release speed
mean ± SD [m/s]

Trials used
for PCA

Trials used
for LDA

Classification
error from ball

[%]

1 25.2 1.61 ± 0.29 593 ± 61 10.56 ± 0.72 105 81 2

2 31.4 1.04 ± 0.18 661 ± 41 10.38 ± 0.48 111 88 0

3 12.5 1.04 ± 0.23 694 ± 61 9.72 ± 0.55 103 82 1.2

4 65.5 0.81 ± 0.07 557 ± 37 11.39 ± 0.52 117 108 0

5 33.1 1.12 ± 0.10 590 ± 37 10.16 ± 0.66 117 106 0

6 18.5 1.41 ± 0.12 570 ± 59 10.02 ± 0.50 111 89 0

7 31.7 1.00 ± 0.32 439 ± 37 12.90 ± 0.91 79 64 0

8 31.1 0.92 ± 0.13 567 ± 43 11.13 ± 0.66 90 76 0

9 24.1 1.13 ± 0.22 762 ± 11 8.77 ± 0.92 89 71 4.2

10 19.3 1.02 ± 0.21 735 ± 64 8.88 ± 0.37 116 92 1.1

11 19.5 1.73 ± 0.32 421 ± 44 13.64 ± 1.18 114 94 3.2

12 20.8 1.27 ± 0.15 567 ± 56 10.56 ± 0.47 113 102 0

13 42.0 1.84 ± 0.26 642 ± 67 10.10 ± 0.65 107 93 0

14 25.0 0.95 ± 0.30 443 ± 49 13.85 ± 1.23 96 73 0

15 26.9 1.25 ± 0.12 647 ± 64 10.46 ± 0.54 110 88 1.1

16 25.0 1.05 ± 0.15 705 ± 46 9.18 ± 0.35 60 52 0

17 27.7 1.23 ± 0.27 643 ± 93 9.92 ± 0.75 107 87 1.1

18 60.8 1.24 ± 0.20 498 ± 51 11.97 ± 0.71 102 99 0

19 17.8 1.70 ± 0.36 731 ± 62 9.00 ± 0.37 115 92 2.2

20 21.0 1.27 ± 0.36 623 ± 81 9.98 ± 0.57 107 86 2.3

All (mean) 29.0 1.23 ± 0.36 603 ± 11 10.63 ± 1.59 103 ± 14 86 ± 14 0.9 ± 1.3

Grand-averages are listed at the table bottom.
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the subsequent 300 ms. Extrapolation of the ball trajectory was
required because the targets-board occluded the field of view of
some of the cameras, resulting in a poor tracking of the last part
of the ball trajectory in a large fraction of the trials.

Analysis
Linear Discriminant Analysis for Throwing Outcome
Classification
We conducted Linear Discriminant Analysis (LDA) on different
sets of kinematic variables extracted from positional data with
the aim to quantify the predictability of a throw’s outcome.
Among a variety of possible classifiers, we adopted LDA for
several reasons. First, in this study we were mainly interested
in the spatiotemporal structure of the classification accuracy,
rather than in the precision of the corresponding absolute
values. Non-linear classifiers, with the drawback of increasing
the level of complexity, could possibly result in an overall higher
classification accuracy (Amancio et al., 2014; but see Kim, 2008),
but it is unlikely that the overall spatiotemporal structures would
be significantly affected. Second, with respect to other linear
classifiers such as linear regression or linear support vector
machine algorithms, LDA can be easily extended to multi-classes
(higher than two-classes) problems, which can be useful in future
extension of the present work, e.g., for multi-targets classification.

The kinematic variables included are the joint-markers
positions and velocities. Although it has been shown that
accelerations play a critical role in the perception of biological
motion (Troje and Westhoff, 2006; Chang and Troje, 2009), the
visual system is known to be poor at directly discriminating
accelerations from an observed moving object (Calderone and
Kaiser, 1989; Werkhoven et al., 1992; Brouwer et al., 2002).
As a trade-off, we included information on accelerations only

implicitly, namely in the form of the veridical temporal structure
of the joint-marker’s position and velocity. This choice was
furthermore functional to limiting the dimensionality of the
predictor space, which would otherwise increase importantly.

LDA is a standard classification technique used to allocate
a new observation to one of NG ≥ 2 groups (usually referred
to as classes) based on its measured parameters (features). LDA
consists in finding discriminant functions that divide the features
space into NG regions, so that each region spans the range of
features values that most likely characterize a given class. This
is done on the base of a set of previous observations for which
the group assignment is known (training dataset), by maximizing
the ratio of the between-groups to the within-group variabilities
(Mardia et al., 1995).

Because the focus of this study was to examine the nature of
advanced visual cues that allow making reasonable predictions
about the outgoing ball direction prior to ball release, classes
were defined according to the region in which the outgoing
ball landed on the targets-board. For the analysis presented
in this paper, throws were grouped according to the Side
(Right vs. Left) of the ball’s landing position with respect
to a separation region. The latter was defined as a vertical
band centered at the lateral (x) coordinate corresponding to
the mean x across all trials (therefore participant dependent)
and having a width equal to 25% of the lateral separation
between the targets, i.e, 22.5 cm (see Figure 2). This choice
allowed including in the analysis most of the performed throws,
even for the poorly performing participants and, at the same
time, to have an even repartition of the trials in the different
classes.

As the inter-individual variability observed in throwing styles
was way larger than the intra-individual variability associated

FIGURE 2 | Throwing performance of the best and worst performing participants. Each panel depicts the targets-board with the four targets (light-green circles),
together with the distribution of the points where the ball hit the targets-board (small colored circles) for the best (P4, left) and the worst (P19, right) performing
participants. Different colors are used to indicate the target that the participant was instructed to hit. For the classification analysis, the throws were instead grouped
into two different classes (Right vs. Left) according to the throw’s impact point coordinates. The area shaded in gray (22 cm in width) represents the “gray” region
separating the two classes: throws that reached the targets-board in that region were discarded from the LDA analysis.
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with throws to different targets, the analysis was conducted
independently for each participant. For each participants, we
considered the kinematics across a temporal window of fixed
duration, equal to the individual’s average throwing duration
(from throwing onset to ball release, see Table 1), extending up
to the time of ball release. The trials of equal duration were then
aligned at the end of the time window, i.e., at ball release, and
resampled on 100 time points.

We adopted an exploratory approach. LDA was indeed
performed on different sets of predictors. We considered
kinematic variables (positions and velocities) from single joint-
markers, and from subsets of joint-markers representing specific
body parts, over different phases and durations of the throwing
motion. When defining subsets of joint-markers we considered
six different body districts: trunk (including right and left
shoulder and hip), head (including anterior head and cv7
markers), right and left arms (including respectively right
and left elbow, wrist and hand), and right and left legs
(including respectively right and left keen, ankle and foot).
For both single joint-markers and body-parts, we performed
the analysis on ten time intervals (deciles), and for each of
them we considered two different subsets of data: Position
and velocity were either monitored across the duration of
the corresponding decile (time-decile case: non-overlapping
time intervals each including 10 time points), or during the
whole duration of the action from action onset to the end
of the corresponding decile (time-through case: overlapping
time intervals of increasing duration, including from 10 to
100 time points). Our main analysis has been performed
on the single joint-makers/time-decile datasets. The other
datasets have been considered to address the question of
whether integrating information across time and space allows
making better predictions, or is instead detrimental because it
cumulates non-informative variance that weaken classification
performances.

When considering the kinematics of subsets of joint-
markers over extended time periods, the dimensionality of the
predictors space could increase dramatically (Supplementary
Table 1), reaching a maximum of 2400 features for the
case of the “trunk” body part in the last decile of the
time-through case (6 position-velocity coordinates × 4 joint-
markers × 100 time samples). It was therefore necessary
to adopt a dimensionality reduction technique to obtain
a compact representation of the considered kinematics,
in order to run LDA with the limited number of trials
available. A similar two-step PCA/LDA approach has been
previously adopted in the literature, e.g., for facial expression
recognition (Calder et al., 2001), and proved to be robust for
efficient classification/recognition problems (Yang and Yang,
2003).

In the following, LDA results are reported in terms of the
misclassification errors (MEs) resulting from a leave-one-out
cross validation procedure. The latter consists in performing the
classification assignment of a single observation (the one left out)
based on the training set defined by the rest of the observations,
repeating the same procedure for all observation, and computing
the percentage of misclassified observations.

Dimensionality Reduction via Spatiotemporal
Principal Component Analysis
In order to obtain a compact representation of the individual
throwing kinematics, we adopted spatiotemporal Principal
Component Analysis (stPCA) (Russo et al., 2014). To perform
stPCA, the feature space should be defined by all the temporal
samples of the kinematic variables considered. For example, in
the case of considering position and velocity of a single joint-
marker during one time-decile, each trial will be represented
as a column vector containing all the 10 temporal samples
for each of the six position and velocity coordinates, so 60
features. In general, when considering the kinematics in terms
of position and velocity of an arbitrary set of NJ joint-markers
across an arbitrary temporal interval of NT time samples, the
features vector for a single observation (i.e., a throw trial) will be:
q = [Sj(ti), vj(ti)] ∀ j ∈ [1, NJ] ∧ ti ∈ [1, NT].

The features space is then of dimension NF = 3× 2× Nj ×

NT . The whole set of NTrials observations can be then represented
by stacking the features vectors representing single trials into
a single NF × NTrial matrix, X = [x1 x2...xNTrials]. Standard
principal component analysis (PCA) is then applied to this matrix
X. The PCA returns a new set of NF features vectors, the principal
components, defined as the linear combinations of the original
features that maximize the variance observed in the datasets,
ordered as function of decreasing variance accounted for (VAF).
In this way it is possible to describe each observation as a linear
combination of spatiotemporal principal components (stPCs)
and, by neglecting a small part of the variance in the dataset,
to use a limited number of stPCs for obtaining a parsimonious
summarization of the observed datasets: xk '

∑N
l=1 cl,k pl, with

N < NF and k ∈ [1, NTrials].
The advantage of adopting a spatiotemporal description of

the kinematics, instead of a classical time-dependent spatial
description (Troje, 2002; Daffertshofer et al., 2004; Huys et al.,
2008), is that the temporal dependence is embedded in the
principal component vectors, which indeed represents complex
spatiotemporal positional and velocity trajectories for all the
joint-markers considered. As a result, the description of the
observed kinematics in terms of these spatiotemporal PCs
(hereafter stPCs) does not involve the temporal dependence
and can be extremely compact. For example, the time-through
description of kinematics of the trunk body-part in the last decile
of the throwing action, represented by 2400 scalars in the original
feature space, can be described with less than 31 parameters in
the stPCA space while accounting for 98% of the total variance
(average across participants).

RESULTS

Average Performances
Average performances in terms of success rate, i.e., the percentage
throws in which the ball landed within the 20 cm disk of the
instructed target, varied across participants from a minimum of
20% to a maximum of 66%. Although the success rate could vary
with the targets location, there was no common trend across
participants. Figure 2 shows the distribution of ball landing

Frontiers in Human Neuroscience | www.frontiersin.org 7 October 2017 | Volume 11 | Article 505

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-11-00505 October 26, 2017 Time: 17:19 # 8

Maselli et al. Early Cues from Overarm Throwing Kinematics

positions on the targets-board, for the best and worst participants
in terms of performance. In the cases of poorly performing
participants, the distribution of the ball-board impact points
was broad (e.g., P19) and there was no segregation of the
trials intended to hit different targets (as in the case of good
participants, e.g., P4), but instead a substantial degree of overlap
among them.

Data revealed a great variability in the duration of
the throwing action, in the ball release speed and in the
corresponding duration of the ball flight, particularly across
participants. This variability reflects the fact that participants
have been not assigned with specific constraints for the throwing
task execution (see Section Protocol). Table 1 reports the
summary statistics for these parameters at both the individual
and the population levels.

Throwing Styles
We next inspected the individual throwing style, namely the
spatial features of the whole-body kinematics that characterizes
an unconstrained overarm throwing action. Figure 3 shows
the individual styles from the 20 participants recruited in the
study. For each participant, the figure depicts the trajectories
of the joint-markers included in the analysis averaged across
all trials performed, independently on the target aimed for.
The inter-individual differences in throwing styles are markedly
evident.

Despite the large inter-individual variability in throwing styles,
for all participants the throwing action can be clearly segmented
into two phases: one in which the throwing hand is elevated
at about the shoulder level (elevation) and the other in which
the hand is projected forward for executing the throw (forward-
projection). During elevation, the throwing hand trajectory may
have two main modes of execution. Some participants rise the
throwing hand by moving the arm in front of the trunk (e.g., P3,
P9, P16, P19) and in some cases slightly toward the body midline
(e.g., P6, P10, P12, P13). Otherwise, the throwing hand is risen
while moving backward and opening laterally towards the right
side (e.g., P1, P4, P5, P7, P14, P15, P17, P18). Other important
inter-individual differences can be appreciated in the stepping.
Some participants adopt an “on-place” throwing strategy keeping
the feet at place (e.g., P3, P4, P8), while others undertake one
prominent step, either with the left (e.g., P7, P17, P18) or with
the right (P6, P10, P19) leg. Variability is there also in the degree
of the trunk’s forward projection and in whether and how the left
arm is involved in counterbalancing the throwing arm motion.

A more detailed, though less intuitive, description of the
throwing action kinematics is provided by the heat-map
representations of Figure 4, showing the kinematics of a
representative participant (P14). The map in the left panel
represents the deviation from the corresponding initial values of
the three positional coordinates (x, y, z) of each joint-marker
through time. For this particular participant, the action starts
with moving the right arm backward, while the hand and wrist
start rising. This is compensated by left arm moving forward
(positive displacements along the y-axis), and soon after is
followed by a left step forward resulting in a trunk rotation,
with right side moving backward and the left forward. All

these kinematic features unfold during the elevation phase. The
forward-projection phase starts only at the very end of throwing
action, i.e., during the 9th decile, about 200 ms before ball release.

Such a late transition from the elevation to the forward-
projection phase is observed for all participants in our sample
(see Figure 5 and Supplementary Figure 3), and typically occurs
during the 9th or the 10th decile, about 200–100 ms before ball
release. This has important implications. In fact, the throwing
arm kinematics during the forward-projection phase is expected
to be highly informative about the outgoing ball trajectory.
However, such relevant information becomes available at a late
stage. The question of whether other body parts may provide
earlier information about the outgoing ball trajectory, even if
with less precision, is therefore of particular interest. The analysis
presented in the following sections addresses the issue.

Ball Flight Predictability Based on
Throwing Kinematics
In order to explore how early and which kinematic cues allows
to make accurate predictions about the region in which the ball
is going to land, we applied LDA to the kinematics of individual
joint-markers, or subsets of joint-markers, taken across different
time intervals.

As a first exploratory step, we considered predictions
associated with the kinematics of individual joint-markers at
10 non-overlapping time intervals of equal duration spanning
the whole throwing action (joint-marker/time-decile). Next, we
assessed the impact of integrating advanced information across
time (joint-marker/time-through) and/or across space (body-
parts/time-decile or body-parts/time-through), by comparing
prediction accuracies between the different predictor spaces
considered, i.e., between different combinations of spatial and
temporal information included in the LDA analysis.

Before moving on presenting the main results that quantify
prediction accuracies, we shall discuss the implications that our
choice of defining discrete classes (Right vs. Left), on the basis of
continuous variables (coordinates of the ball landing position on
the target board), has on the intrinsic accuracy of the LDA results.

Intrinsic LDA Accuracy
Applying LDA classification on our dataset required separating
the set of throws from a given participant into discrete groups
(classes). In the analysis presented in this paper we have focused
on the problem of Side classification (Right vs. Left). In principle,
the same analysis can be applied to the classification of Elevation
(Up vs. Down) and or Quadrant (Side× Elevation). In these cases,
however, because the effect of gravity on the ball’s elevation at
impact depends on the flight duration, the ball velocity at release
acts as a confound in the relation between throwing kinematics
and ball elevation at impact.

As described in Section “Materials and Methods,” throws were
grouped based on the coordinates of the position in which the
ball landed on the targets-board. This choice allowed including
most of the performed throws in the LDA training, even for
poorly performing participants. Only the throws in which the ball
landed in the gray separation region were indeed excluded from
the LDA analysis. The number of excluded trials depended on
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FIGURE 3 | Inter-individual variability in throwing styles. Individual throwing styles are shown for the 20 participants recruited in the study. For each thrower, the
displayed curves represent the averaged joint-markers trajectories across all trials performed. Square and triangle symbols indicate respectively the beginning of the
throwing action and the time of ball release. Remarkable inter-individual differences are observed in the participants sample.

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2017 | Volume 11 | Article 505

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-11-00505 October 26, 2017 Time: 17:19 # 10

Maselli et al. Early Cues from Overarm Throwing Kinematics

FIGURE 4 | Mean throwing action kinematics of representative participant P14. (Left) The temporal evolution of the deviations from the initial position is shown for all
joint-makers included in the analysis. The three rows associated to each joint-marker represent the values for the three spatial coordinates, [x,y,z] from top to bottom
respectively. (Right) Examples of velocity and speed profiles from single joint-markers: right hand (upper) and left foot (lower). The participant’s throwing style is
characterized by an elevation phase in which the throwing arm is risen while moving the hand backwards and to the right side, and by a concomitant left step
forwards. While the elevation phase extends in time throughout the first eight deciles of the whole action duration, the forward-projection phase occurs late, across
the 9th and 10th deciles.

the participant’s performance and ranged from a maximum of
24 trials to a minimum of 3, with an average (±SD) of 17 (±6)
trials removed per participant. The total number of trials used to
perform LDA analysis for each participant is given in Table 1.

The choice of grouping trials into discrete classes based on
continuous variables can have implication for the intrinsic LDA
accuracy. In fact, throws assigned to different classes may be
closer to each other, if the corresponding ball’s arrival positions

are close to the boundaries of the separation region, than throws
assigned to the same class. To assess the effect of the dispersion
of the ball’s arrival positions on classification performances, we
performed LDA Side-classification using position and velocity
of the ball at release as predictors. Once released, the ball
moves according to the laws of motion along a defined parabolic
trajectory. It follows that ball position and velocity at a single
point in time, from release onward, univocally determine where
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FIGURE 5 | Average kinematics of the four throwing arm marker-joints. (S, shoulder; E, elbow; W, wrist; H, hand) for the 20 participants recruited in the study. The
heat maps represent the temporal evolution of the deviation from the initial position through time. The three rows associated with each joint-marker represent the
values for the three spatial coordinates, [x,y,z] from top to bottom respectively. For all participants the forward-projection phase occurs typically across the 9th and
10th deciles, i.e., about 200–100 ms before ball release.

the ball will land on the targets-board. The LDA classification
based on these predictors should be then accurate at 100% level,
so that deviations from perfect classification could provide a
quantitative estimation of the effect of sub-optimally separated
classes on the intrinsic LDA performances.

MEs of the ball landing side based on ball position and
velocity at release range from 0 to 4.2 percent, less than 1
percent when averaged across participants. Individual MEs are

listed in Table 1. The differences found between participants
in the intrinsic accuracy of the LDA should be taken into
account when comparing the predictability of the throwing
kinematics across participants. To this end, we introduced an
index that normalizes the ME based on body kinematics to
the ME due to the dispersion of the ball’s arrival positions on
the targets-board. In the following, when reporting results from
the LDA applied to body-kinematics features we provide values
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for the Misclassification Index (MI), defined as:

MIBK = (MEBodyKin −MEBall)/(1−MEBall),

where MEBodyKin and MEBall indicate the MEs obtained running
LDA respectively on body kinematics and ball position plus
velocity at release. If the classes are well separated and the ME
based on ball data is zero, MIBK corresponds to the ME based on
body kinematics. In contrast, if the ME based on body kinematics
is equal to the ME based on the ball, indicating that the body
kinematics is as informative as the ball kinematics at release,
MIBK = 0.

Spatiotemporal Predictability of Individual Throwers
The aim of the analysis presented in this section was
to characterize whether the throwing kinematics allows
disentangling the side in which the ball will land on the targets-
board, both at a spatial (i.e., in terms of single body parts) and at
a temporal level.

To a first approximation, one could address this issue by
looking at the average differences in the joint-markers trajectories
of throws to the left or to the right. Figure 6 shows such a
comparison for two representative participants, highlighting two
main points. First, as expected (see Section Throwing Styles) the
most dramatic differences between the kinematics leading to balls
on different sides are associated with the forward-projection phase
of the throwing arm. A second important point that emerges is
related to the marked inter-individual differences. Trajectories
corresponding to the ball landing on opposite sides tend in fact
to diverge in the throwing arm at different stages for different

participants (e.g., later for P18 than for P4). Furthermore, also
depending on the participant, trajectories may diverge also for
body parts other than the throwing arm (e.g., the left foot
for P18).

Visualizing and inspecting differences in the individual
average trajectories between left and right throws may give
some hints about the kinematic cues that could provide
useful predictions about the throwing outcome. However,
the spatiotemporal stPCA + LDA approach described in
Section “Analysis” was necessary to provide a quantitative
characterization of the individual predictability of a thrower.
LDA classification was run on the first NPC spatiotemporal
components that explain at least 98% of the total variance. The
dimensionality of the predictors space, NPC, depends therefore
on the specific participants and on the set of the kinematic
variables included. The mean NPC values (averaged across
participants, joint markers and time steps) used for LDA for
different combinations of joint-marker sets and time intervals
are summarized in Table 2. Mean NPC values range from 6 to
27, corresponding to original spaces with dimensionality between
60 (single joint-marker at one time-decile) to 1800 (e.g., one
body-part with three joint-markers at the tenth time-through
interval), demonstrating the efficacy of stPCA as a dimensionality
reduction technique.

Results from stPCA + LDA analysis, for single joint-markers
and the case of time-decile are shown in Figure 7. The color
maps, one for each of the 20 participants recruited in the study,
represent the MI, as defined in Section “Intrinsic LDA Accuracy”
(MIBK), as a function of joint-marker and time decile throughout

FIGURE 6 | Examples of average kinematics by ball landing side. Average trajectories (thick solid lines), and corresponding standard errors (shaded areas), for
throws to the right (red) and to the left (blue) are shown for two representative participants. The stick diagrams depict the average initial and final postures (gray and
black respectively), for the right and left throws (dashed and solid respectively).
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the throwing action course. The dataset reveals a considerable
inter-individual variability in the predictability of the throwing
action, both in its average level and in its spatiotemporal
structure. Some participants are more predictable than others,
reaching in fact different absolute minimum of the MIBK across
joints and times (values are given in Figure 7). Individual MIBK
minima range in fact from 0 to 22.6 (corrected percentage of
misclassified trials), although on average participants display
very low minima in MEs, i.e., 3.4 ± 5.2 (mean ± SD).
Furthermore, the time intervals and joint-markers that provide
information allowing for reliable predictions vary significantly
across participants. This is clearly shown by the differences,
found across individual maps, in the extent and shape of the
bluish regions, which correspond to predictions accuracy higher
than 80%.

Despite the overall inter-individual differences, two important
general results emerge. First, the throw’s outcome may become
predictable with a reasonable accuracy (>80%) not only before
ball release, but even before the forward-projection phase.
Although for some participants informative cues about the
outcome are not available until the very end of the action (e.g.,
P1, P7 P9, P14, P16, P20), most of the participants display
informative kinematic cues already during the 6–7th deciles, i.e.,
400–500 ms before ball release, and in few cases even earlier (e.g.,
P4, P18). Second, when early information is available, it is not
necessarily provided by the throwing arm, but instead by different
body segments that vary across participants. Interestingly, the
body segments that deliver early information seems to be
associated to specific throwing styles. For example, participants
for which early predictions are based on the left lower leg joint-
markers (e.g., P5, P11, P15) perform the throwing action with
a prominent left step (see Figures 3, 7), and the same applies
to participants delivering early information from the right lower
leg (e.g., P6, P10, P19). An insightful summary of the inter-
individual variability in the spatio-temporal structure of throwing
predictability in given in Figure 8.

Figure 8 displays the number of participants for which at
least one joint-marker could predict the ball landing side, with
at least 80% accuracy, as a function of time. In addition, for
each temporal interval, the figure shows the distribution across
participants of the body segments (i.e., subsets of contiguous
joint markers) containing the most informative joint-marker.
Not surprisingly, the number of predictable participants increases
throughout the action course. Interestingly, the spatial origins
of the most informative joint-marker is modulated by the stage

TABLE 2 | Average number of stPCs components needed to account for 98% of
the total variance and used for the LDA analysis.

Time deciles
(all)

mean ± SD

Time through
1st decile

mean ± SD

Time through
10th decile
mean ± SD

Single joint-
markers

6.0 ± 0.6 5.7 ± 0.6 18.8 ± 3.9

Body parts 9.1 ± 0.5 9.2 ± 1.4 27.2 ± 6.3

Averages are computed across participants, joint markers and time steps.

of the action at which predictions are made. The throwing arm
results to be the most reliable source of information only at
the very end of action, i.e., during the 9–10th deciles. Moving
back in time, useful information is instead provided by other
body segments, in particular the limbs contralateral (left) to the
throwing arm. This could possibly reflect the relevance of early
kinematic features tuning the forward-projection phase.

The Role of Information Integration across Time and
Body Parts
Results from Section “Spatiotemporal Predictability of Individual
Throwers” provide insights on how early it is possible to predict
the outcome of a throws and which are the body parts that, at
different times throughout the action, provide the most reliable
information. As a next step, we here look at the effect of
integrating information both spatially (across different subsets of
joint-markers) and temporally (across time intervals of different
extents). We do this by comparing results from LDA applied
on four different predictor spaces: single joint-markers and body-
parts kinematics, both integrated either over time-decile or time-
through temporal intervals (see Section Linear Discriminant
Analysis for throwing outcome classification for details of the
different datasets definition).

Figure 9 shows LDA performances in terms of number of
predictable participants, for the four different choices of spatial
and temporal integration under consideration. Participants
counts correspond to the number of participants for which Side
predictions can be made with an accuracy higher than 80%, based
on at least one of the spatial predictors (either a single joint-
marker or a body part) for each temporal interval. Focusing
on the comparison between single joint-markers and body-parts
(red and blue bars respectively), it is evident that integrating
information spatially to include multiple joints into body-parts
results in a clear boost in predictability. This is particularly true
for the early stages of the action. Looking for example at the time-
decile results, it can be seen that integrating spatial information in
such a fashion increases the number of “predictable” participants
by more than 50% up to the 6th decile. On the other hand, looking
at the effect of temporal integration it appears that integrating
information across time (time-through, diagonal-dashed), does
not result in higher prediction accuracies with respect to taking
into account only the information within the specific time-decile
(time-decile, horizontal-dashed), and in some cases may even
entail loss in accuracy.

DISCUSSION

The focus of this study was to assess whether it is possible
to predict the direction of a thrown ball based on advanced
information from the whole-body kinematics of the thrower.
In particular, we explored how early it is possible to make
reliable estimates about the lateral direction (right versus
left) in which the thrown ball will reach a vertical plane
placed at 6 m from the thrower. In addition, we explored
the spatial structure of the predictive information, namely
what are the body parts from which it is possible to make
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FIGURE 7 | Individual spatio-temporal structures of predictability. Color maps represent the misclassification index, MIBK (see Section Ball Flight Predictability based
on Throwing Kinematics), as a function of joint-marker and time decile throughout the course of the throwing action, for all the twenty participants recruited in the
study. Marked inter-individual differences show that different participants are characterized by different overall levels of predictability (MIBK values on the top of each
map gives the individual minimum value of MIBK across joint-markers and time intervals). Furthermore, different participants become predictable at difference stages
of the action, with relevant information provided by subject-dependent key joint-markers.

the most accurate predictions, and how this spatial structure
depends on time and on individual throwing strategies.
The study represents an essential first step for establishing,
in future studies, how human or robotic agents could
take advantage of visual cues extracted from the observed

biological motion in order to optimize interpersonal interaction
strategies.

The study is based on the kinematics of throwing actions
recorded from a sample of twenty non-expert participants that
were asked to perform non-constrained overarm right-hand
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FIGURE 8 | Temporal evolution of most informative body parts across
participants. The figure displays the number of participants for which at least
one joint-marker could predict the Side of the outgoing ball trajectory with at
least 80% accuracy. The segmentation of each temporal bin shows the
distribution, across participants, of the body segments including the most
informative joint-marker. The number of predictable participants increases with
time. Time modulates also the spatial origin of the most informative
joint-marker. While the throwing arm provides the most informative cues
towards the end of the action, other body parts –in particular the contralateral
limbs– become more informative when moving back in time.

throws to hit one of four targets at 6 m distance. In order to have a
representative sample of “typical” throwing patterns in the adult
population, we posed no specific constraints on the previous
sport exposure and experience when recruiting participants.
We found a high level of heterogeneity in throwing styles, as
each individual typically tended to adopt a specific throwing
strategy over the course of the experiment (Figure 3). This is not
completely surprising, given that besides factors such age, gender
and intrinsic inter-individual differences, the previous exposure
to different sports and different skill levels are likely to play a
crucial role in determining individual preferences for a specific
throwing strategy. Similar considerations hold in the context of
other ecological scenario, such as unconstrained ball catching
(Cesqui et al., 2012).

To quantify the spatiotemporal structure of a throwing
action predictability, we developed a novel method based on a
combination of dimensionality reduction and machine learning
techniques, which was applied to different sets of kinematic
variables. This approach led to several significant results. First,
we found a considerable inter-individual variability in the
predictability of the throwing action, as some participants were
more predictable than others in terms of launch direction.
Furthermore, different participants became predictable at
different times across the throwing action duration. For most
participants accurate (>80%) predictions can be made as early
as 400–500 ms before ball release, and for a few participants
even earlier (see Figure 8). This implies that a hypothetical

human or robot catcher could in principle improve interceptive
performance of genuine throws, e.g., by reaching in advance the
most likely region of ball arrival, before being able to acquire
more refined information from the ball flight. Nonetheless, the
extent to which this holds critically depends on the agent’s ability
to read out the information available, something that needs
to be tested with dedicated studies. Moreover, this conclusion
would not extend to the case of deceptive throws, in which the
kinematics of the throwing action is intentionally and skillfully
decoupled from the ball’s trajectory (Güldenpenning et al., 2017).

Second, our spatial analysis showed that the throwing arm
delivers, as expected, accurate information about the outgoing
ball trajectory, but only in the very last phase of the throwing
action, during the forward-projection phase, i.e., at 100–200 ms
before ball release. When moving back in time, the body parts
providing informative cues shift from the throwing arm to
other body segments, typically the trunk and the left limbs
(contralateral to the throwing arm). With respect to this latter
result, it is interesting to mention that previous studies from the
sport science literature have described the role of contralateral
arm for increasing the accuracy of a throw (Bartlett et al., 1996;
M.C.C., 1976) or a kick (Bezodis et al., 2007). It seems therefore
reasonable to speculate that, when the contralateral limbs are
employed for stabilizing the throwing arm forward-projection,
they could retain information about this phase in advance.

Third, we found a considerable inter-individual variability in
the spatio-temporal structure of the information relevant for
making reliable predictions. In fact, the spatial origin of early
advanced information varies from participant to participant (see
Figure 8). Thus, for a catcher to be able to take advantage
of early information from the body kinematics, it would be
probably necessary to have some a priori knowledge of the most
informative body parts that characterize the specific thrower, so
as to direct the attention toward these body parts early on.

Interestingly, a qualitative comparison between the
spatiotemporal structure of predictability (Figure 7) and
the individual throwing styles (Figure 3) suggests a possible
link between the two. Participants who perform the throwing
action with a prominent left (right) step tend to deliver early
information mainly via the kinematics of the lower left (right) leg.
A quantitative assessment of this potential correlation between
throwing styles and spatiotemporal structure of predictability
would require a formal, data-driven definition, of individual
throwing styles. Although this is beyond the scope of the present
study, it is important to notice that the observed link may
have crucial implications. In fact, it suggests that, in a possible
interactive scenario, a catcher that has knowledge of the throwing
style of the opponent, would know in advance where to look for
extracting more efficiently advanced information, and therefore
for maximizing interception performances.

Finally, looking at how prediction accuracies are modulated
by spatial integration of advanced information from the throwing
motion (by performing LDA classification on different predictors
spaces), we found that integrating information across multiple
joint-markers is of clear advantage for boosting prediction
accuracies. This result is in line with previous findings
highlighting how anticipation skills are associated with a “global”
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FIGURE 9 | Comparison of predictability accuracies based on different predictors spaces. The figure displays predictions accuracy in terms of number of
participants for which Side predictions can be made with an accuracy of at least 80% based on at least one of the spatial predictors (either a single joint-marker or a
body part), at different temporal intervals. Predictions accuracies are compared for predictors spaces that differ in either the amount of spatial information integrated
(single joint-markers vs. subset of joint-markers grouped in body parts), and/or of temporal information integrated (non-overlapping time-deciles vs. time intervals of
increasing lengths, from movement onset to the actual time, i.e., time-through). Spatial integration of information from extended body districts significantly improves
the accuracy of throws predictability, particularly at the early phases of the throwing action.

perceptual processing of kinematic information rather than with
localized information (Huys et al., 2009; Smeeton and Huys,
2011).

Integrating information through the whole course of the
action, instead, does not seem of clear advantage for increasing
predictability accuracies. In some cases, temporal integration may
even result in reduced predictions accuracies. This pattern of
results may be explained by two different effects. A possibility is
that taking into account information over extended time intervals
may blur key relevant information, because of cumulating
non-informative variance across time. A second possibility
is that the observed loss in prediction accuracy is a result
of the higher dimensionality of the predictors space, which
introduces limitations in the intrinsic LDA accuracy (Fukunaga,
1990).

The present findings will guide future experimental studies
in which we plan to explore sensorimotor strategies involved in
interactive throwing and catching tasks. Indeed, the main aim of
the current study was to provide a quantitative characterization
of the information embedded in the throwing kinematics about
the outgoing ball trajectory. The gathered knowledge about
the spatiotemporal structure of the information available to a
potential observer is in fact functional to the design of tailored
experimental protocols that will assess whether and how human
observers are able to read out the relevant information and, if
this is case, whether and how the extracted information is used
in interaction performances. While this principled approach has
been previously introduced for the study of predictions from the
kinematics of reach-to-grasp movements in the context of social

neuroscience (Ansuini et al., 2014, 2015a), it is entirely novel with
respect to previous works on the role of advanced information in
more complex whole-body movements like throwing actions.

Previous studies provided robust evidence for the human
ability to read out advanced information from throwing, hitting
and kicking kinematics. In particular, these anticipatory skills
have been shown to be higher for elite-sport players than for
non-experts (Abernethy, 1990a; Aglioti et al., 2008; Diaz et al.,
2012) and to be associated with a refined task-specific knowledge
that allows experts attending the most informative task-specific
kinematic cues (Abernethy and Russell, 1987; Ward et al., 2002).
Although the specific nature of the most informative kinematic
cues is dependent on task constraints (Müller et al., 2006), some
previous results are in line with our findings. In particular, it
has been shown that expert players are not only able to use
information from the throwing, hitting or kicking end-effector
(e.g., hand, racket or foot) at times close to impact, but also
earlier kinematic cues from more proximal or different distal
body parts (Abernethy et al., 2001, 2008; Nagano et al., 2004).
Interestingly, several studies have highlighted how the picking-up
of advanced information is associated with a preparatory motor
behavior, like stepping in the predicted direction (Ranganathan
and Carlton, 2007; Renshaw et al., 2007), and/or with earlier onset
of the interceptive movement (Panchuk et al., 2013; Stone et al.,
2017). In continuity with these results, we plan, as a next step, to
assess the extent to which similar observations hold for catchers
facing non-experts performing unconstrained overarm throws,
and whether adaptation and attunement to individual throwing
styles is present.
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Beside the specificity of the throwing/catching scenario, the
current study fits in the wider context of social neuroscience
and human-robot interaction. It is indeed well established that
humans, when observing an action, are extremely good at
reading out subtle kinematic cues not only to infer actor’s
attributes –such as emotional states (Pollick et al., 2001), gender
(Barclay et al., 1978) or identity (Richardson and Johnston,
2005)–, but also to make specific predictions about the actor
intention (Sartori et al., 2011; Cavallo et al., 2016) or the action
outcome (Ansuini et al., 2015b). Early predictions formulated
during action observation are indeed revealed in gaze behavior
strategies functional to test the foreseen stages of the observed
movement (Flanagan and Johansson, 2003; Donnarumma et al.,
2017). A series of recent studies have furthermore highlighted
how informative kinematic cues are spontaneously modulated
to facilitate the discriminability of the performed action, so to
render interpersonal communication more efficient (Vesper and
Richardson, 2014; Candidi et al., 2015). Our work represents
a complementary contribution in this field by providing a tool
for establishing, in an unbiased fashion, the spatiotemporal
structure of the relevant information embedded in a specific
action about its own outcome. This knowledge could be then
used in future studies to explore which aspects of the information
available are effectively accessed and used in non-verbal
interpersonal communication, for example by implementing
occlusion paradigms and/or by motoring interceptive actions and
eye movements during interactive throwing and catching tasks.

Importantly, the methodology that we have introduced for
deciphering the spatiotemporal structure of the information
embedded in the throwing kinematics about the outgoing
ball trajectory, can be applied to other categories of whole-
body actions involved in the interaction between two or
multiples agents. As such, it provides a valuable tool to
explore interpersonal communication strategies based on body
kinematics in a large variety of interactive tasks. Furthermore,
the insights gained from observed human behavior can provide
a significant contribution in human-robot interaction research,
both by guiding the design of better predictable robots, and by
addressing potential strategies for artificially reading out relevant
advanced information from human kinematics.

Despite the novelty of the results and the potential future
applications of the methodology, our study is subject to
some limitations. From the methodological point of view,
the combination of dimensionality reduction and classification
techniques that we have used may become less reliable if the
dimensionality of the predictor space grows too high with respect
to the dimensionality of the dataset used to train the classifier.
If, as we did, we fix a given degree of accuracy in the stPCA
reconstruction (fixing a VAF threshold), the dimensionality
of the predictor space depends on the kinematics taken into
considerations. For example, when considering multiple joint-
markers across the whole duration of the throwing action, the
number of stPCs required to have a VAF above 98% could
grow above 30. On the other hand, fixing the dimensionality
of the stPCs space would correspond to different degrees
of reconstruction accuracy for different subsets of kinematic
variables considered. While the high dimensionality of the stPC

representation may reflect an intrinsic and thus unavoidable
feature of the data, it is also possible that there exists a more
compact representation of the spatiotemporal variability of whole
body kinematics. Rather than being only superimposed over a
fixed time-interval, individual stPCs may also be shifted in time
(d’Avella et al., 2003). The use of time shifting might allow to
better capture timing modulation in the throwing action and
could achieve a better reconstruction accuracy in a stPCs space
of lower dimension (Chiovetto et al., 2016).

Another limitation of the study is linked to the choice of
recruiting non-expert participants. While this choice was meant
to provide a broad picture of the readability/predictability of
individuals without a specific expertise in a complex whole-body
action like an overarm throw, it is likely that such a population is
characterized by a lower “signal-to-noise” (i.e., by larger amount
of non-informative variance in the movement kinematics) with
respect to expert throwers. An additional drawback of having
non-expert throwers as participants is related to their average
poor performances (ball landing positions were in most cases
not clustered around the aimed targets) and the associated need
to group throws into discrete groups (the side) on the base
of continuous variables (the ball landing position coordinates).
It would be interesting in future studies to apply the same
methods as to characterize the spatiotemporal structure of the
predictability of expert throwers with respect to the outgoing ball
trajectory.

CONCLUSION

In this study we have provided a quantitative estimate of the
accuracy that it possible to achieve when predicting whether a
thrown ball will flight right or left, as a function of different visual
cues from the whole-body throwing kinematics. We achieved
this by introducing a novel method based on a combination of
dimensionality reduction and machine learning techniques. The
results provide novel insights into the spatiotemporal structures
and inter-individual variability of the visual cues potentially
available for predicting the outgoing ball trajectory. The results
further provide preliminary evidence for a relationship between
the spatiotemporal structure of the information available and the
individual throwing styles.
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