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Most brain-based measures of the electroencephalogram (EEG) are used in highly
controlled lab environments and only focus on narrow mental states (e.g., working
memory load). However, we assume that outside the lab complex multidimensional
mental states are evoked. This could potentially create interference between EEG
signatures used for identification of specific mental states. In this study, we aimed to
investigate more realistic conditions and therefore induced a combination of working
memory load and affective valence to reveal potential interferences in EEG measures.
To induce changes in working memory load and affective valence, we used a paradigm
which combines an N-back task (for working memory load manipulation) with a
standard method to induce affect (affective pictures taken from the International Affective
Picture System (IAPS) database). Subjective ratings showed that the experimental
task was successful in inducing working memory load as well as affective valence.
Additionally, performance measures were analyzed and it was found that behavioral
performance decreased with increasing workload as well as negative valence, showing
that affective valence can have an effect on cognitive processing. These findings are
supported by changes in frontal theta and parietal alpha power, parameters used
for measuring of working memory load in the EEG. However, these EEG measures
are influenced by the negative valence condition as well and thereby show that
detection of working memory load is sensitive to affective contexts. Unexpectedly,
we did not find any effects for EEG measures typically used for affective valence
detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA
measure might not be usable if cognitive workload is induced simultaneously. We
conclude that future studies should account for potential context-specifity of EEG
measures.
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INTRODUCTION

Investigating Complex User States with
the Electroencephalogram
In recent years, there has been increased interest to use the
electroencephalogram (EEG) in the context of human-machine
interaction (Frey et al., 2013). However, most studies using the
EEG to measure mental states focus on very specific states like
working memory (Klimesch, 1999) or affective valence (Ahern
and Schwartz, 1985), which are investigated in well controlled
lab environments. Therefore, the indicators used in such studies
might not provide robust measurements outside the lab, since
real world environments tend to evoke much more complex and
multidimensional mental states that involve different cognitive,
emotional and motivational components (Gerjets et al., 2014).
Furthermore, many measures used to infer mental states from
the ongoing EEG are known to have many-to-many relations,
meaning that several physiological variables are associated with
multiple psychological elements (Fairclough, 2009). Hence, it is
necessary to systematically investigate the relationship between
different mental states and the different EEG measures that
are widely used in neuroscientific studies, to investigate if
such measures can be used outside the lab. In this article
we systematically investigate the relation between two types of
mental states that are widely used in the context of human-
machine interaction, namely working memory load (e.g., Spüler
et al., 2016) and affective valence (e.g., De Smedt andMenschaert,
2012), to study the interaction of the brain responses typically
associated to these mental states.

Working Memory Load
There are many different ways to induce mental states
characterized by high levels of working memory load (Wilhelm
et al., 2013). One way to induce working memory load that has
been widely used in the context of cognitive neuroscience is
the N-back task (Kirchner, 1958; Scharinger et al., 2015). The
N-back task is a continuous performance task where subjects are
presented with a series of stimuli and have to indicate whether the
current stimulus is identical to the stimulus presented N-steps
before, or nor. Hence, the load factor ‘‘N’’ allows to adjust the
difficulty of the task, thereby manipulating working memory
load.

Working memory load is commonly defined as the interplay
of controlled attentional processes and short term memory
structures that handle different representational codes via
various temporal storage components (Baddeley, 2003, 2012).
The central attentional control system is assumed to be mainly
located in frontal regions of the brain like the dorsolateral
prefrontal cortex, while content in short termmemory is thought
to be maintained via parietal brain areas like the intraparietal
sulcus (Klingberg, 2009; Scharinger et al., 2015). Accordingly,
increases in mental workload usually result in increased frontal
theta activity as well as decreased parietal alpha activity (Gevins
et al., 1995; Klimesch, 1999; Smith and Gevins, 2005). However,
previous research has shown that other mental states can also
have an effect on measures used for workload detection. Roy
et al. (2013), for example, induced fatigue and found that with

increasing time on task the discriminability of working memory
load was decreased.

Affective Valence
There are multiple ways to induce affective experiences in lab
settings (Gerrards-Hesse et al., 1994). One effective way is the
use of affective picture stimuli. The most prominent picture
database is the International Affective Picture System (IAPS;
Lang et al., 1997) which comprises a large set of standardized
and emotionally evocative color photographs. All stimuli of the
database have been rated along the dimensions of valence and
arousal as described in the two-dimensional circumplex model
of emotion (Russell and Pratt, 1980).

The valence dimension reflects the pleasantness of a situation
and ranges from sadness to happiness. The arousal dimension
reflects the responsiveness of the organism and ranges from
sleep to frenzied excitement. Several studies have used the EEG
to study affective states in the past Olofsson et al. (2008) and
Kim et al. (2013). While there are many different approaches
to infer affective valence in the EEG, some even using right
hemispheric activity in the beta (Rowland et al., 1985) or gamma
band (Müller et al., 1999), the two most widely used EEG
measures to infer affective states are the late positive potential
(LPP) and the so-called Frontal Alpha Asymmetry (FAA). The
LPP is an EEG feature in the time domain and represents
a positive deflection in the ERP-curve, reflecting the activity
related to the arousal dimension (Schupp et al., 2000). The FAA
represents the individual hemispheric contributions which is
related to the affective valence dimension (Ahern and Schwartz,
1985; Tomarken et al., 1990; Huang et al., 2012). Increased right
frontal activity is an indicator of a mental state characterized
by negative affective valence. Usually, this measure is used
during resting (with closed eyes) or passive viewing conditions
(Davidson, 1992). Interestingly, previous work has shown that
working memory load can result in lateralized activity as well.
For instance, a study by Baldwin and Penaranda (2012) used
several tasks to induce mental workload and found more left
hemispheric activity during increased cognitive load. This might
result in potential interferences between affective valence and
working memory load in the FAA measure. Analyzing this type
of potential interference between working memory load and
affective valence is the main goal of this article.

Investigating Interactions between
Working Memory Load and Affective
Valence: The Emoback Task
Previous research on the use of neural signatures of mental
states has largely ignored the problem of potential interference
between working memory load and affective experiences. Only
one recent study addressed the effect of an affective experience
on the automatic identification of working memory load. In this
study, Mühl et al. (2014) used an N-back task to manipulate
working memory load while social stress was induced with a
stress-induction protocol based on the Trier Social Stress Task
(Kirschbaum et al., 1993). The authors attempted to detect
mental workload during stress using features from the frequency
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domain as well as the time domain. They concluded that it is
possible to transfer methods across affective contexts, but only
with diminished performance. However, these results are limited
to one specific affective context (social stress). Furthermore, the
authors were focusing on the identification of working memory
load alone. The current article wants to extend these findings
using a more general affective response and also account for the
potential interference of cognitive and affective components.

In order to collect suitable data for this objective, we used a
combination of an N-back task with a standard affect induction,
called the emoback task. Interactions between cognitive and
affective processes in the EEG have been previously investigated
with the affective flanker task (Alguacil et al., 2013). However, the
affective flanker task can be seen as a simple stimulus-response
task that only requires perceptual inhibition and therefore does
not represent a genuine workingmemory task. The emoback task
does involve memory components and, to our knowledge, has
only been used twice in combination with the EEG. First, a study
by MacNamara et al. (2011) used the emoback task with affective
pictures as distractors and found that the LPP was modulated not
only by affective responses towards emotional pictures, but also
by working memory load. Second, a study by Kopf et al. (2013)
used a N-back task with emotional words and recorded data from
EEG and fNIRS. They found more errors during the negative
condition, especially for high task difficulty. An ERP-analysis
also revealed that the LPP is influenced by the difficulty in
the working memory task and that this influence is further
modulated by affective valence. However, both these studies
used the LPP, as feature commonly associated with the arousal
dimension. We want to investigate affective responses related
to the valence dimension, which allows to make more general
discriminations of affective states into positive and negative
states. Moreover, the study byMacNamara et al. (2011) only used
affective stimuli as distractors, while we want to use a paradigm
that inherently activates cognitive as well as affective processes.
Finally, while the study by Kopf et al. (2013) used emotional
words to induce affective reactions, we assume that affective
pictures can elicit stronger affective reactions. We therefore
decided to use an emoback task with affective pictures from
the IAPS database to investigate potential interferences between
working memory load and affective valence using frontal theta
activity, parietal alpha activity as well as the FAA.

In previous analyses of the same dataset (Grissmann
et al., in press), we found that classification of working
memory load under affective valence can result in classification
accuracies above 70%, which can be further improved via
data integration over time. However, we also found that
positive as well as negative valenced affective contexts led to
decreased classification accuracies, when compared to a neutral
affective context. Additionally, classifiers failed to generalize
across affective contexts, which highlighted the need to better
understand the interactions between working memory load and
affective valence in such a context.

Research Questions and Hypotheses
We investigated the influence of working memory load and
affective valence on subjective measures, behavioral measures

as well as the corresponding EEG measures. Furthermore, we
investigated potential interferences between cognitive processes
and affective processes as reflected in EEGmeasures used to infer
working memory load and EEG measures used to infer affective
valence.

More specifically, we investigated potential effects of load
levels in the emoback task on subjective ratings, accuracies
and reaction times, which might also be reflected in the
corresponding EEG measures.

Additionally, we investigated potential effects of the affective
valence inductions in the emoback task on subjective measures,
behavioral measures as well as EEG measures.

Beyond the main effects of working memory load and
affective valence on behavioral measures and EEG measures, we
also analyzed whether EEG measures used for mental workload
detection are sensitive to different affective contexts and whether
EEG measures used to infer affective valence are sensitive to
working memory load.

MATERIALS AND METHODS

Sample
For this study, we collected data from 27 female subjects. Female
subjects were used in this study because they tend to show
stronger reactions toward affective stimuli (Lang et al., 1993)
and also exhibit more stable responses (Ahern and Schwartz,
1985). Three subject were removed due to the low quality of
the signals. All of the participants were university students, aged
above 18 years (mean: 23.0 years; range: 19–32 years), right
handed and had no blood phobia to avoid extreme responses
toward the experimental stimuli. All subjects provided written
informed consent and were paid 20 e for participation in the
experiment. The study was approved by the ethic committee of
the Knowledge Media Research Center Tuebingen.

Recording of Physiological Data
Sixty channels of EEG were recorded using an ActiCHamp
amplifier and active Ag/Cl-electrodes (Brainproducts GmbH,
Gilching, Germany). Electrodes were placed according to the
extended 10-20 system. The electrooculogram (EOG) was
recorded with four EEG electrodes located at the left and right
canthi as well as above (channel Fp1) and below the left eye. All
channels were referenced to channel FCz. Impedances were kept
below 10 kΩ. The data were sampled at 1 kHz. This electrode
layout was chosen to allow for potential source localization
approaches. For later processing the data was downsampled to
250 Hz. During the recordings subjects were instructed to sit in a
relaxed posture to avoid artifact contamination of the data.

Preprocessing
To automatically reject time windows that are contaminated by
artifacts, a time window was removed if channel power at more
than six channels exceeded five times the standard deviation.
After computing independent components using the CUDAICA
implementation (Raimondo et al., 2012) of the Infomax
independent component analysis (Bell and Sejnowski, 1995), eye

Frontiers in Human Neuroscience | www.frontiersin.org 3 December 2017 | Volume 11 | Article 616

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Grissmann et al. Interactions in an Emoback Task

movement artifacts were removed (reduced) using the ADJUST
approach (Mognon et al., 2011) which is implemented as plug-in
in the EEGLAB toolbox (Delorme et al., 2011). Finally the EEG
signal was bandpass filtered between 1 Hz and 45 Hz using
two-way least-squares finite impulse response filtering.

Stimuli
For the positive, neutral and negative valence conditions we
selected 96 stimuli each. The stimuli were taken from the IAPS
database (Lang et al., 1997) and selected based on the valence
and arousal ratings provided with the database. Valence and
arousal ratings are usually confounded, meaning that stimuli
with strong (positive or negative) valence ratings usually also
have high arousal ratings. To improve discriminability between
affective conditions we made sure that stimuli for the positive
condition had the highest valence ratings while stimuli for the
negative conditions had the lowest valence ratings. Furthermore,
stimuli for the neutral condition were selected based on the
lowest arousal ratings. All selected stimuli had a quadratic shape
and were centrally presented on a standard 23 inch display. To
avoid unnecessary eye-movements the size of the stimuli was
scaled to fill 60% of the height of the display.

Study Design and Block Structure
The affective valence conditions were presented in groups of four
trial blocks with identical affective valence. The affective valence
conditions being either positive, neutral or negative. Load levels
of the emoback task were alternated block wise. The load factor
of the emoback task had two levels, one-back and two-back. We
avoided the use of a zero-back condition, because this would
require to repeatedly use the same affective target stimuli. This
repetition of the same stimuli might have resulted in affective
habituation with regard to the target stimuli, thereby diminishing
the affect induction (Leventhal et al., 2007). We also avoided
a 3-back condition because some studies showed that this load
level can lead to task disengagement (Ayaz et al., 2007). Target
response hand as well as starting load level of the emoback task
were balanced across the subject sample. See Figure 1 for an
illustration of the study design.

All participants performed 12 blocks in total. Each block
started with a 10 s baseline where subjects were instructed to
relax and visually fixate a centrally presented light gray fixation
cross. After the baseline the first trial started with a stimulus
presentation. There were 72 trials in one block, consisting of

24 target stimuli and 48 distractors. The 24 target stimuli were
randomly selected for each subject from 96 unique stimuli (four
blocks with 24 target stimuli per affective condition). Targets and
distractors were sometimes interleaved in the 2-back condition,
meaning that two target stimuli could appear right after each
other. Here is an example: Distractor (e.g., table), distractor
(e.g., chair), target (table) and target (chair). After the last trial,
another baseline phase, also with a duration of 10 s, was recorded.
Between blocks there were short brakes between 1min and 3min.
See Figure 2 for an illustration of the block structure.

Subjective Measures
After each run, subjects were asked to rate their subjective
experience of the last run. Subjective experience of working
memory load was measured using one (modified) item taken
from the NASA task load index (Hart and Staveland, 1988).
The item asked participants how cognitively demanding they
experienced the last experimental run. The rating scale ranged
from 0 (absolutely no mental demand) to 100 (highest possible
mental demand).

Emotional experiences are commonly judged with the help
of rating scales. The most widely used is a visual analog scale
called the Self-Assessment Manikin (SAM; Bradley and Lang,
1994). It enables fast and reliable judgments about the current
emotional state.

Trial Structure
Each trial started with a stimulus presentation phase of 1500 ms.
The duration of the stimulus presentation was selected based on
tests using pilot subjects and should ensure that enough trials
can be recorded to get reliable estimates for the EEG measures
used and the desired affective responses are evoked. During the
stimulus presentation phase the subjects had to indicate if the
current stimuli was a target (i.e., identical to the stimulus one step
before in the 1-back condition and two steps before in the 2-back
condition) or if the current stimulus was a distractor. Left and
right control keys of a standard keyboard were used as inputs.
The subjects were instructed to react as quickly as possible to
ensure an effect in performance measures. Between stimuli there
were interstimulus intervals (ISI) of 1500 ms duration including
one to 500 ms of jitter at the end of the ISI to avoid periodic
responses in the EEG data. During the ISI the same gray crosshair
as in the baseline conditions was presented on the screen.

FIGURE 1 | Illustration of EMOBACK study design: the three affective valence conditions were presented grouped and permutated across the whole sample. Each
affective condition consisted of four workload blocks, resulting in 12 blocks for each subject. Workload blocks were presented in an alternating fashion and balanced
across the whole sample.
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FIGURE 2 | Schematic representation of EMOBACK block structure. (A) 1-back condition. (B) 2-back condition. Hand symbols indicate key press. Left hand press
was used for target stimuli and right hand press for distractors in this example. The simple shapes in this illustration only serve as an example.

From psychological perspective, the N-back task may
conceptually be divided into two phases. The first phase starts
with the stimulus presentation and ends after the stimulus
response. In this phase we assume that subjects had to perform
a simple matching task by comparing the current stimulus with
the stimulus stored in short term memory. In the second phase,
ranging from the stimulus response to the next stimulus onset
we assume that multiple executive functions are required for
a correct response. Inhibition, shifting and updating represent
the core executive functions as identified by Miyake et al.
(2000). Inhibition is seen as the ability to suppress automatic
responses that might arise during task processing. Shifting
is referring to the concept of cognitive flexibility, making
us capable to switch between different tasks. Updating refers
to the continuous monitoring and changing of content in
working memory. Content in short term memory needs to be
updated via inhibition of the last stimuli in the stimuli list.
Furthermore, the participants need to switch from a simple
matching task to a working memory task and back. We therefore
assumed that the second phase was more relevant for the
measurement of working memory load. Concerning the affective
reaction we first assumed that it would be stronger right after
stimulus onset, since the stimulus was fresh. However, pilot
measurements revealed that subjects tend to focus first on
the response toward the stimuli and only then direct their
attention toward the affective content of the presented stimuli.
We therefore decided to focus our analyses on the second phase.
Additionally, we wanted to avoid contamination of the data

due to muscular artifacts which originate from the keyboard
input.

Analysis
The window of analysis was 1400 ms wide. It started 1100 ms
after stimulus onset to exclude post-motor responses in the EEG
and ended 2500 ms after stimulus onset. The time window also
included 1000 ms of the ISI.

All spectra for the EEG analysis were computed using the
Welch method (Welch, 1967) implemented in the EEGLAB
toolbox (Delorme and Makeig, 2004). Theta bands were
computed between 4 Hz and 7 Hz and alpha bands were
computed between 8 Hz and 12 Hz. Power of the frontal (AFz,
Fz) and parietal (CPz, Pz, POz) electrodes was averaged. Power
for FAA computation was averaged across channels AF3, F3 and
FC1 for the left hemisphere and across channels AF4, F4 and
FC2 for the right hemisphere. We followed the approach from
Allen et al. (2004) and computed FAA as difference score (see
Equation 1).

Equation 1: Frontal Alpha Asymmetry Index (Allen et al.,
2004).

FAA = right alpha power − left alpha power

To evaluate the influence of affective valence and working
memory load on the EEG, we performed repeated measures
analysis of variances (ANOVAs) with two factors. The first factor
was affective valence with three levels (positive, neutral and
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negative). The second factor was working memory load with two
levels (1-back and 2-back). All analyses were conducted at the
group level.

RESULTS

Subjective Measures—Working Memory
Load
As expected, using workload ratings as dependent variable,
we found a significant main effect for working memory load,
F(1,23) = 22.7, p < 0.001, η2 = 0.50. Higher working memory
load resulted in the increased subjective experience of working
memory load. Additionally, there was a significant main effect
for affective valence, F(2,46) = 11.6, p < 0.001, η2 = 0.34. A
Post hoc test using the Šidák correction revealed that the negative
valence condition resulted in an increase of subjective working
memory load when compared to the positive valence condition
(p < 0.001) as well as the neutral valence condition (p < 0.02).
There was no significant interaction between affective valence
and working memory load, F(2,46) = 0.8, n.s. Box plots showing
the different conditions can be seen in Figure 3A.

Subjective Measures—Affective Valence
Since, this manuscript was focusing on the effect of the
experimental manipulation on the EEG measure used to infer
affective valence, we do not report results from the arousal
dimension here. As anticipated, using the affective valence
ratings as dependent variable, there was a significant main effect
for affective valence, F(1.4,33) = 55.7, p < 0.001, η2 = 0.71.
Decreased affective valence due to the emotion induction
resulted in decreased subjective valence ratings. The neutral
condition resulted in more positive valenced ratings than the

negative condition (p > 0.001) and more negative valenced
ratings than the positive condition (p > 0.01). However, there
was neither a significant main effect for working memory load,
F(1,23) = 0.1, n.s., nor was there a significant interaction between
affective valence and working memory load, F(2,46) = 1.0, n.s.
Median values for all conditions are shown via box plots in
Figure 3B.

Behavioral Performance
Measures—Accuracies
Using accuracies as dependent variable we found a significant
main effect for working memory load, F(1,23) = 32.70, p < 0.001,
η2 = 0.59. Higher working memory load resulted in decreased
accuracies. Additionally, there was a significant main effect
for affective valence, F(2,46) = 3.73, p < 0.035, η2 = 0.14. A
Post hoc test using the Šidák correction revealed that the negative
condition resulted in a decreased accuracy when compared to
the positive condition (p < 0.03), but not when compared to
the neutral condition (n.s.). Interestingly, there was a significant
interaction between affective valence and working memory load,
F(2,46) = 3.68, p < 0.035, η2 = 0.14. The negative condition had
a negative impact on accuracy, but only under high working
memory load. Box plots showing the different conditions can be
seen in Figure 4A.

Behavioral Performance
Measures—Reaction Times
There was a significant main effect for working memory load,
F(1,23) = 60.53, p < 0.001, η2 = 0.73. Higher load resulted in
longer reaction times. Moreover, there was a significant main
effect for affective valence, F(2,46) = 10.94, p < 0.001, η2 = 0.32.
The negative condition resulted in longer reaction times than the

FIGURE 3 | Box plots showing median values for workload ratings (A) and affective valence ratings (B). Blue boxes show working memory load ratings (A) and
affective valence ratings (B) for the 1-back conditions. Green boxes show working memory load ratings (A) and affective valence ratings (B) for the 2-back
conditions. Median values are indicated by black horizontal lines within the boxes. Top and bottom borders of the boxes represent the middle 50% of the data.
Whiskers represent the smallest and largest values not classified as outliers (between 1.5 and 3 times the height of the boxes) or extreme values (more than three
times the height of the boxes). Circles indicate outliers.
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FIGURE 4 | Box plots showing median values for accuracies and reaction times. Blue boxes show accuracies (A) and reaction times (B) for the 1-back conditions.
Green boxes show accuracies (A) and reaction times (B) for the 2-back conditions. Median values are indicated by black horizontal lines within the boxes. Top and
bottom borders of the boxes represent the middle 50% of the data. Whiskers represent the smallest and largest values not classified as outliers (between 1.5 and
3 times the height of the boxes) or extreme values (more than three times the height of the boxes). Circles indicate outliers and stars show extreme values.

FIGURE 5 | Topographic plots showing difference in electroencephalography (EEG) workload measures between 2-back and 1-back conditions. (A) Frontal theta for
the post-motor time window showing increased frontal theta activity for the 2-back conditions. (B) Parietal alpha for the Post motor time window showing decreased
in parietal alpha power for the 2-back conditions. Nose is at the top. Values are averaged across all three affective conditions. Electrodes used for analysis are
marked with black rectangles.

positive condition (p < 0.01) as well as the neutral (p < 0.005)
condition. However, there was no significant interaction between
affective valence and working memory load, F(2,46) = 1.02, n.s.
Median values for all conditions are shown via box plots in
Figure 4B.

EEG Working Memory Load Measures
Frontal Theta
Using frontal theta activity as dependent variable there was a
significant main effect for working memory load, F(1,23) = 9.00,
p< 0.01, η2 = 0.28. Frontal theta power was higher in the 2-back
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FIGURE 6 | Topographic plots showing difference in EEG workload measures between negative and neutral conditions. (A) Frontal theta showing decreased frontal
theta activity for the negative conditions when compared to the neutral conditions. (B) Parietal alpha showing widespread decrease in parietal alpha power for the
negative conditions when compared to the neutral conditions. Nose is at the top. Values are averaged across both N-back levels. Electrodes used for analysis are
marked with black rectangles.

FIGURE 7 | Box plots showing median values for frontal theta activity, parietal alpha activity and Frontal Alpha Asymmetry (FAA). Blue boxes show frontal theta
activity (A), parietal alpha activity (B) and FAA (C) for the 1-back conditions. Green boxes show frontal theta activity (A), parietal alpha activity (B) and FAA (C) for the
2-back conditions. Median values are indicated by black horizontal lines within the boxes. Top and bottom borders of the boxes represent the middle 50% of the
data. Whiskers represent the smallest and largest values not classified as outliers (between 1.5 and 3 times the height of the boxes) or extreme values (more than
three times the height of the boxes). Circles indicate outliers. Please note the strong variability in the data due to large inter-individual differences.

conditions. Figure 5A illustrates this effect. Interestingly, there
was a significant main effect for affective valence, F(2,46) = 8.28,
p < 0.001, η2 = 0.27. A Post hoc test using the Šidák correction
revealed that frontal theta power was lower in the negative
condition, when compared to the neutral condition (p < 0.005)
as well as the positive condition (p < 0.01). Figure 6A shows
a topographic plot displaying this frontal theta effect. However,
there was no significant interaction between affective valence and
working memory load, F(2,46) = 0.87, n.s. Median values for all
conditions can be seen in Figure 7A.

Parietal Alpha
Using parietal alpha activity as dependent variable we found a
significant main effect for working memory load, F(1,23) = 4.22,
p = 0.05, η2 = 0.16. Higher working memory load resulted
in decreased parietal alpha power. This effect can be seen
in Figure 5B. Interestingly, there was also a significant main
effect for the factor affective valence in the post-motor window,
F(2,46) = 5.27, p < 0.01, η2 = 0.19. The negative condition
exhibited lower parietal alpha power than the neutral condition
(p < 0.03), but not lower than the positive condition (n.s.).
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Figure 6B shows a topographic plot displaying this parietal alpha
effect. There was no significant interaction between affective
valence and working memory load, F(2,46) = 1.52, n.s. Figure 7B
shows box plots for all conditions.

EEG Affective Valence Measures—Frontal
Alpha Asymmetry
Unexpectedly, there were no significant main effects with regard
to FAA. Neither for affective valence, F(2,46) = 1.87, n.s. nor for
working memory load, F(1,23) = 0.96, n.s. Finally, there was also
no significant interaction between affective valence and working
memory, F(2,46) = 0.08, n.s. Median values for all conditions are
summarized in Figure 7C.

DISCUSSION

Using the emoback paradigm, we found that increased working
memory load had a negative impact on task performance, as
reflected in decreased accuracies and increased reaction times.
These effects were also reflected in corresponding EEGmeasures.
Increased working memory load was accompanied by increases
in frontal theta activity as well as decreases in parietal alpha
activity.

We found that negative affective valence had a negative
impact on accuracies as well as reaction times. Interestingly,
measures used for working memory load estimate also appeared
sensitive to changes in affective valence. In contrast to that,
FAA, a measure typically used to infer affective valence, did
not show any effects in our paradigm, neither with regard
to affective valence, nor with regard to increases in working
memory load. In the following sections we will discuss these
results in detail.

Subjective Measures
As expected, we found that increased working memory load, due
to an increase in the load factor of the emoback task, resulted
in higher subjective working memory load ratings. This finding
is reassuring, especially since some subjects reported difficulties
judging the working memory load with regard to the difficulty
of the emoback task. Some subjects even reported that they
experienced the 1-back conditions as more demanding, due to
their monotonous nature.

As hypothesized, we also found a significant effect of affective
valence on ratings from the valence dimension of the SAM.
Notably, the successful induction of positive affective valence
shows that the emoback paradigm worked in the intended
way. The induction of positive emotions can be very difficult
to achieve in laboratory environments, since positive emotions
usually arise in a specific context which is difficult to represent in
a single picture (Kim and Hamann, 2007).

Behavioral Performance Measures
Our analyses revealed that increased working memory
load induced via the emoback task did result in decreased
performance. The 2-back conditions had reduced accuracy as
well as increased reaction times. We also found that inducing

negative affective valence had detrimental effects on accuracies
as well as reaction times. Similar results have been found in a
study by Passarotti et al. (2011). The authors used face stimuli
in an affective N-back task and found slower reaction times
for angry faces. These negative effects of affective stimuli on
cognitive processing might be explained within the theory of
hot and cold cognition, concepts related to executive function
(Zelazo and Müller, 2002). Hot cognition refers to a process
where a persons’ thinking is influenced by their affective state
(Brand, 1986), while cold cognition is more based on rational
thinking and critical analysis (Roiser and Sahakian, 2013).
Hot cognition seems to be able to overpower cold cognition
in certain situations and has been shown to impair decision
making (Huijbregts et al., 2008). Processing of negative stimuli
can divert cognitive resources from the primary task, and
thereby lead to decreased performance. A study by Levens
and Gotlib (2010) found that strongly valenced stimuli tend to
stay longer active in working memory, which might interfere
with different core executive functions necessary during the
emoback task (Miyake et al., 2000). In the emoback task,
subjects constantly needed to update content in working
memory by replacing (inhibition) previous stimuli. Additionally,
the subjects seemed to need to shift between these updating
tasks and a rather simple identity-matching task. Negative
stimuli might catch the attention, slowing down reorganization
of stimuli in working memory and thereby impairing task
performance.

Interestingly, we also found an interaction for accuracy
between working memory load and affective valence. Negative
affective valence resulted in decreased accuracies, but only
during increased working memory load. These results are in
line with findings from the study by Kopf et al. (2013) who
found more errors for the difficult task during the negative
condition using an affective word N-back task. These findings
seem to indicate that both, cognitive and affective processing,
compete for limited cognitive resources and this dual strain
on mental resources leads to decreased performance. Similar
results have also been found in the study by MacNamara et al.
(2011). The authors used emotional pictures as distractors in an
emoback task and found that the emotional content of negative
valenced stimuli increased the negative impact of working
memory load on performance. These findingsmight be explained
using the capacity model from Ellis and Ashbrook (1989).
Their model assumes that there is a limited pool of attentional
resources that can be used to complete a certain task. Affective
states can influence the allocation of available attentional
resources toward the task, thereby potentially impairing task
performance. However, based on performance measures alone,
we can only vaguely assume how negative valence impaired task
performance.

EEG Working Memory Load Measures
Frontal Theta Activity
Increased working memory load was reflected in EEG measures
as well. Frontal theta activity was increased during high
working memory load. Interestingly, the negative affective
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valence condition exhibited decreased frontal theta after the
motor response. If negative affective valence would impair
performance via the production of additional working memory
load, one would expect to find increased frontal theta activity
during negative affective valence. However, the decreased frontal
theta activity under negative affective valence indicates that
the detrimental effect on performance likely has different
reasons than the performance decrease under high working
memory load. Accordingly, we assume that the negative
affective valenced stimuli interfered with task processing through
a reduction of activity in the frontal attentional control
network.

Parietal Alpha Activity
Our analyses revealed that parietal alpha activity was decreased
under high working memory load (2-back) condition. We
also found that the parietal alpha activity was reduced for
the negative condition. An fMRI study by Rämä et al.
(2001) used different affective voices and found similar
results. The authors discovered that the parietal cortex is
bilaterally involved in active maintenance of emotional content.
Affective stimuli are more salient and usually carry more
relevant information (Carretié, 2014). We therefore assume
that negative valenced stimuli result in stronger processing in
the storage areas of the parietal cortex, which seems to be
reflected through increased parietal activity (i.e., reduced alpha
power).

EEG Affective Valence Measures—Frontal
Alpha Asymmetry
Unexpectedly, we did not find any effect using the FAAmeasure.
We used the FAA measure during the induction of working
memory load, while most other studies used brain laterality
responses during rest or passive viewing (Ahern and Schwartz,
1985; Tomarken et al., 1992; Lin et al., 2009; Huang et al.,
2012; Ramirez and Vamvakousis, 2012). Use of the FAA in
combination with other tasks is further complicated because
the FAA is known to be also influenced by other factors like
seating position and working memory load (Briesemeister et al.,
2013). A study by Baldwin and Penaranda (2012) found that
increased task difficulty resulted in increased left frontal activity.
It appears that the negative condition increased task difficulty,
since it did impair task performance. Negative affective valence
in passive conditions usually results in increased right frontal
activity. It is therefore conceivable that both, affective and
workload related, processes acted on the same FAA measure,
but in opposing directions. This could mean that both effects
canceled each other out and thereby masked any potential
effects.

Limitations and Outlook
We did not find any effects using the FAA measure. We
assume that was due to the motor response required in our
paradigm. It would be interesting to test this assumption by
developing a study design that contrasts an active condition
with a passive viewing condition. However, it could also be
possible, that the paradigm did not induce sufficient stress to

induce changes in the FAA measure. A study by Goodman et al.
(2013) used a working memory task and concurrently induced
stress. The authors found that changes in the FAA measure (as
indicated by left frontal activity) can be used to infer emotional
processing, but only when the emotional induction reaches a
certain intensity. Future studies could try to use other ways to
induce emotional reactions along the valence dimension, like
short video clips.

Additionally, our intent to induce the strongest possible
valence effect had the drawback that the affective conditions
also differed concerning the arousal dimension. This meant that
the negative conditions were also experienced as more arousing.
Since even this valence induction did not produce a valence effect
that could be measured with the FAA, we recommend that future
studies should control for arousal as well as other dimensions like
affective dominance.

Furthermore, we based our choice of the window used
for analysis on our understanding of the existent literature.
However our assumptions need further support and therefore
future studies should investigate the different sub-processes that
contribute to the n-back task and their temporal evolution in
greater detail.

While we decided to focus on the use of a frequency based
approach, future approaches could also include different features
for the measurement of affective valence and working memory
load. One example would be the use of the ERP, since previous
studies have already demonstrated that the ERP has some
potential in this context (see Olofsson et al., 2008; Brouwer
et al., 2012). Another approach could be the use of connectivity
measures, which have already been shown to be of use in similar
contexts (e.g., Lee and Hsieh, 2014). A study by Martini et al.
(2012) has even combined frequency measures, ERP measures
and connectivity measures to differentiate neutral from negative
pictures.

Future studies should also explore how well these findings
generalize to male individuals as well as other stimulus
modalities.

Finally, in this study we focused on the interaction between
working memory load and affective valence, using established
measures that were already used in the context of human-
machine interaction. Future studies should further investigate
this issue to gain more insight about the processes underlying
the results that were extracted from the EEG-recordings. One
example for such an integrative approach is the review by
Schwabe et al. (2012) that integrates multiple findings into
a framework that allows to create hypotheses with regard
to specific neural structures. Something which is beyond the
methodology used in this study.

CONCLUSION

We demonstrated that increased working memory load and
negative valenced stimuli can have an effect on performance
measures. Additionally, when using established EEG measures
we found that increased working memory load can be detected
in the EEG, even when affective valence is induced at the
same time. However, EEG measures used to infer working
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memory load were still influenced by negative affective valence.
Furthermore, FAA did not prove useful for identification
of emotional states when working memory load is induced
at the same time. Therefore, future studies should further
investigate the context sensitivity and applicability of EEG
measures in various contexts to identify the ramifications in
which such measures can be used to identify different states and
processes.
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