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Although HIV has been shown to impact brain connectivity in adults and youth, it is

not yet known to what extent long-term early antiretroviral therapy (ART) may alter

these effects, especially during rapid brain development in early childhood. Using both

independent component analysis (ICA) and seed-based correlation analysis (SCA), we

examine the effects of HIV infection in conjunction with early ART on resting state

functional connectivity (FC) in 7 year old children. HIV infected (HIV+) children were from

the Children with HIV Early Antiretroviral Therapy (CHER) trial and all initiated ART before

18 months; uninfected children were recruited from an interlinking vaccine trial. To better

understand the effects of current and early immune health on the developing brain, we

also investigated among HIV+ children the association of FC at 7 years with CD4 count

and CD4%, both in infancy (6–8 weeks) and at scan. Although we found no differences

within any ICA-generated resting state networks (RSNs) between HIV+ and uninfected

children (27 HIV+, 18 uninfected), whole brain connectivity to seeds located at RSN

connectivity peaks revealed several loci of FC differences, predominantly from seeds

in midline regions (posterior cingulate cortex, paracentral lobule, cuneus, and anterior

cingulate). Reduced long-range connectivity and increased short-range connectivity

suggest developmental delay. Within the HIV+ children, clinical measures at age 7 years

were not associated with FC values in any of the RSNs; however, poor immune health

during infancy was associated with localized FC increases in the somatosensory, salience

and basal ganglia networks. Together these findings suggest that HIV may affect brain

development from its earliest stages and persist into childhood, despite early ART.
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INTRODUCTION

Increased access to antiretroviral therapy (ART) has transformed
human immunodeficiency virus (HIV) infection from a fatal
to a chronic illness. However, unlike HIV, many antiretrovirals
(ARVs) do not effectively penetrate the blood-brain barrier of
the central nervous system (CNS), so that the brain becomes a
sanctuary site for HIV resulting in long-term damage and delayed
neurodevelopment (see for example Martin et al., 2006; Smith
et al., 2006; van Rie et al., 2009; Laughton et al., 2013; van Arnhem
et al., 2013; Whitehead et al., 2014).

Even in the ART era, HIV infected (HIV+) children
demonstrate cognitive delay and motor deficits compared to
uninfected controls, along with impaired language abilities,
failure to reach developmental milestones (Martin et al., 2006;
van Rie et al., 2006; Koekkoek et al., 2008; Laughton et al., 2013;
van Arnhem et al., 2013), and behavioral problems (Govender
et al., 2011; Musielak and Fine, 2016), demonstrating the ongoing
influence of the virus on the developing brain on ART.

Neuroimaging allows direct examination of how the pediatric
brain is altered in the presence of both HIV and its
treatment. Previous findings in HIV+ children on ART include
ventricular enlargement, white matter (WM) abnormalities,
cortical and subcortical volume alterations, and calcification of
the basal ganglia and corpus callosum (Sarma et al., 2013; van
Arnhem et al., 2013; Hoare et al., 2014; Uban et al., 2015;
Cohen et al., 2016; Lewis-de los Angeles et al., 2016, 2017; Yadav
et al., 2017). Within these studies, clinical, immunologic, and
virologic measures were associated with volumetric measures,
WM alterations, diffusivity markers, and shape deformation (van
Arnhem et al., 2013; Uban et al., 2015; Cohen et al., 2016; Lewis-
de los Angeles et al., 2016). Since HIV penetrates the CNS during
the first 3 weeks of life of perinatally HIV+ children (González-
Scarano and Martín-García, 2005), which corresponds to a
critical period in development, markers of early immune health,
or virologic status may play an integral part in determining later
neurological outcomes (Bilbo, 2013). Notably, children in these
earlier studies initiated ART at different ages, mostly after 2 years
of age, and often with limited viral load (VL) suppression. Earlier
ART initiation and VL suppression could potentially prevent or
reduce these HIV-related brain changes.

Following the landmark Children with HIV Early
Antiretroviral Therapy (CHER) trial (Violari et al., 2008;
Cotton et al., 2013) showing reduced infant mortality and
HIV progression in infants initiating ART below 12 weeks
of age compared to standard 2006 guidelines that advised
initiating ART when CD4 lymphocyte percentage (CD4%)
declined below 25% or for severe clinical disease (WHO,
2006; Violari et al., 2008; Cotton et al., 2013; Laughton et al.,
2014), all guidelines now recommend initiating ART as soon
as possible for all HIV+ infants regardless of CD4 measures,
even if asymptomatic (WHO, 2013). Although early ART
improves neurodevelopmental outcomes (Laughton et al., 2013;
Brahmbhatt et al., 2014; Crowell et al., 2015), the long-term
effects of early lifelong ART on brain development has not been
established. We have found, for example, that alterations in
brain WM and basal ganglia metabolism are evident at age 5

years in children from the CHER cohort despite starting ART
before 75 weeks of age and VL suppression (Ackermann et al.,
2016; Mbugua et al., 2016). In addition, there is concern about
possible adverse effects of long-term ART including metabolic
abnormalities (Vigano et al., 2010) and neurotoxicity (Robertson
et al., 2012).

Resting state functional magnetic resonance imaging (RS-
fMRI) provides unique information regarding the functional
connectivity (FC) of spatially distinct brain regions and the
integrity of intrinsic resting state brain networks (RSNs).
Since brain activity is measured when subjects are not
performing a specific task, it greatly reduces the potentially
confounding influences of attention, task performance, and
language comprehension and is ideally suited to pediatric studies.
It is a sensitive marker of alterations in brain development
(Superkar et al., 2010; Thomason et al., 2011; de Bie et al., 2012)
and disease (Greicius, 2008).

In HIV+ adults, RS-fMRI studies show reduced FC within
various brain networks, including the visual (Wang et al., 2011),
default mode (DM), executive control and salience networks
(Thomas et al., 2013), as well as HIV-related changes in
integration within the DM and executive control networks
(Thomas et al., 2015), attenuated frontostriatal connectivity
(Ipser et al., 2015), and both decreases (DM to dorsal attention,
DM to salience, executive control to sensorimotor) and increases
(executive control to salience) in internetwork correlations
(Thomas et al., 2013). Conversely, Ortega et al. (2015) found
similar FC within the DM network (DMN) in patients on
ART and uninfected controls, and higher FC within the
ventral attention network in patients on ART than those
not receiving ART, suggesting that ART may mitigate HIV-
related FC alterations. Notably, partial correlations between
subcortical seeds revealed no changes in subcortical connectivity
in HIV+ adults on long-term ART with at least 1 year of
undetectable plasma HIV ribonucleic acid (RNA) compared to
uninfected controls (Janssen et al., 2017). The only RS-fMRI
study performed to date in HIV+ youth, all of whom were
on ART, showed associations of disease severity, characterized
by higher peak HIV RNA and lower nadir CD4%, with poorer
FC within the DMN, as well as decreases and increases in
connectivity of seeds within the DMN to regions in the executive
control, sensorimotor, salience, anterior cingulate/precuneus and
visual networks (Herting et al., 2015). Peak plasma HIV RNA
and nadir CD4% reflect the worst virologic status and immune
health of subjects, respectively. The finding of lower within- and
greater between-network connectivity, a pattern of connectivity
that occurs earlier in development (Fair et al., 2007, 2009; Power
et al., 2010), suggests developmental delay in youths with more
advanced disease severity.

Here we use RS-fMRI to examine FC differences at age 7
years in HIV+ children from the CHER cohort compared to
uninfected controls and, among infected children, associations of
FC with measures of immune health. All HIV+ children initiated
ART before 18months of age and were virologically suppressed at
the time of scanning. Major strengths of this study include close
monitoring since birth, standardized ART regimens, recruitment
from similar socio-demographic and economic backgrounds,
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and scanning within 6 months of their 7th birthdays. First,
we hypothesized that, compared to uninfected children, HIV+
children would show reduced FC within and between the
DM, executive control, somatosensory, salience and visual
networks. Second, we postulated that improved immune health,
measured by CD4 count and percentage in infancy and at scan,
would be related to greater functional connectivity in these
networks.

METHODS

Participants
Participants were 38HIV+Xhosa children (mean age± standard
deviation = 7.22 ± 0.16 years; 17 males) from the randomized
CHER trial in follow-up at the Family Clinical Research Unit,
Tygerberg Children’s Hospital, in Cape Town, South Africa
(Violari et al., 2008; Cotton et al., 2013) and 29 uninfected
children (7.17 ± 0.10 years; 14 males) from an interlinking
vaccine trial (Madhi et al., 2010). The two studies in parallel
recruited infected (CHER) and uninfected (vaccine trial) infants
from the same community in Cape Town. Inclusion criteria
for both studies included birth weight >2,000 g and no CNS
problems (other than due to HIV) or dysmorphic syndromes.
A summary description of socioeconomic data from a subset
of the cohort is published elsewhere (Holmes et al., 2017);
although that study only included uninfected children, the data
are representative of the community.

In the CHER trial, HIV+ infants 6–12 weeks of age with
CD4% ≥25% were randomized to one of three treatment
regimens: limited ART for either 40 or 96 weeks and restart
when clinical and/or immunological criteria were met, or to
start ART only if they became symptomatic or CD4% dropped
below 20% (25% in the first year; Violari et al., 2008; Cotton
et al., 2013), as per guidelines at the time (WHO, 2006). All
HIV+ children had started ART before 18 months of age and
received comprehensive immunological and clinical follow-up
thereafter as described previously (Violari et al., 2008; Cotton
et al., 2013). First line ART regimen consisted of Zidovudine
(ZDV) + Lamivudine (3TC) + Lopinavir-Ritonavir (LPV/r,
Kaletra) (Violari et al., 2008; Cotton et al., 2013). Children born
to HIV+ mothers were exposed to treatment for prevention
of mother-to-child transmission (PMTCT), mostly Zidovudine
antenatally from 28 to 34 weeks and a single dose of Nevirapine
(NVP) to the mother and Zidovudine for a week and a single
dose of NVP to the infant. Of the 18 uninfected children, 8 were
born to HIV+ mothers. Other than this single dose given to
exposed infants as part of PMTCT, uninfected children never
received ART.

MRI Acquisition
Children were scanned on a 3T Allegra MRI (Siemens, Erlangen,
Germany) at the Cape Universities Brain Imaging Centre
(CUBIC) in Cape Town, South Africa, according to protocols
approved by the Faculty of Health Sciences Human Research
Ethics Committees of both the Universities of Cape Town
and Stellenbosch. All parents and guardians provided written
informed consent and all children provided oral assent.

T1-weighted structural images were acquired in the sagittal
plane using a motion navigated (Tisdall et al., 2009) multi
echomagnetization prepared rapid gradient echo (MEMPRAGE)
sequence (van der Kouwe et al., 2008) with TR 2,530ms, TEs
1.53/3.19/4.86/6.53ms, inversion time (TI) 1,160ms, flip angle
7◦, resolution 1.3 × 1 × 1 mm3, and field of view (FOV)
224 × 224 × 144 mm3. RS-fMRI data were acquired using an
interleaved multi-slice 2D gradient echo, echo planar imaging
(EPI) sequence: 33 interleaved slices, slice thickness 4mm, slice
gap 1mm, voxel size 3.44 × 3.44 × 5 mm3, FOV 220 × 220 ×

164 mm3, TR/TE 2,000/30ms, flip angle 77◦, 180 volumes.

RS-fMRI Processing
RS-fMRI data were preprocessed in AFNI (Cox, 1996) with
a pipeline specified using the afni_proc.py tool (see Appendix
A for details). Briefly, preprocessing included: removal of the
first 5 TRs; despiking; slice timing alignment; alignment to the
skull-stripped structural image and nonlinear warping to 3mm
Talairach-Tournoux (TT) standard space; volume registration
using 6 degrees of freedom (DOF); spatial smoothing with a
Gaussian kernel of 6mm full width at half maximum (FWHM);
segmentation of the structural image into WM, gray matter
(GM) and cerebrospinal fluid (CSF), and regression of the
eroded WM and CSF average time series along with their
derivatives; and bandpass filtering between 0.01–0.1Hz as low
frequency fluctuation (LFF) interval. Subjects were excluded if
their structural or RS-fMRI data sets were of a poor image quality,
contained signal dropout, or significant artifacts, or could not
be aligned to the standard template. Time series were truncated
to exclude suprathreshold subject motion, defined as >3mm
translation or >3 degrees rotation in any direction. Subjects with
fewer than 130 time points after truncation were excluded and
the time series of all remaining subjects were reduced to 130 time
points to maintain equal weightings per subject.

A single, representative motion parameter was also estimated
for each subject for inclusion as a control variable in the model
design of the main analyses. First, the framewise displacement

(FDi =

√

(xi − xi−1)
2 +

(

yi − yi−1

)2
+ (zi − zi−1)

2) (Yan et al.,

2013) was calculated with an in-house script for each volume
relative to the previous volume using the translation parameters
computed during motion correction. Then, FDi values were
averaged for each participant to estimate the time series mean
framewise displacement (FD). Two sample t-tests were used to
compare FD values between the HIV+ and uninfected groups.

Group analyses were performed using tools within AFNI
(Cox, 1996), FSL (Smith et al., 2004) and in-house scripts. Group
independent component analysis (ICA) was performed to define
RSNs and locations of peak FC within each network, which
were subsequently used as seeds in our seed-based correlation
analysis (SCA). SCA was performed to study whole brain (WB)
connectivity to the areas of peak network connectivity. While
ICA is useful for examining functional connectivity within
networks, SCA generates seed-to-WB connectivity maps and
permits an examination of FC differences thatmay occur between
networks (as well as within networks, without the ICA-based
condition of spatial independence of components).
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ICA-Generated RSNs
Standard RSNs were identified using group ICA with FSL’s
MELODIC function. Twenty independent components (ICs)
were generated from the complete set of processed time series
(i.e., from all subjects, after any exclusion criterion from quality
control, etc. were applied), based on standard dimensionality
reduction used in RS-fMRI studies of similar group size (Smith
et al., 2009). Each IC was visually inspected and quantitatively
compared to the standard set of Functional Connectome Project
(FCP) template RSNmaps (Biswal et al., 2010) using the 3dMatch
function in FATCAT (Taylor and Saad, 2013). ICs containing
known networks were thresholded at Z > 3 and binarized
RSN masks created. The remaining ICs (representing non-GM
tissue, subject motion, etc.) were discarded. The FSL function
dual_regression (Beckmann et al., 2009) was also used to generate
FCmaps (Z-scores) associated with each RSN for each individual.

SCA-Generated WB FC Maps
For SCA, spherical seeds of 5mm radius, constrained by the ICA-
generated RSN masks, were placed at the global peak of each
ICA-generated RSN. In RSNs with large anteroposterior (AP)
spread, a second seed was placed at a distant local maximum
along the AP direction to explore potentially varied features of
the network. Additional seeds were not selected in predominantly
lateral networks, as left-right homotopy tends to be reflected in
high temporal correlation along the left-right axis. The average
time series of each seed was correlated with that of every voxel
in the WB. The Pearson r-values from SCA were Fisher Z-
transformed to generate a WB FC map for each seed for each
subject.

Statistical Analyses
FC in HIV+ and uninfected children were compared both
within ICA-generated RSNs and SCA-generated WB FC maps
using voxelwise two sample, unpaired t-tests with FSL randomize
(Winkler et al., 2014). Among infected children, we also used FSL
randomize to examine associations of FC (from dual_regression)
within the ICA-generated RSNs with measures of immune health
(CD4 and CD4%) both at infancy and time of scan. Subject sex
and FD were included in the model as confounding variables;
subject age was not included due to the narrow age range of
participants.

The significance of clusters was determined with AFNI’s
3dClustSim using mixed autocorrelation function (ACF)
modeling to account for the spatial smoothness of noise (Cox
et al., 2017) at a voxelwise significance threshold of p = 0.005
and clusterwise significance of α < 0.05 (with 5,000 Monte Carlo
simulations).

RESULTS

Of 38 HIV+ and 29 controls, 9 (5 HIV+) were excluded due
to significant ghosting artifacts or poor image quality, and 13
(6 HIV+) due to not meeting motion criteria. Therefore, our
final sample included 27 HIV+ (18 female) and 18 uninfected
(11 female) children (Table 1). Groups did not differ in age, sex,
birth weight, or FD during scanning. Children initiated ART at

TABLE 1 | Sample characteristics.

HIV uninfected HIV infected

DEMOGRAPHICS

N 18 27

Age (years) 7.2 ± 0.2 7.2 ± 0.1

Sex (%M) 39% 33%

Birth weight (g) 3,079 ± 493 3,077 ± 528

Motion (mm)a 0.13 ± 0.09 0.12 ± 0.07

TREATMENT-RELATED MEASURES

Age of ART initiation (weeks) 10 (8–23)

Time on ART treatment (weeks) 335 ± 40

Children on interrupted ARTb 12 (44%)

Age of interruption (weeks) 63 ± 26

Duration of interruption (weeks) 36 (24–54)

CLINICAL DATA AT ENROLLMENT

CD4 count 1,936 ± 768

CD4% 34 ± 9

CD8b 1,606 ± 812

CD4/CD8c 1.5 ± 0.9

Plasma Viral loads (RNA copies/ml)

High (>750,000) 11 (40%)

Low (400–750,000) 16 (59%)

Suppressed (<400) 0

CLINICAL DATA AT SCAN

CD4 count 1,222 ± 400

CD4% 36 ± 6

Plasma Viral loads (RNA copies/ml)

High (>750,000) 0

Low (400–750,000) 0

Suppressed (<400) 27 (100%)

Values are Mean ± Standard Deviation or Median (Interquartile range).
aMotion assessed using Framewise Displacement.
b9 children were interrupted around 40 weeks of age, and 3 children around 96 weeks.
cCD8 missing for one child.

a median age of 10 weeks (IQR: 8–23), and were all still on first
line ART with plasma HIV RNA below detectable limits at time
of scanning. Due to early ART, VLs were suppressed at a young
age in all children—by 12 months in 81% of children, and by 2
years in 96% of children.

Twelve cortical and subcortical RSNs of interest were
identified using group ICA (Figure 1). The infected and
uninfected groups showed no significant FC differences within
the ICA-defined RSNs. The 17 spherical seeds that were created
at peak FC locations across the 12 RSNs are in Table 2.

Five regions in four WB FC maps showed reduced
connectivity to their respective seeds in HIV+ children
compared to uninfected controls. The clusters of reduced FC
in HIV+ children are shown with their respective seeds in
Figure 2, using the 3-dimensional viewer SUMA (Saad et al.,
2004; Saad and Reynolds, 2012) within AFNI. Cluster sizes and
peak locations are in Table 3, along with overlapping regions in
the TT atlas determined using the whereami function in AFNI.
From a seed in the posterior portion of the left (L) cingulate gyrus
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FIGURE 1 | Group ICA maps (thresholded at Z > 3) representing the 12 RSNs of interest in the present study: vis1, visual lingual gyrus; vis2, visual occipital lobe;

DMN, default mode network; vDMN, ventral DMN; pDMN, posterior DMN; som, somatosensory; datt, dorsal attention; sal, salience; aud, auditory; mot, motor; exe,

executive control; bas, basal ganglia. The IC number of each network is shown. Networks are overlayed on standard Talairach-Tournoux (TT) space (left = left).

in the DMN there were two significant clusters: one overlapping
the L inferior frontal gyrus, and another mainly overlapping the
L and R anterior cingulate and L medial frontal gyrus. A seed
in the L paracentral lobule (somatosensory network) yielded a
cluster overlapping the L and R cingulate gyrus and L medial
frontal gyrus. A seed in the R cuneus of the posterior DMN
exhibited a cluster mainly in the R inferior occipital gyrus, lingual
gyrus, and middle occipital gyrus. Finally, a seed in the R middle
frontal gyrus (executive control network) resulted in a cluster
overlapping the R supramarginal gyrus and inferior parietal
lobule.

In addition, two regions showed greater FC to their seeds in
HIV+ children compared to uninfected controls. These are also
shown in Figure 2, with accompanying information in Table 3.
A cluster overlapping the L superior and middle temporal gyri
showed greater FC in infected children to a seed in the R
postcentral gyrus (motor network). A seed in the R anterior
cingulate within the salience network resulted in a cluster in the
L medial and superior frontal gyri and L anterior cingulate.

Among HIV+ children, no regions in any RSN showed
association of FC with CD4 or CD4% at time of scan. In contrast,
poorer immune health in infancy, as reflected by either lower

CD4 or CD4% at enrollment (6–8 weeks), was associated with
greater FC in three regions in three different RSNs, namely the
basal ganglia network (R lentiform nucleus, putamen, and lateral
globus pallidus), the somatosensory network (R precuneus,
superior parietal lobule, paracentral lobule), and the salience
network (R inferior frontal gyrus and insula). The clusters are
shown within their respective networks in Figure 3, together
with associations of average FC in these clusters with CD4 or
CD4%; peak coordinates, location, and volume information are
in Table 4.

DISCUSSION

This study investigated HIV-associated FC changes in 7 year
old children on two levels: firstly, comparing FC between HIV+
and uninfected cohorts, and secondly, examining relations of FC
and HIV clinical measures within the infected group. Contrary
to our first hypothesis, we found no group differences between
infected and uninfected subjects within the ICA-generated
RSNs. However, whole brain SCA from 17 seeds distributed
across 12 RSNs revealed 5 connections with lower and 2 with
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TABLE 2 | Locations of seeds used in seed-based correlation analyses (SCAs).

Seed region* Seed network§ Seed center coordinates

(TT, mm)

x y z

R cuneus Visual (vis1)a −1.5 76.5 11.5

R parahippocampal

gyrus

vDMN −25.5 34.5 −6.5

R middle occipital gyrus Visual (vis2)a −31.5 85.5 5.5

L paracentral lobule Somatosensory 1.5 28.5 56.5

R cuneus pDMN −4.5 67.5 32.5

R cingulate gyrus pDMN −4.5 37.5 26.5

R inferior parietal lobule Dorsal attention −37.5 37.5 44.5

L precentral gyrus Dorsal attention 28.5 13.5 56.5

L insula Salience 37.5 −7.5 2.5

R anterior cingulate Salience −1.5 −34.5 14.5

L medial frontal gyrus DMN 1.5 −61.5 5.5

L cingulate gyrus

(posterior portion)

DMN 1.5 46.5 29.5

R superior temporal

gyrus

Auditory −49.5 28.5 2.5

R postcentral gyrus Motor −55.5 10.5 17.5

R inferior parietal lobule Executive control −40.5 55.5 41.5

R middle frontal gyrus Executive control −40.5 −16.5 38.5

R thalamus Basal ganglia −7.5 10.5 5.5

The spheres (radius = 5mm) of each seed are shown in Figure 2. Here and below,

coordinates are in RAI Dicom standard (“right,” “anterior,” and “inferior” have negative

values).

*Based on seed’s center in Talairach-Tournoux (TT) atlas.
§Based on components generated by ICA.

R, right; L, left; DMN, default mode network; pDMN, posterior DMN; vDMN ventral DMN.
avis1 and vis2 refer to two distinct components of the visual network (visual lingual and

visual occipital) generated by ICA.

higher connectivity in HIV+ children than controls. Most
seeds were in networks previously implicated in HIV (DM,
executive control, somatosensory, and salience networks). Of
the connections found, all but one (L posterior cingulate to
medial prefrontal cortex within DMN) were between networks.
Among HIV+ children we observed no association in any of
the ICA-generated RSNs with measures of immune health at
time of scan. In contrast, poorer immune health in infancy
was associated with localized FC increases at age 7 years in
basal ganglia, somatosensory and salience networks. While we
predicted association of FC in somatosensory and salience
networks with immune health, the directionality of our findings
is opposite to what we hypothesized.

HIV+ vs. Uninfected FC Comparisons
The lack of observed HIV-related intra-network differences (i.e.,
within ICA-generated RSNs) may be due to the developing
brain being characterized by less within-network but greater
between-network connectivity (Fair et al., 2008; Power et al.,
2010; Khundrakpam et al., 2016). It has been postulated that
network regions in children are neither isolated fragments of
an immature adult system nor unified into cohesive RSNs, but

instead integrated into a different network structure organized
by anatomical proximity (Fair et al., 2007). Focusing solely
upon within-network changes without considering external
relationships therefore risks missing critical details about the
functional development of RSNs, as well as how specific
networks interact with outside brain regions (Power et al.,
2010; Khundrakpam et al., 2016) to create the large-scale brain
networks essential for efficient functioning (Chen et al., 2008,
2011).

Studies in typically developing healthy children find that long-
distance connections between functionally related regions tend to
be relatively weak and strengthen with age, while short-distance
relationships are stronger and weaken with development (Fair
et al., 2009; Power et al., 2010). Synaptic pruning has been
proposed as a possible mechanism for reductions in local FC,
while myelination throughout childhood and adolescence could
facilitate increased long-range correlations (Paus et al., 2001).
Here, four of the five connections that demonstrated lower FC
in infected children are between frontal and parietal regions,
suggesting an HIV-related delay in long-range connection
increases. Similarly, greater correlated brain activity in HIV+
children between the AC seed and L medial and superior
frontal gyri may result from delay in the age-related decrease
of short-range connections. Since decreased prefrontal-parietal
connectivity is associated with poorer working memory capacity
(Nagy et al., 2004) and performance (Olesen et al., 2004),
these developmental delays may have functional consequences
requiring further investigation.

While primary sensorimotor connectivity is well established
by early childhood (5–8 years), paralimbic connectivity tends
to mature in late childhood (8.5–11 years), and connectivity
between higher order association regions only in late adolescence
(15–18 years) (Khundrakpam et al., 2013). Using interregional
correlations in cortical thickness as a measure of structural
brain connectivity, Khundrakpam et al. (2013) found that
connectivity decreased with age in primary sensorimotor regions
but increased in association areas. Greater connectivity in the
present study in HIV+ children at 7 years between the R
postcentral gyrus in the motor network and L temporal regions
in the somatosensory network could therefore reflect a delay
in the age-related connectivity reductions between sensorimotor
regions.

Using diffusion spectrum imaging, Hagmann et al. (2008)
identified a structural core, a single integrated system from
which processes in both cortical hemispheres appear to be
coordinated, comprising the posterior cingulate cortex (PCC),
precuneus, cuneus, paracentral lobule, isthmus of the cingulate,
banks of the superior temporal sulcus, and inferior and superior
parietal cortices. They further demonstrated that structural and
functional connections were strongly correlated, indicating that
these regions may similarly be hubs of functional connectivity.
It is striking that in the present study all five connections
demonstrated FC reductions in HIV+ children involve seeds
or clusters located within key components of this core in the
posterior medial and parietal cortex. These findings suggest
that the structural core may be particularly vulnerable to the
effects of HIV and/or ART. Further, since seeds were based on
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FIGURE 2 | Maps showing clusters of significant FC differences between HIV infected and uninfected groups (red) from SCA analysis, as well as the locations (green

spheres, radius = 5mm). The 3D volume representations were created in SUMA, with sagittal and axial midslices included for reference. From left to right, each

column shows: an oblique viewing angle, right and left sagittal views, and superior and inferior axial views. In rows (A–E), the average FC value for the infected group

was less than that of the uninfected group, and vice versa in rows (F,G). Table 3 provides seed and cluster location information.
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TABLE 3 | Functional connections showing alterations in HIV infected children.

Seed region* Seed network Cluster anatomical

location*

Cluster functional

network§

Cluster peak coordinates (TT, mm) Cluster vol (mm3)

x y z

CONNECTIONS SHOWING LOWER CONNECTIVITY IN INFECTED CHILDREN

L cingulate gyrus

(posterior portion)

DMN L inferior frontal gyrus Auditory, salience 31.5 −22.5 −3.5 1,728

L cingulate gyrus

(posterior portion)

DMN L AC, R AC, L medial frontal

gyrus

DMN 4.5 −46.5 5.5 1,782

L paracentral

lobule

Somatosensory L cingulate gyrus, R

cingulate gyrus, L medial

frontal gyrus, R AC

Salience, basal ganglia 1.5 −34.5 26.5 2,619

R cuneus pDMN R inferior and middle

occipital gyrus, R lingual

gyrus, R fusiform gyrus

Visual −16.5 85.5 −6.5 1,566

R middle frontal

gyrus

Executive control R supramarginal gyrus, R

inferior parietal lobule

Dorsal DMN, executive

control, dorsal attention

−40.5 40.5 26.5 1,620

CONNECTIONS SHOWING HIGHER CONNECTIVITY IN INFECTED CHILDREN

R postcentral

gyrus

Motor L superior temporal gyrus, L

middle temporal gyrus

Somatosensory,

salience

46.5 31.5 8.5 1,863

R AC Salience L medial frontal gyrus, L

superior frontal gyrus, L AC

DMN 22.5 −25.5 23.5 1,620

*Based on seed center and cluster overlap within the Talairach-Tournoux (TT) atlas.
§Based on cluster overlap with the Functional Connectome Project networks (Biswal et al., 2010).

L, left; R, right; AC, anterior cingulate; DMN, default mode network; pDMN, posterior DMN.

FIGURE 3 | (A–C) Clusters (blue) of significant association between FC and clinical measures (either CD4 or CD4%) within the HIV cohort, shown within each RSN

defined by group ICA (hot colors, thresholded at Z > 3). Slices are shown at the peak coordinates of each cluster, with numbers provided in Table 4. In axial and

coronal views, left = left. (Right column) Scatterplots showing each subject’s clinical measure vs. mean FC (Z-score) within each cluster.
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TABLE 4 | Regions within which immunocompromise in infancy (6–8 weeks), defined by low CD4 count and CD4%, is associated with functional connectivity increases at

age 7 years.

ICA-generated network Cluster anatomical location* Cluster peak coordinates (TT, mm) Cluster vol (mm3) Cluster mean FC (Z) Pearson r

x y z

CD4 COUNT IN INFANCY ASSOCIATED WITH FC

Basal ganglia R lentiform nucleus, R putamen, R

lateral globus pallidus

−28.5 16.5 2.5 513 0.695 −0.672

CD4% IN INFANCY ASSOCIATED WITH FC

Somatosensory R precuneus, R superior parietal

lobule, R paracentral lobule

−19.5 43.5 53.5 918 0.694 −0.579

Salience R inferior frontal gyrus, R insula −40.5 −13.5 −12.5 864 1.388 −0.539

*Based on cluster overlap in Talairach-Tournoux (TT) atlas.

R, right; FC, functional connectivity.

connectivity peaks in our ICA-generated RSNs, our results affirm
the important role of these regions in functional integration.

In addition to this mainly posterior medial core, we also
observed effects of HIV in medial frontal regions—rostral
anterior cingulate (AC) and caudal AC clusters show lower FC
to seeds in the PCC and paracentral lobule, respectively, and a
seed in the R AC has greater FC to L frontal cortex. In total, four
of the six distinct seeds with altered FC in the HIV+ children are
medial, and two of these involve connections to medial frontal
regions. Neurogenesis during prenatal development occurs in
the ventricular zone in the center of the brain, from where
neurons migrate radially out to the developing neocortex and
connect with other neurons to establish rudimentary neural
networks (Stiles and Jernigan, 2010). By the end of the prenatal
period, major fiber pathways, including the thalamocortical
pathway, are complete. The fact thatmidline brain regions appear
disproportionately affected by HIV suggests that the changes
causing the observed HIV-related developmental delays may be
occurring early in development.

To our knowledge, only one study previously examined
resting state FC in HIV+ youth, in a cohort aged 12–21
years (Herting et al., 2015). Here, WB FC was examined
using SCA to 5 seeds within the DMN, but without controls.
Functional connections were related to measures of disease
severity, specifically peak HIV RNA and nadir CD4%. Greater
HIV disease severity was related to both decreases and
increases in BOLD signal correlations, and both within-
and between networks. Notably, youths with more advanced
HIV disease severity showed effects characteristic of a “less
mature” DMN, providing additional evidence of HIV-related
developmental delay. Internetwork correlations showing effects
of disease severity occurred between the DMN seeds and
clusters in the executive control, sensorimotor, salience, anterior
cingulate/precuneus, and visual networks, with decreased
functional connections between the DMN and executive and
visual networks being related to worse processing speed scores
(Herting et al., 2015). In the present study of 7 year olds,
we similarly found HIV-related decreases and increases in FC
between the DMN and salience, executive control, and visual
networks, as well as lower within-DMN FC. It is noteworthy that

many of the same regions are involved in these altered functional
connections, specifically the medial prefrontal cortex, PCC, R
lateral parietal and occipital cortices, R middle frontal gyrus, L
superior frontal gyrus, as well as inferior frontal gyri albeit in
different hemispheres. Our results, along with those of Herting
et al. point to these regions as being at particular risk of alteration
by HIV and/or ART in pediatric populations.

Functional Connectivity Associations with
Clinical Measures
In our study, we could not examine associations of FC with peak
VL, as done in Herting et al. (2015). In our study peak VLs were
truncated at a maximum value of 750,000 copies/mL at baseline.
While one might expect timing of worst virological status (peak
VL) and poorest immune health (nadir CD4%) to differentially
affect FC, due to critical stages of development occurring at
different times in childhood in different brain regions and
networks, these timings are less meaningful in the context
of our cohort where all infected children had either limited
ART initiated between 6–12 weeks or deferred treatment when
clinically indicated. Notably, Herting et al. (2015) controlled
for age of peak VL and nadir CD4% in their analyses. In the
CHER cohort where treatment was not based on disease severity
but group assignment, nadir CD4% and peak VLs occurred
immediately before treatment initiation for most children in
whom treatment was deferred, and either at enrollment or after
treatment interruption (if interrupted) in children initiating ART
before 12 weeks. Therefore, we examined here the influence of
immune health on brain development within the HIV+ children
by observing the associations between FC and clinical measures
at both study enrollment in infancy and time of scanning.

Similar to Thomas et al. (2013), who examined associations
of VL and CD4 with FC measures in adults across 5 networks,
we also found no regions within any of our ICA-generated RSNs
showing a relationship of FC with current CD4 count or CD4%.
It is possible that SCA, which assesses also between-network
connectivity, could be more sensitive to detect connections
affected by current immune health at this age. In contrast, poorer
immune health in infancy was associated with increased FC in
three right-lateralized regions in separate RSNs—basal ganglia,
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somatosensory, and salience networks. These findings imply that
infant immune health has long-term consequences on brain
development.

An MR spectroscopy study by Mbugua et al. (2016) of 5-year-
old children from the same cohort similarly found that immune
health measures at 6–8 weeks were related to N-acetyl aspartate
(NAA) and choline levels in the basal ganglia, despite early
ART, and VL suppression. The metabolite NAA is associated
with neuronal density and integrity, and the result suggests that
poor immune health in infancy relates to basal ganglia neuronal
populations at age 5. If early HIV infection impacts basal ganglia
neuronal density or integrity, neuronal activity and therefore FC
in the region may be altered; however additional work is needed
to directly examine possible relationships between altered FC and
metabolite levels within this cohort. Notably, the basal ganglia
are one of the mostly widely reported HIV-affected regions of
the brain across modalities (e.g., Berger and Arendt, 2000; Moore
et al., 2006; Ellis et al., 2007; Gongvatana et al., 2013).

Synaptogenesis and synaptic pruning start around 20 weeks
gestational age (GA), and myelination around GA 30–32
weeks (Casey et al., 2005). These processes start in primary
sensorimotor regions and sensory tracts, progressing to parietal
and temporal association cortex, and finally prefrontal cortex
(Khundrakpam et al., 2016). Correlated brain activity has been
demonstrated in premature infants from 30 weeks GA, including
in the somatosensory, visual, auditory, pDMN, and salience
networks (Kiviniemi et al., 2000; Fransson et al., 2007; Redcay
et al., 2007; Lin et al., 2008; Smyser et al., 2010). It is worth
noting that the three networks where we found effects of immune
health in infancy on RSFC are all involved in primary motor
and sensory functions. The somatosensory network processes
peripheral inputs and tactile sensations and is important for
controlling action (Lin et al., 1996). The salience network,
comprising the dorsal AC, the left and anterior right insula, and
the adjacent inferior frontal gyri (Seeley et al., 2007), is important
in coordinating behavioral responses (Medford and Critchley,
2010), initiating cognitive control (Menon and Uddin, 2010), and
maintaining and implementing task sets (Dosenbach et al., 2006;
Nelson et al., 2008). The basal ganglia network, which includes
the putamen and caudate bilaterally as well as anterior parts
of the thalamus (Szewczyk-Krolikowski et al., 2014), primarily
regulates motor control, but also plays a role in human reasoning
and adaptive function, the control of reward-based learning,
sequencing, and cognitive function (Leisman et al., 2014). Since
these networks support functional domains that are crucial when
an infant starts to interact with his/her environment, they are
amongst the first to mature and may be more sensitive to poor
immune health during critical stages of development in infancy.
However, it remains unclear why resulting FC would be increased
at the observed stage of childhood. Connectivity increases with
greater HIV disease severity were also observed by Herting et al.
(2015) in youth between the R inferior temporal cortex within
the DMN and the brainstem, R middle frontal gyrus (anterior
cingulate/precuneus network), and R frontal pole (salience), and
between the executive control and salience networks in HIV+
adults compared to uninfected controls (Thomas et al., 2013).
In contrast to our finding of hyperconnectivity within networks

in the children with the poorest immune health in infancy, the
connectivity increases reported by the two other studies were
between networks, indicating less independent brain networks in
infected individuals, consistent with impairment. It is not clear
whether the within-network FC increases observed here reflect
an advantage or a deficit.

Since connectivity within local networks decreases with age
from as young as 4–9 months (Damaraju et al., 2014), the
FC increases observed at age 7 years in children with poorer
immune health in infancy could be due to decreased synaptic
pruning. The immune system plays a critical role in normal
brain development and following injury (Merrill, 1992; Zhao and
Schwartz, 1998; Hanamsagar and Bilbo, 2016), and elevated levels
of cytokines and their receptors from perinatal infection have
been linked with abnormal brain development and an increased
risk of neurodevelopmental disorders (Urakubo et al., 2001; Pang
et al., 2003; Meyer et al., 2006). The morphology and function
of microglia, the primary immune cells in the brain, shift from
an immature to a mature state throughout brain development
in an age- and brain region-dependent manner (Bilbo, 2013).
Animal models have shown that a single neonatal infection
alters microglial functioning, leading to exaggerated cytokine
production within the brain in response to subsequent immune
challenges and an increased risk of cognitive deficits later in
life (Bilbo, 2013). Since microglia are long-lived, functionally
altered microglia may remain in the brain into adulthood.
Among their many roles, microglia aid in synaptic pruning
and regulate synaptic plasticity and function (Schafer et al.,
2012; Hong et al., 2016). Following localization of C1q, the
initiating protein within the classical complement cascade of
the immune system, to synapses within the postnatal brain
intended for elimination, microglia expressing the complement
receptor for this protein are activated (Stevens et al., 2007;
Schafer et al., 2012). We hypothesize that changes in the
developmental trajectory of microglia arising from perinatal
HIV infection and neuroinflammation in infancy alters later-life
immune function, causing disruptions in synaptic pruning and
connectivity increases within affected networks in childhood.

Given the overlapping functionality of the three affected
networks, our findings provide impetus for further investigation
of FC with motor and sensory performance measures. Such
analysis may provide insight into whether the observed FC
increases impact children positively, in the form of a possible
compensatory mechanism, or negatively, such as delayed or
impaired synaptic pruning, at this age.

Limitations
Here, we used a voxelwise threshold of p = 0.005 during the
clustering procedure. We note that more conservative voxelwise
thresholding at p = 0.001 produced no significant results, likely
due to the small sample size in this study. However, voxelwise
thresholding with p = 0.005 showed adequate familywise error
rate control when using the mixed ACF modeling (Cox et al.,
2017) implemented here. In addition, because all HIV+ children
were on ART it is impossible to disentangle the contributions of
HIV infection and ART to our findings. Lastly, in these children
we do not know whether HIV infection occurred prenatally or
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during birth. This knowledge would allow us to better understand
the timing of damage during the fetal period and exposure to
other viruses or bacteria which may have primed the immune
system.

CONCLUSION

HIV infection in conjunction with early ART alters between-
network connectivity in children (here, measured at age 7 years).
The predominance of medial brain regions suggest that HIV
affects brain development from its earliest stages. The networks
implicated include DMN, somatosensory, salience, motor, basal
ganglia, visual and auditory, as well as the higher-order executive
control network. Weaker long-distance and stronger short-range
connections in HIV+ children suggest developmental delay.
Further, although no associations were found with current
immune health, poor immune health during infancy is associated
with localized FC increases in somatosensory, salience, and basal
ganglia networks, indicating that effects of immunocompromise
during critical stages of development in early infancy persist
into childhood, despite early ART and viral suppression. These
neurobiological alterations may contribute to cognitive problems
among HIV infected children (e.g., Lewis-de los Angeles et al.,
2017; Yadav et al., 2017) and require further investigation.
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APPENDIX A

The afni_proc.py command within AFNI was used to specify
all steps (or “blocks”) and options for the full processing
pipeline in this study. The command-based configuration
provides a succinct form for generating a flexible analysis
pipeline, and, unlike a GUI-generated analysis, it both ensures

that identical steps are carried out across subjects and
maintains an exact record of all steps for reproducibility. The
afni_proc.py command used in the present study is presented in
Table A1, and the summary of steps is provided in the section
Methods.

TABLE A1 | The afni_proc.py command using in AFNI (Cox, 1996).

afni_proc.py \

-subj_id $sub_name \

-dsets $rest_set \

-copy_anat $anat_set \

-blocks despike tshift align tlrc volreg blur mask regress \

-tcat_remove_first_trs 5 \

-tlrc_NL_warp \

-tlrc_base ~/abin/TT_N27+tlrc \

-volreg_tlrc_warp \

-blur_size 6.0 \

-mask_apply epi \

-mask_segment_anat yes \

-regress_bandpass 0.01 0.1 \

-regress_apply_mot_types demean deriv \

-regress_ROI WMe CSFe \

-regress_RSFC \

-regress_run_clustsim no \

-regress_est_blur_errts

The first three variables ($sub_name, $rest_set and $anat_set) are respectively set for each subject’s ID, resting state EPI data set and anatomical volume.
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