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Mobile Brain/Body Imaging (MoBI) is rapidly gaining traction as a new imaging
modality to study how cognitive processes support locomotion. Electroencephalogram
(EEG) and electromyogram (EMG), due to their time resolution, non-invasiveness and
portability are the techniques of choice for MoBI, but synchronization requirements
among others restrict its use to high-end research facilities. Here we test the
effectiveness of a technique that enables us to achieve MoBI-grade synchronization
of EEG and EMG, even when other strategies (such as Lab Streaming Layer (LSL))
cannot be used e.g., due to the unavailability of proprietary Application Programming
Interfaces (APIs), which is often the case in clinical settings. The proposed strategy is
that of aligning several spikes at the beginning and end of the session. We delivered a
train of spikes to the EEG amplifier and EMG electrodes every 2 s over a 10-min time
period. We selected a variable number of spikes (from 1 to 10) both at the beginning
and end of the time series and linearly resampled the data so as to align them. We
then compared the misalignment of the “middle” spikes over the whole recording
to test for jitter and synchronization drifts, highlighting possible nonlinearities (due to
hardware filters) and estimated the maximum length of the recording to achieve a
[−5 to 5] ms misalignment range. We demonstrate that MoBI-grade synchronization
can be achieved within 10-min recordings with a 1.7 ms jitter and [−5 5] ms
misalignment range. We show that repeated spike delivery can be used to test online
synchronization options and to troubleshoot synchronization issues over EEG and EMG.
We also show that synchronization cannot rely only on the equipment sampling rate
advertised by manufacturers. The synchronization strategy described can be used
virtually in every clinical environment, and may increase the interest among a broader
spectrum of clinicians and researchers in the MoBI framework, ultimately leading to
a better understanding of the brain processes underlying locomotion control and the
development of more effective rehabilitation approaches.
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INTRODUCTION

The ability to walk independently is fundamental for the
execution of daily life activities. Brain injuries (e.g., stroke) can
cause motor damage comprising locomotion impairment with a
negative impact on the quality of life. Thus, great effort is put
into restoring walking in people with brain damage; in order
to get a deeper understanding of cortical involvement during
walking it is necessary to develop models that represent cortical
activities in relation to human walking patterns. It is known that
the cortex proactively controls voluntary and precise movements
and is involved only in ‘‘high-level’’ motor planning (e.g., gait
initiation, addressing obstacles, etc.). Its involvement during
ambulation tasks however is only hypothesized because of the
limits of available techniques (Marple-Horvat and Criado, 1999;
Beloozerova and Sirota, 2003; Marigold et al., 2011; Drew and
Marigold, 2015).

Until very recently, several technical constraints restricted
ambulation studies to motor imagery (Schlögl et al., 2005),
resting periods just before/just after exercise (Gutmann
et al., 2015), detection of movement intentions (Bai et al.,
2007) or other static tasks (e.g., reaching/grasping (Hammon
et al., 2008)), leaving out of the analysis any movement-
related sensory information and path integration aspect. The
electroencephalogram (EEG), contrary to NIRS or fMRI, is
portable, non-invasive, easy to mount, has fast time scale and it is
becoming the technique of choice for brain imaging in humans
in the rapidly emerging framework of Mobile Brain/Body
Imaging (MoBI; Gramann et al., 2011, 2014). Similarly, surface
electromyogram (EMG) allows muscle activity recording and
analysis with sufficient time resolution for tasks involving
movement (e.g., walking; Cappellini et al., 2006; Artoni et al.,
2013).

Within the MoBI framework a series of recent works
have shown that electrocortical dynamics, particularly in the
sensorimotor cortex, exhibits intra-stride patterns of activation
and deactivation (Gramann et al., 2011; Gwin et al., 2011;
Chéron et al., 2012). However, verifying the existence of a
true brain-to-muscle link definitely requires the definition of
new methodological approaches based on e.g., brain-muscle
connectivity measures during this task and in particular the
combined use of both EEG and EMG (Petersen et al., 2012;
Artoni et al., 2017). Including EMG analysis in the MoBI
framework is particularly important to sort meaningful brain
activity from EEG artifacts (e.g., cable movements, electrode/gel
coupling, nonstationary line noise, movement artifacts) coupled
to the gait phases and overlapping in time and frequency with the
EEG (Castermans et al., 2014).

Synchronization of different data streams (e.g., EMG, EEG,
motion capture camera, eye tracking devices, force platforms,
insoles, body sensor networks (Chen et al., 2011; Martelli et al.,
2014 etc.), all with different sampling rates (ranging from
50 Hz—simple camera, 2000 Hz—EEG or 40 kHz—Audio),
constitutes one of the greatest challenges that restrict the access
of the EEG-EMG MoBI framework, especially in clinical settings.
In fact, the time constraints imposed by brain imaging—e.g.,
early somatosensory evoked potentials can appear as early as

20 ms after a tactile stimulus (Genna et al., 2017)—warrant
special care in setting up recordings as synchronization
delays or synchronization jitter constitute a serious threat to
the extraction of meaningful results from MoBI paradigms.
Time shifts between single devices, starting from 10 ms,
may alter causal links in EEG—EMG connectivity estimates
(Kline et al., 2016) and may lead to misinterpretation of
the obtained results. In fact Grosse et al. (2002) show that
cortical activity precedes EMG by a delay appropriate for
conduction in the fast conduction pyramidal pathway (around
15 ms).

Here, after a brief review of strategies for EEG and EMG
synchronization, we describe and test a worst-case-scenario
fallback solution, that can be used to quantify the jitter,
detect possible non linearities, study the effect of hardware
filters, and estimate a safe length of recording sessions to
achieve MoBI-grade synchronization. We also show why
synchronization cannot rely just on the equipment sampling rate
advertised by manufacturers and on simple alignment to the start
of the recording.

MATERIALS AND METHODS

Overview of EEG and EMG
Synchronization Strategies
Both EMG and EEG devices comprise a set of electrodes (wired
or wireless) fixed to a subject via a cap (EEG) or electrode holders
(surface EMG), an AD amplifier that delivers sampled, highpass
filtered (or DC-filtered) signals to a device (e.g., server, PC) that
collects and stores data on durable supports (hard drive or SD
card). Figure 1 shows several possible synchronization strategies,
in particular panel A shows the current state of the art solution to
handle real time EEG and EMG synchronization.

The EEG and EMG amplifiers collect the data from electrodes.
Cap (EEG electrodes) and EMG electrodes may be connected
to their acquisition devices either via cable or wirelessly. Data
are then made available as time series streams over a network
and pushed sample by sample or chunk by chunk to a server
that handles real-time acquisition and synchronization. Each
data sample is associated with a timestamp by the recording
device and different streams can then be synchronized by
the server and resampled to the desired frequency either
offline or online. Lab Streaming Layer (LSL; Kothe, 2014) is
an open source data acquisition project that relies on clock
offset measurements to handle event information and timing
as well as synchronization across devices capable of delivering
a data stream output (Reis et al., 2014). Data can then be
transmitted in pseudo real-time (i.e., with delay depending
on network latency) to other devices e.g., over a network.
This approach requires reliable and timely transmission of
data packets over the network. On some devices (pressure
foot insoles or HD-cameras), battery and high bandwidth
requirements may not allow reliable, consistent and timely
transmission of data packets over the network. Data can be
also recorded locally (e.g., over a SD-card) when network
stability cannot be guaranteed or when there is a risk of
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FIGURE 1 | Possible offline and online electroencephalogram (EEG) and electromyogram (EMG) synchronization architectures. (A) EEG and EMG data are pushed
sample by sample or chunk by chunk to a server that timestamps and merges multiple streams. The server may then forward the data over a lab network or store it
for offline use. (B) EEG electrodes are detached from their holder and used to record EMG data. Samples are automatically synchronized at collection time. (C) If
both EEG and EMG amplifiers provide a Transistor-Transistor-Logic (TTL) port simultaneous digital pulses may be delivered to perform offline synchronization. (D) In
case a TTL port is not available analog pulses may be directly delivered to an EMG electrode before and after the recording session.

falling out of communication range (especially with short range
communication such as Bluetooth) and data packets may be lost.
Unfortunately, LSL requires access to Application Programming
Interfaces (APIs), availability of a continuous data stream or
requires supported hardware. APIs are however seldom available
in clinical settings, e.g., due to device certification requirements.
Another solution is that of using, if available with the EEG
equipment, extra bipolar channels for EMG measurement
(Figure 1B).

A fallback solution (Figure 1C) is to use a common
input (spikes) simultaneously sent to all devices e.g., through
a Transistor-Transistor-Logic (TTL) port. Before starting the
experiment session an external trigger may deliver a digital input
(i.e., analog square wave pulse compliant with TTL specifics for
voltage: [0–0.5 V] for LOW and [2.7–5 V] for HIGH) to multiple
devices.

Repeated synchronization pulses should be delivered
to all devices throughout the whole experiment to avoid
desynchronization and time drifts, however in some situations
this may not be possible: for instance, the EMG receiver
(with wireless muscle sensors e.g., Noraxon Telemyo DTS)
may be fixed in place, while the EEG amplifier (e.g., ANT
Neuro eego sports) is carried by the subject during a MoBI
session. In this situation, attaching a cable to both can be
unpractical. A compromise would be that of delivering pulses
both before and after the recording session and use them

to align multiple time series. Again, some clinical hardware
devices (e.g., BTS Free EMG 300, BTS Free EMG 1000) do
not provide a TTL synchronization port or TTL pulses might
be delayed by the equipment (e.g., with Noraxon Desktop
DTS the advertised delay between EMG measurement and
delivery is 72 ms) making this type of synchronization less
effective.

Here we describe and test the worst-case scenario fallback
solution shown in Figure 1D, that can be used when the
aforementioned strategies (Figures 1A–C) are unavailable
(e.g., when state of the art research-purpose hardware equipment
or APIs are not available). This synchronization strategy, called
‘‘PRE—POST recording’’ alignment, is based on the delivery
of series of pulses both before and after the recording, sent
directly to the EEG TTL port (always available) and to one EMG
electrode. Data can then be interpolated and aligned offline to
achieve MoBI-grade synchronization.

Summary
To test the effectiveness of a synchronization strategy based
on the delivery of pulses both before and after a recording
session we delivered a train of spikes to the EEG amplifier
and EMG electrodes every 2 s over a 10-min time period. We
selected a variable number of spikes (from 1 to 10) both at the
beginning and end of the timeseries and linearly resampled the
data so as to align them. We then compared the misalignment
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FIGURE 2 | Recording and synchronization platform. A PC is connected
through a serial port to an Arduino Zero platform that simultaneously delivers
digital TTL pulses (spikes) to the EEG amplifier and analog 3 mV – 4 ms pulses
to one EMG electrode by means of a custom-designed cable. EEG and EMG
signals collected by the electrodes are transmitted to the respective amplifiers
that deliver the data to a PC for later offline synchronization.

of the ‘‘middle’’ spikes over the whole recording to test for jitter
and synchronization drifts, highlighting possible nonlinearities
(spikes delivered directly on the EMG electrode are filtered by
the EMG hardware) and estimated the maximum length of the
recording to achieve a safe (for refined MoBI analyses) [−5 to 5]
ms misalignment range.

Experiment SetUp
The experiment was carried out at Villa Beretta—Ospedale
Valduce, LC, Italy with a EEG Neuroscan SynAmps2 and the BTS
Free EMG 1000. Neither APIs nor TTL input synchronization
ports were available for the EMG. Figure 2 shows the experiment
setup. The subject gave his written informed consent to the
experiment and the protocol was approved by the Comitato Etico
Interaziendale delle Province di Lecco, Como e Sondrio. The
recordings were carried out in agreement with the Declaration
of Helsinki.

We built the synchronization platform by means of an
Arduino board, which provided one 10 bit Digital to Analog
Converter (DAC) output pin and a 48 MHz clock speed (Banzi
and Shiloh, 2014). The Arduino board was connected through
a USB cable to a PC via the ‘‘programming’’ port. Commands
were delivered to Arduino via the serial port of the computer
through a Python interface. Once the command was received,
two synchronized signals were generated by Arduino. A TTL
trigger pulse was delivered to the Neuroscan EEG amplifier
and annotated as ‘‘event’’ by the proprietary recording software.
At the same time a 4 ms square wave pulse (spike) with
3.2 mV amplitude was delivered directly to a EMG electrode
through a custom cable connected to the DAC output and the
ground pins. We tested for sub-ms synchronization of both
Arduino outputs by means of a DAQ card (Labjack T7Pro) with
a 2000 Hz sampling rate. EMG disposable surface electrodes
were modified to allow for a portion of conductive material

connected to the trigger cable to latch to the wireless EMG
lead, as shown in Figure 2. Noise was reduced by pressing
electrode and lead together using a constant weight during pulses
delivery.

Spike Delivery
Spikes were delivered both to the EEG and EMG devices
every 2 s to form a spike train. EEG and EMG data were
recorded at nominal sampling rate (1000 Hz). The recording
lasted 10 min. The onsets of TTL pulses were automatically
interpreted as events by the EEG software and annotated
to the exported data with a precise timing with respect
to the beginning of the recording. EMG spikes timing was
determined offline using an amplitude threshold. The threshold
was selected as the minimum value that allowed to recognize
spikes and guarantee fair robustness to background noise,
i.e., the 99th percentile of the amplitude distribution of the
spike-free portions of data. The aim was to characterize
spike misalignment throughout the recording with different
strategies used in practice, namely: (i) by synchronizing the
first and last (up to 10) spikes within the recording; and
(ii) using only the first (up to 10) spikes to align the data,
i.e., relying on the nominal sampling frequency declared by
manufacturers. We also tried different thresholds for spike
detection.

Alignment with First and Last Spikes
(“PRE—POST Recording” Alignment)
Figure 3 shows the TTL (EEG) and analog (EMG) spike train
delivered to devices and the offline synchronization strategy.
Ideally if a spike train is available throughout the whole recording
it would be possible to interpolate EMG data and align each
spike precisely. Here we used the spikes to determine alignment
consistency (i.e., stability to synchronization) throughout the
whole recording after matching them respectively at the
beginning (‘‘PRE spikes’’) and end (‘‘POST spikes’’) of the
recording. This allows to simulate a setup where no wireless
connection or extra electrodes are available for synchronization
purposes. Given the analog nature of EMG spikes, robustness

FIGURE 3 | Digital EEG (top) and analog EMG (bottom) synchronization
spikes. EMG data are shifted (gray arrow “Shift”) and time warped so that the
first and last spike coincide. On the lower right one analog EMG spike is
magnified and demonstrates the effect of the hardware analog filter. The EMG
spike amplitude and shape varies throughout the recording.
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FIGURE 4 | Probability density histogram and kernel-fitted probability density function (left) and trend (right) of spike misalignment throughout the recording (10 min)
respectively using n = 1 (top row), n = 5 (middle row), n = 10 spikes before and after the recording session for synchronization. The bottom panel shows the average
misalignment (ms) and standard deviation as a function of the number of spikes used for synchronization (n). Significant differences are marked with ∗∗p < 0.01 and
∗∗∗p < 0.001.

of synchronization may be increased by aligning the time series
to the median misalignment of the first and last n spikes.
We used up to n = 10 spikes at the beginning and end of
the recording respectively and in particular n = 1, n = 5,
n = 10.

Within the ‘‘PRE—POST strategy’’ alignment EMG data were
first cropped or zero-padded. If n = 1 only the first spike
was aligned, if n > 1 the EMG data were shifted so that the
median misalignment across the first n spikes was null. After first
cropping, the EMG data were linearly time-warped (resampled).
If n = 1 the warping was performed so that the last recorded spike
of both recordings coincided, whereas if n > 1 it was performed
so that median misalignment across the last n spikes was null.
We then calculated the misalignment between ‘‘internal’’ spikes
and computed its density distribution. We then calculated the
mean, standard deviation, trend (drift over time) and range.
After evaluating Gaussianity (Shapiro-Wilk test, significance
α = 0.05), we defined as ‘‘Jitter’’ the standard deviation of such
distribution. We compared results for each n from 1 to 10 with

a one-way analysis of variance (ANOVA; significance α = 0.05).
We further tested the robustness of the results by repeating the
experiment with a longer recording (20 min) and by computing
the jitter with n = 10 for every subepoch in the 4–20 min
range.

Effect of Threshold on Synchronization
(with “PRE—POST Recording” Alignment)
Due to the analog nature of the EMG spike signal (absence
of a TTL trigger port) and the effect of hardware filters,
single pulses are spread out over up to 200 ms (Figure 3).
The timing of the onset of the waveform depends on the
threshold used to recognize the spike as an event, which
needs to be as low as possible (to avoid delays) but high
enough to be robust to background noise activity that might
trigger false events. We therefore determined the influence
that threshold selection has on results by testing 5% (A), 10%
(B) and 20% (C) thresholds (with respect to maximum peak
amplitude).
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FIGURE 5 | Trend of spike misalignment throughout the recording respectively using threshold “A” (top row, right), “B” (middle row), “C” (bottom row). The range is
underlined in red. The left panels show the full spike waveform (top left panel) and a zoom of the spike onset with 5%, 10% and 20% thresholds superimposed in
red. The spike amplitude is shown with units normalized to the maximum waveform amplitude.

Alignment with First Spikes (“PRE
Recording” Alignment)
Finally, in order to test the reliability of nominal sample
rate advertised on EEG and EMG equipment, we determined
synchronization stability using the first spikes only. We cropped
the EMG data so that the median misalignment of the first
10 spikes was null and determined whether any trend existed.
In particular, we calculated the time it took after the recording
started, for cumulative desynchronization to reach 20 ms and
60 ms, respectively.

RESULTS

Figure 4 shows the overall misalignment distribution (left), with
the corresponding trend over time (around 10 min-experiment)
using the ‘‘PRE—POST recording’’ synchronization strategy
respectively with one (n = 1, top row), five (n = 5, middle row),
10 (n = 10, bottom row) spikes.

The standard deviation of misalignment (i.e., jitter) was
not modified by the number of spikes used for PRE—POST
alignment (σ = 1.7 ms), nor the length of the recording (from
4 min to 20 min). The bottom panel of Figure 4 shows that the
average misalignment is inversely correlated with the increase of
the number of spikes used for synchronization (n). The average
misalignment with n = 1 is significantly higher (p < 0.01) than

that obtained with n = [2–7], higher still (p < 0.001) with
respect to n = [8–10]. Increasing n has the effect of centering the
misalignment distribution. The results also show a positive trend
of 1.33 ∗ 10−5 ms

ms .
The effects of EMG hardware filters on spikes delivered are

shown in Figure 5 (top left panel).
Spikes are spread over a time span of 150 ms. The onset is

marked by a slow descent of the voltage lasting 50 ms before
dropping to −1 and bouncing back to +1 (normalized units).
It takes 150 ms after spike delivery for the recorded voltage to
return to baseline values, which limits maximum spike delivery
frequency for synchronization purposes to 5 Hz. Increasing
the threshold has the effect of also increasing the jitter and
misalignment range: [−5 5] ms for threshold A, [−8 10] ms for B
(trend ∼3 ∗ 10−5 ms

ms and [−13 13] ms (trend ∼4 ∗ 10−5 ms
ms ) for C.

Figure 6 shows the results using the ‘‘PRE—recording’’
alignment strategy (with n = 5). The trend is almost linear and
its value is 10 ∗ 10−5 ms

ms . EEG-EMG misalignment reaches 5 ms
after about 20–40 s into the recording and 10 ms after 60–80 s.

DISCUSSION

First-Choice Synchronization Strategies
Offline and real time synchronization (Figure 1A) can be
effectively achieved by using LSL (Kothe, 2014). This solution
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FIGURE 6 | Spike misalignment trend throughout the whole recording (top) and over the first 200 s (bottom) after alignment of EMG relying on manufacturer-declared
sampling frequency. It takes only 1 min to accumulate a 10 ms delay.

should be considered as the first choice for synchronization due
to its ease of use and robustness (plus, the LSL project is open
source, thus benefiting of a wide community support). However,
this solution cannot be used if the hardware is not accessible
(i.e., unavailability of APIs).

If the interest lies only in EMG and EEG, an easier solution
than LSL for non-moving subjects, is represented in Panel B,
Figure 1. Some EEG devices already account for up to 16 external
bipolar EMG channels (e.g., ANT Neuro eego sports), that are
already synchronized at hardware level. This solution however
may not be practical for MoBI experiments: passive electrode
systems are hindered by cable movement artifacts, and cables
attached to electrodes (active as well as passive) might get tangled
thus impairing a movement (MoBI) task e.g., walking (Reis
et al., 2014). In fact, cable-free active-electrode EEG solutions
are not yet available: EEG electrodes, even in wireless systems,
are designed to be fixed to a cap that collects the cables and
holds them in place and are not designed to be detached and
fixed e.g., to the legs. Electrode cables are physically connected
to a wireless transmitter (see g.Nautilus from g.tec or MOVE
by Brain Products for example) that then delivers signals to a
receiver. In fact, integrating an amplifier and wireless transmitter
within the EEG electrodes themselves would: (i) increase the
cost of the EEG device and (ii) increase the weight on the
user’s head. While the extra weight is acceptable for EMG
electrodes designed to be worn on peripheral muscles, the
EEG comes with different specifics. For these reasons current
MoBI solutions rely on different amplifiers and systems, each
designed and optimized for a specific physiological signal to

record e.g., EEG, EMG, foot pressure etc. (Gramann et al.,
2014).

Fallback Strategy
In this article we described a fallback synchronization strategy,
‘‘PRE—POST recording alignment’’ which, although suboptimal,
is always applicable and enables the confident use of the MoBI
approach in any clinical setting. We showed that it is possible
to achieve small-jitter effective EEG-EMG synchronization
within the MoBI framework even in worst-case scenarios
i.e., when some of the equipment: (i) does not come with
enough usable bipolar channels; (ii) does not allow real-time
recording; (iii) does not provide a TTL synchronization port;
and (iv) does not provide APIs. Unfortunately, these scenarios
are actually quite common in clinical environments, often due
to restrictions and patient safety regulations (medical grade
equipment certifications).

Duration of Recordings
Results indicate that with 10-min recording sessions, it was
possible to achieve a σ = 1.7 ms jitter with range [−5 5] ms
(Figure 4). With the need to maintain a 10 ms maximum
misalignment interval between these two measures, researchers
can limit the duration of their recording sessions to this time.
Although maintaining a 10-min limit for recording is generally
advisable for other reasons (e.g., reducing the maximum amount
of data lost in case of hardware/software failure), further tests
revealed that shorter or longer recordings, up to 20 min,
guaranteed a jitter in the [1.3 2.2] ms range. If longer recordings
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or different systems are needed, the methods hitherto described
can be used to effectively test the characteristics of new systems.
The 10 ms safety threshold for maximum misalignment derives
by the assumption that EEG and EMG connectivity analysis
is to be performed. However, if less-sophisticated analyses are
required (e.g., time-frequency transformations based on 0.2–0.5 s
time windows), the synchronization demands may be more lax.

Non-linear Phenomena
By using at least two spikes for ‘‘PRE—POST recording’’
synchronization it is possible to better center the misalignment
distribution with respect to using only one spike, 9–10 spikes
are optimal. However, it can be seen (Figures 4, 5) that
even by linearly aligning the time series with 10 spikes, a
significant trend in the misalignment values is still present. This
is clear indication of nonlinear effects, which can be probably
ascribed to many concurring factors such as: (i) background
noise and hardware filters that make spike onset detection for
the EMG not instantaneous; (ii) small changes over time of
the slope of the spike (due to the hardware electronics); and
(iii) numerical approximations that might slightly impair linear
resampling algorithm performance. To reduce the trend and
standard deviation, the threshold should be as low as possible.
A template-based spike detection might also be used, although
the non-stationarity over time of the spike waveform would
probably prevent precise detection (Kim and McNames, 2007).
Else, non-linear time-warping can be performed. These results
incidentally highlight the importance of always performing a
jitter test like the one presented here, as it enables us to
detect possible non-linearities, quantify the robustness of the
synchronization and determine the appropriate duration of the
experiment, based on the requirements.

On Manufacturers’ Advertised Sampling
Rate
The results show that manufacturers’ advertised sampling
rate should not be relied upon when performing EEG-EMG
alignment. Figure 6 clearly shows that 1 min into the recording
it is already possible to appreciate a 10-ms misalignment. In
fact, the actual sampling frequency difference between the two
devices, required to maintain alignment up to 1 ms over a

10-min recording needs to satisfy the equation (f 1−f 2)T < 10−3

with T = 600 s, which yields ∆f < 1.6 ∗ 10−6. This precision
in advertised sampling rate (order of magnitude 0.000001 Hz),
unless specifically stated by the hardware producer, is in practice
never provided, as it exceeds common user’s requirements. The
trend shown in Figure 6 is proof of this. In short, alignment and
resampling are not sufficient to guarantee successful EEG and
EMG synchronization, but it is necessary to align spikes both
before and after each recording session.

CONCLUSION

Here we discussed several synchronization strategies and tested
the effectiveness of a technique for synchronizing EEG and
EMG data based on the alignment of spikes delivered to both
devices, respectively at the beginning and end of the session. We
demonstrated that MoBI-grade synchronization can be achieved
for 10-min recordings with a σ = 1.7 ms jitter and [−5 5]
ms misalignment range, which allows to compute brain-muscle
connectivity. PRE—POST recording alignment can be safely
used in every clinical environment, effectively making the MoBI
framework available to virtually any clinic or research lab.
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