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During dynamic or sustained isometric contractions, bursts of muscle activity appear
in the electromyography (EMG) signal. Theoretically, these bursts of activity likely occur
because motor units are constrained to fire temporally close to one another and thus the
impulses are “clustered” with short delays to elicit bursts of muscle activity. The purpose
of this study was to investigate whether a sequence comprised of “clustered” motor
unit action potentials (MUAP) can explain spectral and amplitude changes of the EMG
during a simulated motor task. This question would be difficult to answer experimentally
and thus, required a model to study this type of muscle activation pattern. To this
end, we modeled two EMG signals, whereby a single MUAP was either convolved
with a randomly distributed impulse train (EMG-rand) or a “clustered” sequence of
impulses (EMG-clust). The clustering occurred in windows lasting 5–100 ms. A final
mixed signal of EMG-clust and EMG-rand, with ratios (1:1–1:10), was also modeled. A
ratio of 1:1 would indicate that 50% of MUAP were randomly distributed, while 50%
of “clustered” MUAP occurred in a given time window (5–100 ms). The results of the
model showed that clustering MUAP caused a downshift in the mean power frequency
(i.e., ∼30 Hz) with the largest shift occurring with a cluster window of 10 ms. The
mean frequency shift was largest when the ratio of EMG-clust to EMG-rand was high.
Further, the clustering of MUAP also caused a substantial increase in the amplitude of
the EMG signal. This model potentially explains an activation pattern that changes the
EMG spectra during a motor task and thus, a potential activation pattern of muscles
observed experimentally. Changes in EMG measurements during fatiguing conditions
are typically attributed to slowing of conduction velocity but could, per this model, also
result from changes of the clustering of MUAP. From a clinical standpoint, this type
of muscle activation pattern might help describe the pathological movement issues in
people with Parkinson’s disease or essential tremor. Based on our model, researchers
moving forward should consider how MUAP clustering influences EMG spectral and
amplitude measurements and how these changes influence movements.

Keywords: motor units, EMG control, neural control of movement, fatigue, EMG signal processing, motor unit
recruitment, synchronization, synchronized oscillations
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INTRODUCTION

During dynamic and fatiguing contractions to volitional failure,
bursts of muscle activation appear in the electromyography
(EMG) signal. This activation of the muscle has been observed
in frequencies anywhere from 20 Hz to 60 Hz and these bursts
of activation are observed both in surface and indwelling EMG
signals. From a theoretical standpoint, this type of muscle
activation of the muscle is likely due to motor unit action
potentials (MUAP) firing temporally close to one another.
Although there are invasive and non-invasive experimental
methods to record a proportion of motor unit activity (De Luca
et al., 2006; Negro et al., 2016), it is often difficult to determine the
precise firing patterns of all motor units in a whole muscle. Using
surface EMG, further difficulties arise because of distorted signals
being recorded due to volume conductor effects, amplitude
cancellation, or cross-talk (Solomonow et al., 1994; Winter
et al., 1994; Farina et al., 2004b; Keenan et al., 2005, 2006;
von Tscharner, 2010; De Luca et al., 2012; Mesin, 2013). Since
these distortion effects are present in experimental time series
EMG, researchers often choose to model the EMG signal to
understand the underlying sequence of activation to create a
muscle activity pattern, while controlling for factors such as
location and orientation of muscle fibers, motor unit recruitment
patterns, rate coding, conduction velocities and/or shapes of
MUAP and how these factors contribute to an EMG signal
(Fuglevand et al., 1993a; Farina and Merletti, 2000; Stegeman
et al., 2000; Farina et al., 2002).

During fatiguing conditions, there are a number of changes
that occur in the EMG signal. In a time-series of EMGdata during
fatiguing contractions, there is an increase in the amplitude of
the EMG signal and this increase is typically associated with an
increased recruitment of motor units. In the frequency domain,
the mean and median frequency of the power spectrum shifts
to lower frequencies during a fatiguing contraction, which has
been attributed to: (a) an increase in the width and shape
of the MUAP due to slowing of conduction velocities; and/or
(b) due to synchronous firing of motor units (Bigland-Ritchie,
1981; Merletti and Lo Conte, 1997; Dimitrova and Dimitrov,
2003; Gandevia, 2008). The usual downshift in mean or median
frequency observed during isometric contractions, however, is
often not observed in a consistent manner across experimental
studies and conduction velocity does not fully explain the
reduction in mean and median frequency (Dimitrova and
Dimitrov, 2003). Therefore, there must be other factors that
strongly influence EMG signal during fatiguing contractions
such as the motor unit synchronization (Yao et al., 2000).

These changes in the EMG power spectrum are not only
restricted to fatiguing contractions. Certain clinical populations
also present with distinct changes in EMG and the resulting
movement. Particularly, people with Parkinson’s disease and
essential tremor have a movement disorder of periodic or
oscillatory movements of the limbs. These periodic movements
are likely driven by an altered muscle activation pattern and
in fact, people with these disorders also show changes in the
EMG time-series signal and power spectrum marked by the low
frequency peak compared to individuals without these disorders

(Rossi et al., 1996; Chen et al., 1997). Further, a burst like firing
pattern of motor units also becomes evident in the surface EMG
signal with the presence of a vibratory stimulus, suggesting that
this type of motor unit firing could be driven by afferent feedback
(Lebedev and Polyakov, 1992). Given that bursts of muscle
activity occur during both isometric and dynamic fatiguing
contractions, clinical populations and artificial sensory input
(Piper, 1912; Hagbarth et al., 1983; Lebedev and Polyakov, 1992;
Rossi et al., 1996; Chen et al., 1997; von Tscharner et al., 2011;
Maurer et al., 2013) and we hypothesize that these short bursts of
muscle activity are due to motor units being activated temporally
close to one another, we believe that using an EMG model that
controls the firing patterns of muscles could explain the EMG
changes observed during these conditions.

We define motor units that fire in close proximity to
one another (i.e., 5–100 ms) as motor unit action potential
‘‘clustering’’. Typically, motor units that fire in close proximity
to one another have been referred to as synchronization.
This synchronization has been defined as either short-term or
long-term synchronization (De Luca et al., 1993). Short-term
synchronization is defined as motor units that fire within ∼5 ms
of each other, while long-term synchronization is defined as
motor units that fire anywhere between ∼6 ms and ∼80 ms.
A large amount of research has focused on short-term motor
unit synchronization, but less attention has been given to
long-term synchronization. Our MUAP clustering is similar, but
not the same as long-term synchronization such that we defined
clustering as MUAP that fire within 5–100 ms. It is important
to note that MUAP clustering does not indicate that the same
motor units are required to fire within consecutive clusters and
that the clustering of motor units could be comprised of different
motor units across different clusters, which is different from
De Luca et al. (1993) definition of long-term synchronization.
Although it may appear that long-term synchronization is
similar to clustering, there is value of introducing the concept
of clustering vs. long-term synchronization. With a model,
we can precisely control the degree of MUAP clustering and
determine the effects of MUAP clustering on a modeled
EMG signal, which is different than creating a signal due
to long-term synchronization. Previous work by Yao et al.
(2000) has provided a thorough investigation of how short-term
synchronization affects EMG and force characteristics such as
amplitude and spectral measures. Although the present study is
somewhat similar to Yao et al. (2000), these researchers have
not investigated the effects of motor units that are activated in
clusters (i.e., 5–100 ms window). We suspect that this MUAP
clustering will help determine the unexplained mechanisms of
EMG changes during dynamic and fatiguing contractions as
well as potentially the EMG changes in Parkinson’s disease and
essential tremor.

The purpose of this study is to increase the understanding
of the effect of motor unit action potential clustering (MUAP
arriving between >5 ms and <100 ms) on EMG power spectra
using a simplified model of an EMG signal. The first hypothesis
is that the EMG time and frequency domain analyses (i.e., mean
and median frequency, shape of the power spectrum) observed
during fatiguing conditions and certain clinical conditions can
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be explained by a modeled EMG signal including clustering of
motor units during a motor task. The second hypothesis is that,
even if there is a larger amount of random superposition of
MUAP, a small amount of clustering will still yield distinctive,
observable changes in the EMG time and frequency domain.
The proposed model can be used to explain the phenomenon of
power spectra changes seen in previous work and our sequence
of activation during a motor task could provide novel insight
to the activation of muscles during dynamic tasks, fatiguing
contractions and clinical conditions that to date, has been
unaccounted for by previous research.

MATERIALS AND METHODS

EMG Model
An EMG signal, called EMG-rand, of 54.6 s in time duration,
corresponding to 217 points recorded with a sampling rate of
2400 samples, was simulated. The simulation convolved a single
MUAP with a set amount of randomly located impulses in time,
resulting in a number of randomly distributed MUAP of varying
amplitude. The modeled single MUAP was a close replicate of
the one published by (Farina et al., 2004a; Figure 1A). A second
EMG signal, called EMG-clust, was simulated by dispersing a
number of clustered motor units at random locations within a
time window of 54.6 s. The clustered motor units occurred at
a number of random start locations (start-loc) and a number
of additional impulses of random amplitudes between 0 and 1
(add-imp) were defined further in time of each start-loc (start-
loc = 500 different locations) within a time interval called cluster
duration. At these start-loc, additional, randomly distributed
impulses (add-imp = 25 impulses) were added in windows
lasting for different durations (defined below) giving a total
number of impulses to be 12,500. The modeled EMG-clust was
obtained by convolving the add-imp with the same single MUAP
(Figure 1B). The result of this convolution was an artificial
EMG signal of randomly distributed impulses within a defined
cluster-duration window, yielding an EMG signal consisting
of clustered MUAP. The function of varying the amplitude of
the impulses was to create MUAP of varying amplitudes as a
result of the convolution that could represent smaller and larger
motor units.

In real experimentally obtained EMG signals, clusters of
MUAPs and randomly distributed MUAP may most likely be
‘‘mixed’’ and not comprised of only clustered MUAP. In the
context of this model, an EMG mixed signal could contain both
randomly distributed and clustered MUAP. A third EMG, called
EMG-mixed, was simulated by forming a sequence of impulses
containing a fixed fraction of clustered MUAP. For example,
an EMG-mixed could be obtained by 50% randomly distributed
MUAP and 50% clustered MUAP. For all of these three modeled
signals, the number of active motor units was kept constant.
This constraint was achieved by making the number of impulses
that were convolved with the single MUAP equal across all
three modeled signals. Thus, this constraint would remove any
effects of additional motor unit recruitment on the modeled
EMG signal.

FIGURE 1 | Simulation of an electromyography (EMG) signal created from
clusters of motor unit action potentials (MUAP). (A) The top figure displays the
modeled single MUAP. (B) The middle figure displays the clustered impulse
train representing a train of firing instants. (C) The bottom figure shows the
simulated clustered EMG signal as a result of the convolution.

Model Parameters
For the EMG clustered and EMG mixed signal, we also
modified a number of parameters of the EMG signal. The first
parameter was the cluster-duration, which defined the window
size that the additional impulses were constrained to fire in.
For example, if the cluster-duration is 40 ms, the additional
impulses (i.e., 25 impulses) are constrained to fire within the
40 ms window. We created EMG signals of different cluster-
durations (5–100 ms) in 5 ms increments, yielding 21 different
cluster durations. Additionally, it is likely that MUAP clustering
is not a phenomenon that is all or nothing and instead, it’s
likely that there are different degrees of clustering. Thus, another
parameter that was added to the model was the ratio of clustered
to randomly distributed MUAP. Specifically, we modeled EMG
signals with five different cluster ratios (i.e., ALL, 1:1, 1:2, 1:4,
1:10) to determine how the degree of clustering influences the
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FIGURE 2 | The impulses and resulting EMG signal due to different model parameters. The left column represents the impulse signal over 500 ms. The right column
represents the EMG signal due to the convolution of the impulses and the MUAP. The title of each row indicates the cluster duration (e.g., 10 ms) followed by the
cluster ratio (e.g., 1:1).

EMG signal. A ratio of 1:1 would indicate that 50% of MUAP
are clustered while 50% are randomly distributed, a ratio of
1:2 would indicate that 33% of MUAP were clustered, a ratio

of 1:4 would indicate that 20% of MUAP were clustered, and a
ratio of 1:10 would indicate that 10% of MUAP were clustered.
Figure 2 shows example signals of the impulses and the resulting
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EMG due to different cluster durations (10, 40 and 100 ms) for
two different cluster ratios (1:1, 1:4).

Frequency Domain Analysis
A Fourier transformation was performed on each modeled EMG
to obtain its power spectral density. The power spectrum was
computed using sequential Fourier transformations. A Fourier
transformation was completed in sequences of 210 points and
the sequential power spectral densities were averaged, yielding
a frequency resolution of 2.34 Hz (Rosenberg et al., 1989). There
was no overlap of the windows for the Fourier transformation.
Although this process of sequential Fourier transformations
prevents the requirement of much further filtering, an additional
triangular moving average (convolution with a vector [1/4, 2/4,
1/4]) was used to smooth the power spectra for presentation
purposes in the figures. To control for spectra containing
more total power than another signal, all power spectra were
normalized by dividing the spectra by the total power of the
signal, providing a normalized power spectral density (nPSD).
For example, one EMG signal may have more amplitude
cancellation compared to another EMG signal and therefore, the
signals were normalized. From each modeled nPSD, the mean
and median frequencies were computed (Farina and Merletti,
2000; Winter, 2009). Below, all power spectra will represent the
normalized values.

Time-Frequency Domain Analysis
A wavelet analysis was used to resolve the power in 13 frequency
bands of eachmodeled EMG signal as performed elsewhere in the
literature (von Tscharner, 2000). The power was summed across
all frequency bands to extract the total power of the signal across
the entire modeled EMG signal in time. The total power of the
EMG signal was then averaged across the entire 54.6 s period
to determine the mean EMG power of each EMG signal. This
analysis was performed for each EMG signal created from the
21 different cluster durations and the five different cluster ratios.

Statistical Analysis
To determine if there were significant differences for the
dependent variables measured, the model simulation was
performed with 100 iterations. After the iterations, a two-way
repeated measures analysis of variance (ANOVA) with factors
CLUSTERRATIO (five levels: all, 1:1, 1:2, 1:4, 1:10) and
CLUSTERDURATION (21 levels: 5–100ms in 5ms increments).
If there was a significant interaction effect, the location of the
significant differences was determined with paired comparisons.
If the data did not meet the assumptions of the parametric
ANOVA, a Greenhouse-Geisser correction was implemented.

RESULTS

Frequency Domain Analysis
To address part of the first hypothesis that EMG frequency
domain changes as a result of clustering, we examined the power
spectrum from the different modeled EMG signals. To start, the
power spectrum was determined for the EMG-rand signal. The

FIGURE 3 | The power spectrum of the three modeled EMG signals. (A) The
top figure is the power spectrum of the EMG signal created from randomly
distributed MUAP. (B) The middle figure is the power spectrum of the EMG
signal created from the clustered MUAP (i.e., cluster-duration = 40 ms).
(C) The bottom figure is the power spectrum of an EMG signal created from
50% clustered MUAP and 50% randomly distributed MUAP.

nPSD of this EMG-rand signal shows a bell shaped distribution
(Figure 3A). The power spectrum of the EMG-clust signal was
quite distinct compared to the EMG-rand signal. Figure 3B
shows the power spectrum of the EMG-clust signal when the
cluster duration was 40 ms and the signal was comprised of
50% clustered MUAP (i.e., 1:1). The results indicate that MUAP
clustering causes: (1) an additional relative power added to
the nPSD at frequencies below 25 Hz; and (2) structure to
the power spectrum such that there are peaks or oscillations
added in comparison to the relatively smooth bell-shape of the
EMG-rand nPSD.

The nPSD of the EMG-clust showed distinct differences in the
shape of the EMG-rand nPSD. Specifically, clustering leads to a
bimodal or even multimodal nPSD distribution (Figure 3B). The
first main peak, in relation to the lowest frequency bin, of the
nPSD of the EMG-clust signal (i.e., Figure 3B) shifted to lower
frequencies compared to the main peak nPSD of the EMG-rand
signal (i.e., Figure 3A). One also has to notice that spectral power
is observed down to very low frequencies, frequencies <20 Hz.
Therefore, the clustered MUAPs are able to create very prevalent
changes in the EMG power spectrum distribution in relation to
an EMG-rand signal.
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Figure 4 shows how a systematic increase of the cluster-
duration from 5 ms to 100 ms, while keeping the start-loc and
add-imp constant at 500 and 25 (arbitrary units), respectively,
reveals how the cluster-duration gradually shifts the peaks in the
power spectrum to different frequencies and changes the shape
of said power spectrum (Figure 4). These power spectrums were
produced with the EMG signal created from ‘‘ALL’’ clustered
MUAP. If the cluster-duration is very small, the clustered
MUAP would likely be nearly superimposed, and therefore the
MUs would appear to get activated by a common input. The
corresponding EMG-mixed nPSD of a small cluster-duration
window (Figure 4 second line, cluster-duration = 5 ms) has a
similar shape of the EMG-rand nPSD (compare Figures 4, 3A)
because the small window size would not cause a long burst in the
EMG signal. As a result, a very small window size for clustering
is very similar to the impulses occurring in the EMG random
signal. On the other extreme, the shape of the nPSD comprised of
a very large cluster-duration (i.e., 100 ms, Figure 4, bottom line)
also corresponds to the power spectrum of randomly distributed
MUAPs. The effects of cluster-duration are more prevalent with
durations ranging from 5 ms to 40 ms. As the cluster-duration
increases (i.e., Figure 4 descending from top to bottom power
spectrum), two peaks emerge in the power spectrum. One peak in
the nPSD shifts to a lower frequency and gradually a second peak
emerges at relatively higher frequency of ∼100 Hz (Figure 4, 4th
line). Ultimately, as the cluster duration continues to increase
these peaks begin to disappear.

The bimodal distribution of the EMG-clust nPSD likely causes
a substantial shift in the mean and median frequency of the
spectrum (Figure 5, details explained below). Therefore, the
mean and median frequency was calculated for the nPSD of
the each modeled EMG-clust signal with the cluster-duration
ranging from 5 ms to 100 ms. This figure also contains the
metrics of the power spectrum contained in Figures 2, 3. The
cluster-duration, therefore, has a mixed effect on the mean
frequency. With a very small cluster-durations (i.e., 5 ms) there
is minimal to no change in the mean frequencies in comparison
to the mean frequency of the EMG-rand nPSD (fmean = 80 Hz;
Figure 5). As the cluster duration increases, there is a decrease
in the mean frequency of the power spectrum with a minimum
at a cluster duration of 10 ms (i.e., fmean = 53.62 Hz). From
this trough, as the cluster duration increases, there is a gradual,
relative increase in the mean frequency. This increase continues
until the mean frequency matches that of an EMG-rand nPSD
at a cluster duration of 65 ms. Thus, a power spectrum with
clustered MUAP, compared to randomly distributed MUAP,
causes the mean frequency to decrease. It could be argued
that the changes in the EMG model may only affect the one
power spectrum metric used in previous studies such as mean
frequency, but our results indicated that the same change occurs
in the median frequency.

These effects of MUAP clustering were very prominent as the
EMG-clust only contained MUAP arriving temporally close to
one another (i.e., ALL). To answer part of the second hypothesis,
we modulated the ratio of clustered to randomly distributed
MUAP. The nPSD of the different cluster ratios making up the
EMG-mixed signal still reveals how MUAP clustering influences

FIGURE 4 | The power spectrums of an EMG signal created from clustered
MUAP with varying cluster-duration. The top line is the power spectrum
created from an EMG random signal. Each consecutive descending line
contains the power spectrum from an EMG clustered signal starting at a 5 ms
cluster duration and increasing the cluster-duration by 5 ms with each line.

its structure (Figure 3C) with effects that are not as prominent.
This varying ratio might also result in a damping of the
magnitude of the nPSD peaks (Figure 4) and impact the metrics
of the power spectrum. Thus, there could be two parameters that
can alter the mean frequency of the power spectrum, the cluster
duration, as presented above, and the cluster ratio (i.e., 1:1, 1:2,
1:4, or 1:10). The variation of the ratio of clustered to random
MUAP showed different effects on the mean frequency such
that it reduced the absolute decrease in mean frequency and this
effect was more pronounced with a smaller number of clustered
MUAP compared to randomly distributed MUAP. For example,
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FIGURE 5 | Mean frequency as a function of cluster-duration window size for
a representative iteration. The diamonds represents an EMG signal with all
clustered MUAP. The circles represent the mean frequency of an EMG signal
with a 1:1 ratio of clustered to randomly distributed MUAP. The asterisks
represent the mean frequency of an EMG signal with a 1:2 ratio of clustered to
randomly distributed MUAP. The triangles represent the mean frequency of an
EMG signal with a 1:4 ratio of clustered to randomly distributed MUAP. The
squares represent the mean frequency of an EMG signal with a 1:10 ratio of
clustered to randomly distributed MUAP.

the decrease in mean frequency was larger for the 1:1 ratio
compared to the 1:10 ratio. Even though the magnitude of the
mean frequency decrease was reduced with varying ratios, it
did not dramatically change the cluster-window duration, where
the lowest mean frequency occurred (i.e., Figure 5, cluster-
duration = 10 ms).

The statistical analysis of the mean EMG power as a
function of cluster ratio and cluster duration revealed that
there was a significant interaction effect (F(41.7,4131.6) = 4199.5,
p < 0.001). From the significant interaction effect, the important
comparisons are the differences in mean frequency between the
EMG signals created from different cluster ratios for a given
cluster duration (e.g., comparison across five signals with a
cluster duration of 10 ms) as well as the comparison of the mean
frequency of the EMG-rand signal in comparison to an EMG
signal containing clustered MUAP (e.g., 1:1 cluster ratio) for a
given cluster duration (e.g., 10 ms). For the comparisons across
the different cluster ratios, every comparison was significantly
different (p < 0.05), except for the following comparisons: 1:2 vs.
1:4 cluster duration = 85ms, 1:4 vs. 1:10 cluster duration = 90ms.
For the comparisons of the EMG-rand to the clustered EMG
signal, the mean frequency was significantly different for each
clustered EMG signal in comparison to the EMG-rand signal
when the cluster duration was 5–40 ms.

Time-Frequency Domain Analysis
To answer the other part of the first and second hypothesis
that clustering with varying ratios changes the EMG amplitude,
we measured the amplitude of the modeled EMG signals. The
time-frequency analysis revealed similar patterns to the mean
frequency. Figure 6 shows the mean EMG power from the

FIGURE 6 | Mean power of each modeled EMG signal from the
time-frequency analysis as a function of cluster-duration window size for a
representative iteration. The diamond represents an EMG signal with all
clustered MUAP. The circles represent the mean power of an EMG signal with
a 1:1 ratio of clustered to randomly distributed MUAP. The asterisks
represents the mean power of an EMG signal with a 1:2 ratio of clustered to
randomly distributed MUAP. The triangles represent the mean power of an
EMG signal with a 1:4 ratio of clustered to randomly distributed MUAP. The
squares represent the mean power of an EMG signal with a 1:10 ratio of
clustered to randomly distributed MUAP.

wavelet analysis for the different cluster durations for each
cluster ratio. The analysis revealed that when the cluster duration
was between 5 ms and 25 ms there was an increase in mean
EMG power with the EMG created from the clustered MUAP.
The analysis revealed that the increase in EMG power was the
greatest when there was a large proportion of clustered MUAP to
randomly distributed MUAP (i.e., ratio 1:1), while this effect was
less pronouncedwhen there was a smaller proportion of clustered
MUAP to randomly distributed MUAP (i.e., ratio of 1:10).

The statistical analysis of the mean EMG power as a
function of cluster ratio and cluster duration revealed that
there was a significant interaction effect (F(35.8,3541.3) = 6914.8,
p < 0.001). From the significant interaction effect, the important
comparisons are the differences in mean EMG power between
the EMG signal created from different cluster ratios for a given
cluster duration (e.g., comparison across five signals with a
cluster duration of 10 ms) as well as the comparison of the mean
EMG power of the EMG-rand signal in comparison to an EMG
signal containing clustered MUAP (e.g., 1:1 cluster ratio) for a
given cluster duration (e.g., 10 ms). For the comparisons across
the different cluster ratios, every comparison was significantly
different (p < 0.001). For the comparisons of the EMG-rand to
the clustered EMG signal, themean EMGpower was significantly
different for each clustered EMG signal in comparison to the
EMG-rand signal (p < 0.001).
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It could also be that the duration of the MUAP could also
influence the results of our model. We tested this hypothesis by
changing the duration of the MUAP up to 4× the duration of
the MUAP in Figure 1. The results of this change in MUAP
duration were very similar to the results presented above. For
example, the power spectra shapes were very similar and in terms
of percentage change, the mean frequency results were similar.

DISCUSSION

The present study examined the effect of MUAP clustering on
features of an EMG power spectrum. A model was designed that
systematically changed the sequence of MU firing. Specifically,
the time window size that MUs were constrained to fire
(i.e., cluster-duration) and the ratio of ‘‘clustered’’ MUAP
to randomly distributed MUAP was altered. The results of
the model indicated that changing these parameters caused
substantial changes in the resulting EMG signal. MUAP
clustering created a remarkable shift of the power spectrum’s
mean frequency and altered the structure and shape of the power
spectrum. Further, clustering of MUAP caused a substantial
increase in the mean amplitude of the EMG power as a result
of a time-frequency analysis. We believe that the modeled
sequence of muscle activation during a simulated motor task has
implications for the activation of muscles and the corresponding
changes in EMG observed during fatiguing and clinical (e.g.,
tremor) conditions. In summary, our theoretical model shows
that MUAP clustering greatly impacts an EMG and matches
experimental work; we suggest that this phenomenon must be
considered for future interpretation of EMG research.

Mean Frequency
In support of hypothesis 1, our model indicated that MUAP
clustering modified metrics of the power spectrum. Precisely,
the mean frequency of an EMG created from ‘‘clustered’’ MUAP
shifted to lower frequencies in relation to a model EMG from
randomly distributedMUAP. Themodel indicated that when the
cluster-duration was set to 10 ms and the EMG was comprised
of only clustered MUAP, there was the largest downward shift
in the mean frequency of the EMG from ∼82 Hz to ∼53 Hz
(Figure 5; bottom line, diamonds). A downward shift in the
EMG power spectrum has been seen experimentally elsewhere
in the literature during an isometric vs. dynamic contraction
(Merlo et al., 2005), eccentric contractions (Linnamo et al., 2002),
submaximal vs. maximal effort contractions in certain muscles
(Pincivero et al., 2002), fatiguing dynamic contractions (Komi
and Tesch, 1979; Smale et al., 2016), and purely isometric
fatiguing contractions (Bigland-Ritchie et al., 1981; Mills, 1982;
Kuorinka, 1988; Krogh-Lund and Jørgensen, 1991). Further,
the magnitude of the downward shift of the mean frequency
was dependent on the size of the cluster duration window
and the ratio of clustered to randomly distributed MUAP.
When the cluster duration window increases, the mean and
median frequency also shifts to lower values. This downward
shift, however, is non-linear such that the magnitude of the
downward shift for larger cluster durations (15–40 ms) is less

than the downward shift observed with the 10ms cluster duration
window.

In support of hypothesis 2, the effects of altering the cluster
ratio were similar such that less ‘‘clustered’’ MUAP resulted in
a less substantial downward shift in the metrics of the power
spectrum. The lowering value of the mean frequency of the
power spectrum are typically attributed to a widening of the
MUAP due to slowing of the conduction velocity (Eberstein
and Beattie, 1985; Arendt-Nielsen et al., 1989). Dimitrova and
Dimitrov (2003) developed an extensive model to explain the
effects of fatigue on an EMG and indicated that MUAP width
contributes to the lowering in mean and median frequency
seen in fatigue, but that MUAP width does not fully explain
this reduction. Previous modeling work studied the effects of
short-term synchronization on EMG spectra and indicated that
synchronization also contributes to this reduction in mean
frequency (Yao et al., 2000). We suggest that, in addition to
MUAP width and MU synchronization, MUAP clustering also
contributes to the change in these metric of the power spectrum
during fatiguing contraction and that only a small degree of
clustering is required to change EMG spectra.

EMG Amplitude
The results of the time-frequency analysis (i.e., wavelet
transformation) indicated that there was an increase in EMG
amplitude characteristics when the clustering windows were in
the shorter range (i.e., 5–25 ms) in support of hypothesis 1.
Compared to the longer clustering window sizes, this shorter
time window resulted in a 100% increase the mean amplitude
of the EMG signal. Further, and in support of hypothesis 2,
all cluster ratios caused an increase in EMG amplitude. This
change in the EMG signal has been observed frequently during
muscle fatigue and dynamic tasks. During sustained isometric
contractions, there is anywhere between a 50% and 100%
increase in EMG amplitude from a baseline recording when a
person holds an isometric contraction to volitional exhaustion
(Petrofsky et al., 1982; Fuglevand et al., 1993b; Dideriksen
et al., 2010). We suggest that given our model results that
this increase in EMG amplitude could be attributed to MUAP
clustering. This finding is similar to the modeling results of Yao
et al. (2000) that showed that short-term synchronization (MU
within a 5 ms window) increases EMG power similarly with a
moderate and high level of synchrony. We extend these model
findings and indicate that MU clustering with window sizes up
to 25 ms also creates increases in EMG power. Further, during
dynamic tasks such as running, it is frequently observed that the
EMG signal from muscles such as the gastrocnemius are higher
during running vs. isometric maximal voluntary contractions
(MVCs; Lucas-Cuevas et al., 2016). Given that during running
the muscle is constrained to fire in a short time period, the
motor units are likely clustered. We speculate that the increased
EMG activity above an MVC value during running is due to this
clustering of motor units. In sum, motor unit action potential
clustering creates an increase in the amplitude of the EMG
signal and this increase has been observed experimentally during
fatiguing and dynamic tasks and matches previously modeled
EMG signals.
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Power Spectrum Shape
MUAP clustering modulated the shape and structure of the
power spectrum. In Figure 3C, a power spectrum computed
from randomly distributed MUAPs has a relatively normal
distribution with only one peak. This shape of the power
spectrum is similar to the power spectrum recorded from a
surface EMG signal experimentally (e.g., Bigland-Ritchie et al.,
1981; Hägg, 1992). By modifying the cluster-duration size, this
shape of the power spectrum drastically changes. A very short
cluster-duration window size (i.e., 10 ms) creates a downward
shift in the peak of the power spectrum to lower frequencies
and creates a positively skewed distribution (Figure 4, third
line from the top). This change in the power spectrum shape
from our model mimics the changes in the shape of the power
spectrum observed frequently in the literature during fatiguing
conditions (Bigland-Ritchie et al., 1981; Mills, 1982; Kuorinka,
1988; Krogh-Lund and Jørgensen, 1991). Having a larger cluster-
duration size (i.e., 15–40 ms), however, changes the shape
of the power spectrum differently. A larger cluster-duration
produces a power spectrum with a bimodal (Figure 4, 5th
line from top) or even a multimodal distribution (Figure 4,
lines 6–9 from top) with a peak occurring around 40 Hz.
This type of power spectral shape change has been reported
less frequently, although it has been observed in the literature
during fatiguing contractions and clinical conditions such as
a tremor (van Boxtel and Schomaker, 1984; Rossi et al.,
1996; Chen et al., 1997; von Tscharner et al., 2011, 2014). In
general, these changes in the EMG power spectrum appear
to be focused mainly on the low frequency component and
it is likely that our modeled activation pattern of the muscle
drive these changes as suggested elsewhere (Pan et al., 1989).
Overall, it seems apparent that changing the cluster-duration
creates two distinct changes in the shape and structure of
the power spectrum and these distinct shapes are observed
experimentally.

Functional Relevance
Piper (1912) indicated that there are bursts of activity in the
EMG during sustained contractions and that these bursts may
indicate a control signal from the central nervous system.
These bursts of activity are typically in the order of 20–60 Hz
(Piper, 1912; Fex and Krakau, 1958; Brown et al., 1998). From
our model, constraining the MUAP to arrive together within
10 ms caused the mean frequency to shift from ∼50 Hz to
∼80 Hz. This lowered value of the mean frequency is observed
during isometric fatiguing contraction could also be due to
the clustered activation of the muscle at lower frequencies
(i.e., 20–60 Hz), where MUAP preferentially arrive at the
maxima of the signal. In support of this statement, it has been
shown recently that during fatiguing isometric contractions,
the coherence of motor units increases in the delta (1–4 Hz),
alpha (8–12 Hz), but also the beta band (15–30 Hz). It could
be that this coherence increase could be driven by more
synchronous activity of motor units and thus, a result of MUAP
clustering. This activation pattern of clustering may also be
evident in maximal effort isometric tasks. Merlo et al. (2005) had
individuals performmaximal and ramped isometric contractions

while squatting and indicated that the mean frequency changed
to a lower frequency (i.e., 55 Hz) during the maximal effort
task. This change in the mean frequency matched the results
from our MUAP clustering model. We suggest that during
the maximal effort squat, participants clustered MUAP during
this brief period to produce the large force requirements of
the task. This clustering of MU would support the idea that
synchronization, or clustering, is an aspect of muscle control
that can be trained to produce more force. Previous work
(Semmler et al., 2004; Fling et al., 2009) has shown that the level
of synchronization is increased in strength trained individuals.
It could be that clustering of MU is a method to increase
force depending on the task requirement. In sum, our model
suggests that MUAP clustering has functional relevance for both
maximal effort and fatiguing isometric contractions and we
can conclude that this model is similar to what is observed in
reality.

It has been suggested that this clustered activation pattern
emerges not only in sustained muscle contractions, but also
during dynamic tasks. For example, during running, the stance
phase is very short (i.e., 200–400ms depending on the speed) and
the muscle is only required to be active for this short period of
time. Theoretically for this dynamic task, MUAP are constrained
to fire together for a precise period or simply ‘‘cluster’’ together.
In Maurer et al. (2013), participants ran at different speeds and
the results indicated that a rhythm emerged in the EMG of a
muscle controlling the lower limb. We suggest that these bursts
in muscle activity during the running task were due to MUAP
clustering that was controlled by the CNS during this task. It
has previously been suggested that during dynamic and isometric
tasks a muscle rhythm may reflect a control single originating in
motor cortex (Hagbarth et al., 1983; Salenius et al., 1997; Brown
et al., 1998; Mima et al., 2001; Funk and Epstein, 2004). To
further support this suggestion, Clark et al. (2013) also revealed
synchronous activation of the triceps surae muscle group in the
Piper band width (20–60 Hz) that was dependent on the tasks
with varying corticospinal tract involvement (Clark et al., 2013).
Further, we have found similar results of a rhythmic activation
of a muscle using non-linearly scaled wavelets (von Tscharner
et al., 2003). We suggest that the bursts of muscle activity that
appear in the EMG signal are due to clustering of motor units and
future research should determine how the control signal from
the CNS is generated to produce this rhythmic activation of the
muscle.

Synchronization, Firing Rate and
Clustering
Previous research has examined how the firing rate of the
motor units influences power spectrum (Farina et al., 2004a).
Our clustering model is not simply based on the firing rate
of motor units, but instead is structured such that motor
units are constrained to fire within certain cluster window
sizes (i.e., 5–100 ms) and is much different from the results
presented by Farina et al. (2004a), the model created by Yao
et al. (2000) and long-term synchronization (De Luca et al.,
1993). Short-term synchronization seems to play an important
role in the resulting EMG signal. Our results add to the
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literature, as we have shown that motor units that are constrained
fire within discrete windows largely influence the EMG signal
and that this clustered activation of motor units may be an
important aspect of producing the required force output for
a given task. We believe our evidence shows a link between
the simulation results and a physiological interpretation. For
instance, for humans to produce large amounts of force or hold
a contraction until volitional exhaustion, based on Sherrington’s
final common path, the only way to increase force it to increase
the recruitment of motor units and increase the firing rate of
motor units. These two increases could lead to motor units
to become ‘‘clustered’’ by chance of more motor units being
active. We speculate that this type of clustered activation is
not by chance, but may be driven by a special strategy of
the neural system during high force production tasks or to
cope with motor unit fatigue. For example, clustering may be
necessary to cope with changing force loads in a task or a
way to produce larger, intermittent burst of force in the event
of muscle fatigue. Further experimental data combined with
models of motor unit fatigue (Potvin and Fuglevand, 2017)
may help determine the possibility of this pattern of activation
during a fatiguing task. We believe that this model provides
novel insight into changes caused by altering clustering of the
potential firing patterns during muscle fatigue, dynamic tasks
and maximal isometric efforts–an effect that to date has largely
been overlooked.

Limitations and Future Directions
We understand that the model presented in this article is
a simplified and we have only presented a model and how
this model relates to experimental work. For the model, we
intentionally did not include more complexity because we
wanted to produce a model with the minimal amount of features
to explain the phenomenon of MUAP clustering. In the model,
we also kept the number of active motor units constant and
a random distribution of MUAP, and did not include motor
unit recruitment patterns because once again, we wanted to
isolate the effects ofMUAP clustering. Further work should build
on the model and include specific (e.g., periodic) recruitment
patterns, firing rate, volume conductor effects, and number
of motor units found in different muscles to determine how
MUAP clustering may be muscle specific. Although the model

is simplified, we believe that it is important to use a model such
as the one presented here to understand, analyze, and interpret
EMG signals, particularly during dynamic tasks.

CONCLUSION

We presented a modified classical model of an EMG using
a ‘‘clustered’’ MU firing sequence. MUAP clustering creates
substantial changes in the shape and structure of the power
spectrum. In dynamic tasks, where there are short intervals of
muscle activity, MUAP clustering, theoretically, is likely the most
logical method of neuromuscular control. The results of our
model indicate that in the interpretation of power spectra during
dynamic tasks, the possible modifications of the power spectra
due to clustering should be considered. The general measure for
fatigue is the lowering of the mean/median frequency and we
suggest that the lowering of the mean/median can also be driven
by MUAP clustering. Interestingly, the lowering of these metrics,
because of clustering, could be a measure of the activation
patterns of muscles and therefore, this effect must clearly be
separated from peripheral effects in future research. Our model
indicates that the rhythmic activation of a muscle is due to
clustering of motor units and this clustering dramatically alters
EMG spectra and amplitude similar to what is seen in fatiguing
and clinical conditions.
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