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The integrated information theory (IIT) proposes a quantitative measure, denoted as

8, of the amount of integrated information in a physical system, which is postulated

to have an identity relationship with consciousness. IIT predicts that the value of 8

estimated from brain activities represents the level of consciousness across phylogeny

and functional states. Practical limitations, such as the explosive computational demands

required to estimate 8 for real systems, have hindered its application to the brain and

raised questions about the utility of IIT in general. To achieve practical relevance for

studying the human brain, it will be beneficial to establish the reliable estimation of

8 from multichannel electroencephalogram (EEG) and define the relationship of 8 to

EEG properties conventionally used to define states of consciousness. In this study,

we introduce a practical method to estimate 8 from high-density (128-channel) EEG

and determine the contribution of each channel to 8. We examine the correlation of

power, frequency, functional connectivity, and modularity of EEG with regional 8 in

various states of consciousness as modulated by diverse anesthetics. We find that

our approximation of 8 alone is insufficient to discriminate certain states of anesthesia.

However, a multi-dimensional parameter space extended by four parameters related to8

and EEG connectivity is able to differentiate all states of consciousness. The association

of 8 with EEG connectivity during clinically defined anesthetic states represents a new

practical approach to the application of IIT, which may be used to characterize various

physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of

consciousness in the human brain.

Keywords: integrated information theory, 8, functional connectivity, electroencephalography, consciousness,

anesthesia, human

INTRODUCTION

Integrated information theory (IIT) postulates that consciousness is identical to
integrated information and that a system’s capacity for consciousness can be expressed
by a quantitative measure referred to as 8 (Tononi, 2004; Oizumi et al., 2014,
2016a,b; Tononi et al., 2016). Specifically, it has been postulated that the loss
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and recovery of consciousness are associated with, respectively,
the breakdown and restoration of integrated information in
the brain (Alkire et al., 2008; Lee et al., 2009; Tononi, 2010;
Tononi and Koch, 2015). This prediction should hold true for
physiological (slow-wave sleep), pharmacological (anesthesia),
and pathological (coma) states of unconsciousness. Thus, far,
only surrogates of integrated information have been amenable
to quantitative analysis due to the explosive computational
demand associated with calculating 8 for real systems of interest
including the brain. For instance, to calculate 8 from a 128-
channel electroencephalogram (EEG), we would need to find the
bipartition of 128-channels that has the maximally irreducible
integrated information among all possible bipartitions, that is,
∑64

k=1 C
(

128, k
)

∼= 1.8∗1038 bipartitions of the EEG channels
(the binomial coefficientC (128, k) denotes the number of choices
of k EEG channels from 128 channels). Several attempts have
beenmade to overcome the computational limitations (Tegmark,
2016; Krohn and Ostwald, 2017; Toker and Sommer, 2017).
However, they have not provided sufficient evidence for IIT
because they did not compare the actual change of 8 during
different levels of human consciousness.

In this study, we introduce a novel method to estimate the
relative change of 8 and test its ability to predict levels of
consciousness as modulated by various anesthetic agents (see
Figure 1 for schematic diagram of experiment and analysis; see
Table 1 for terminology). Considering both the computational
limitation of 8 for a whole system and the fact that EEG reflects
superficial brain activity, the method was devised to investigate
the relative change of the mean integrated information across
states and its relationship with conventional EEG properties,
rather than calculating the precise 8 of a system. The mean
integrated information (denoted as 8) was estimated from many
small sets of EEG channels randomly and globally sampled
from high-density EEG. This method allowed us to determine
the contribution of each EEG channel to the estimated 8 and
derive a topographic structure of regional 8. We compared the
effects of three different anesthetics (ketamine, propofol, and
isoflurane) with distinct pharmacological and neurophysiological
profiles in five states (conscious, sedated, non-responsive, non-
responsive with burst suppression, and recovery) on the global
8, topographic structure of regional 8, and conventional EEG
band powers that are frequently used empirically to index the
level of consciousness. We also examined the relationship of 8

to EEG network properties such as the strength and topology of
functional connectivity. Finally, the five states of consciousness
were represented as shapes in a multi-dimensional parameter
space that consisted of four parameters related to 8 and EEG
connectivity. We found that, in contrast to the component
variables, only the multi-dimensional parameter space was able
to properly differentiate all anesthetic states.

METHODS

Ethics Statement
This study was conducted at the University of Michigan
Medical School and approved by the Institutional Board Review

(HUM00061087 and HUM0071578); written informed consent
was obtained from all participants.

Experimental Procedures
In this study we conducted secondary analyses of high-density
EEG data gathered in healthy volunteers during two independent
studies; detailed methodology can be found in Vlisides et al.
(Vlisides et al., 2017) and Blain-Moraes et al. (Blain-Moraes
et al., 2017; Maier et al., 2017). After the approval of the
Institutional Review Board and written informed consent, 19
human subjects were studied on two separate experiments with
128-channel EEG. In 10 subjects, four states were investigated:
(1) baseline consciousness, (2) subanesthetic dose (sedated state),
0.5 mg/kg ketamine administered over 40min, (3) general
anesthesia (non-responsive state), defined as loss of response
to the verbal command “squeeze your left [or right] hand
twice,” after a single bolus dose of 1.5 mg/kg ketamine, and (4)
recovery, defined as return of responsiveness. In nine additional
subjects, the following four states were investigated: (1) baseline
consciousness, (2) general anesthesia (non-responsive state),
defined as loss of response to a verbal command after an
induction sequence of propofol (100mcg/kg/min for 5min,
followed by 200 mcg/kg/min for 5min, followed by 300
mcg/kg/min for 5min), (3) deep anesthesia (non-responsive state
with burst suppression), induced by 1.3 age-adjusted minimum
alveolar concentration of isoflurane, and (4) recovery, defined as
return of responsiveness.

EEGwas acquired with 128-channel HydroCel nets, Net Amps
400 amplifiers, and Net Station 4.5 software (Electrical Geodesics,
Inc., USA). The EEG was digitized continuously at 500Hz with
a vertex reference. Per manufacturer recommendations, channel
impedances were kept at <50 k�, and the net was wrapped
with gauze to optimize contact between the electrodes and
scalp. Baseline and recovery EEGs in the ketamine experiments
were recorded for 5min. EEG during exposure to subanesthetic
ketamine was recorded during an infusion of 0.5 mg/kg
administered over 40min. EEG during ketamine anesthesia was
recorded after an intravenous bolus of 1.5 mg/kg ketamine until
return of responsiveness. Baseline and recovery EEG in the
propofol-isoflurane experiments was recorded for 5min. The
propofol administration sequence was recorded for 15min. Deep
anesthetic state EEG with isoflurane was recorded for ∼180min.
After the recording, 32 channels on the lower part of the face
and head were removed, leaving 96 channels in place, to avoid
confounds in the analysis of occipital and prefrontal channels
due to contamination from contact with the bed and facial
movements. The average reference was used for referencing and
the windowed sinc-FIR filter was used to avoid a possible shifting
of the signal phases (in theMATLAB toolbox fromEEGLAB). For
EEG analysis, we chose a clean 2-min EEG epoch for each state
(baseline, sedated, anesthetized, and recovery), and segmented it
into 6-s long EEG epochs. Noisy epochs were excluded by visual
inspection based on power spectrum and EEG signal.

In this study, we differentiated deep anesthesia (non-
responsive with burst suppression) from general anesthesia
(non-responsive state). Burst suppression is a well-known EEG
characteristic observed in the deeply anesthetized state. The EEG
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FIGURE 1 | Schematic diagram of experiments and analysis. The high-density EEG data were recorded from two experiments. (A) Experiment 1 includes baseline,

subanesthetic doses of ketamine, ketamine anesthesia, and recovery. Experiment 2 includes baseline, induction of general anesthesia with propofol, deep anesthesia

(burst suppression) with isoflurane (1.3 age-adjusted minimum alveolar concentration [MAC]), and recovery. (B) Based on the power spectrum, 2min continuous

signals were selected in the middle of each state of consciousness. (C) The selected periods were divided into 20 epochs of 6 s and band pass filtered to delta, theta,

alpha, beta, and gamma frequency range. (D) After preprocessing, 600 sets of eight EEG channels were randomly selected to estimate the average 8 of each EEG

channel and contribution of each EEG channel on the average 8 (regional 8). (E) The degree and the number of modules of the functional connectivity network were

measured for each state. (F) The multi-dimensional parameter space was constructed with the degree of functional connectivity, the topographic similarity of node

degrees, average 8, and the topographic similarity of regional 8 estimated with random selections in (G).
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TABLE 1 | Glossary.

Terms Definition

Integrated information (8) Information that is specified by a system that is irreducible to the information specified by its parts. It is calculated as the distance

between the conceptual structures specified by the intact system and that specified by its minimum information partition.

Effective information (ϕ) The repertoire specified by a mechanism in a state informs the possible past and future states of a system. Effective information is

defined as the distance between effect repertoire and corresponding unconstrained probability distributions.

Markovian integrated

information (8DM )

Integrated information for discrete dynamic systems. Each partitioned state is measured with the reduced entropy by maximizing the

entropy of the past state.

Empirical integrated

information (8̃E )

Integrated information for a continuous time series derived from Markovian integrated information by using the assumption of a

Gaussian distribution of time series and differential entropy formula.

Auto-regressive integrated

information (8̃AR)

Integrated information for systems with a non-Gaussian distribution of time series by substituting the covariance of the time series of

the empirical integrated information to the prediction error of linear regression of time series.

Mismatched decoding

integrated information (8∗)

The 8∗ is calculated with the difference between actual mutual information under the actual probability distribution of the system and

the hypothetical mutual information under mismatched probability distribution where a system is partitioned into hypothetical

independent parts.

Relative changes of

integrated information (8)

Estimation of the mean integrated information of randomly and globally sampled small sets of EEG channels. This method was

introduced in the current study to investigate the relative change of the mean integrated information across states and its relationship

with conventional EEG properties, rather than calculating the precise 8 of a system.

Regional integrated

information (8R)

Evaluation of the contribution of a certain EEG channel to the 8 of the whole EEG channels. The contribution is evaluated with the

following assumption: if the sets of EEG channels that include a certain EEG channel have larger 8, the specific EEG channel

probably contributed to the 8 of the whole EEG with a larger weight.

pattern is characterized by periods of high voltage electrical
activities alternating with minimal activity. We used the burst
suppression ratio (BSR: the fraction of EEG in suppression per
epoch) of 0.3 to determine the burst suppression period (Vijn
and Sneyd, 1998). We chose 20 burst suppression epochs, each
of which was long enough for analysis (>10 s), from the subjects
who showed burst suppression (5 of 9 subjects during isoflurane).
Each burst suppression period was separated again into burst and
suppression periods. Considering the transient state and tomatch
the data length with the other states, we chose the first 6 s of both
periods for the analysis.

Spectrogram Analysis
For all selected periods within each subject, spectral power was
computed based on the short-time Fourier transform using the
“spectrogram.m” function in the MATLAB Signal Processing
Toolbox (time window: 3 s hamming window, overlap: 50%). The
relative power was then computed for each experimental period
at each of five frequency bands (delta: 0.1–4Hz, theta: 4–8Hz,
alpha: 8–13Hz, beta: 13–25Hz, gamma: 25–45Hz), for all 96
channels. The difference in relative power among the different
states was tested with linear mixed model analysis.

Calculation of 8

The integrated information theory defines integrated information
(8) as the effective information (ϕ) of the minimum information
partition (MIP) in a system (Tononi, 2004, 2012; Oizumi et al.,
2014, 2016a; Tononi et al., 2016). The MIP is also defined as
the partition having minimum effective information among all
possible partitions.

8[X; x] = :ϕ[X; x, MIP(x)] (1)

MIP (x) = : arg min{ϕ(X; x, P)} (2)

where X is the system, x is a state, and P is a partition P =
{

M1, . . . ,Mr
}

.
Identifying the MIP requires searching all possible partitions

and comparing their effective information ϕ. This is the most
time consuming process in the application to high density EEG.
Furthermore, considering the fact that the EEG recorded during
anesthetic state transitions are non-Gaussian and continuous
time series, it is important to choose a valid version of 8 (8DM ,
8̃E, 8̃AR, 8

∗). In Table 1, we summarized all versions of 8 we
considered in this study as well as the new approach described.

Markovian integrated information (8DM) is defined for a
discrete dynamic system (Balduzzi and Tononi, 2008). The
effective information (ϕDM) is measured with the reduced
entropy by maximizing the entropy of the past state; the lowest
value of effective information among the partitions is defined as
8DM .

ϕDM

[

X;
{

M1, . . . , Mr
}]

≡
∑r

k=1
H

(

Mk
0|M

k
1

)

−H(X0|X1)

(3)
where X is a discrete system, andM represents the subsets. Barrett
and Seth modified 8DM , and introduced empirical integrated
information (8̃E), which works for a continuous time series. ϕ̃

is the integrated information for a bi-partition;

ϕ̃
[

X; τ ,
{

M1,M2
}]

= :

∑2

k=1
H

(

Mk
t−τ |M

k
t

)

−H(Xt−τ |Xt),

(4)
where τ is the time delay between the past and present states, and
M1,2 are the bi-partitioned subsets. Tomake the calculation of (4)
easier, the entropy terms H are substituted with the covariance
term

∑

with the differential entropy formula (5). ϕ̃E is the
empirical integrated information for a bi-partition (Barrett and
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Seth, 2011), which works for Gaussian time series.

H (Xt−τ |Xt) =
1

2
log

[

det
∑

(Xt−τ |Xt)

]

+
1

2
nlog (2π2πe) (5)

ϕ̃E

[

X; τ ,
{

M1,M2
}]

= :

∑2

k=1

1

2
log

{

det
∑

(

Mk
t−τ |M

k
t

)

}

−
1

2
log

{

det
∑

(Xt−τ |Xt)

}

(6)

For the application to non-Gaussian time series, ϕ̃E is
reformulated with auto-regression of the time series, substituting
the covariance

∑

in Equation (6) with the prediction error of
linear regression. ϕ̃AR for a bi-partition is defined as following;

ϕ̃AR

[

X; τ ,
{

M1,M2
}]

= :

∑2

k=1

1

2
log

{

det
∑

(

EM
k
)

}

−
1

2
log

{

det
∑

(EX)

}

, (7)

where τ is the time delay between the past and present states,
and M1,2 are the bi-partitioned subsets. E is the prediction error

of linear regression, Xt = α + A·Xt−τ +Et . det
∑

(

EM
k
)

is the

determinant of the covariance
(
∑

)

of predictions errors (EM
k
).

The ϕ̃AR of MIP for a given system is defined as 8̃AR, and,
notably, 8̃AR can be applied to a non-Gaussian and continuous
time series. Thus, in this study, we used 8̃AR developed by
(Barrett and Seth, 2011), which is applicable to both Gaussian
or non-Gaussian EEG data recorded under various states of
consciousness. However, 8̃AR does not solve the problem of
computation time. In the next section, we describe a method
to estimate the relative change of 8̃AR across states based on
high-density EEG. From here, we denote 8̃AR of EEG as 8 for
convenience.

Estimation of the Relative Change of 8

across Various States of Consciousness
Although many improvements have been made in the algorithms
of 8 over the last decade, the computation time is still unrealistic
because of the need to search an enormous number of partitions
to identify the MIP.

Here we suggest a method to circumvent the fundamental
problem by considering the average features of many small
sample units rather than trying to identify the MIP and its
effective information for all EEG channels. A sample unit consists
of a small number of EEG channels randomly selected with
the total number of sample units large enough to represent the
behavior of the entire high-density EEG montage. In this study,
we directed our interest only to the relative changes of 8 values
across states (baseline, sedation, anesthesia, burst, suppression,
and recovery), rather than to the exact 8 value of the brain for
each state, which is impossible with the superficial and spatially
imprecise brain activity recorded by EEG.

For each sample unit, we were able to calculate the MIP
and its effective information ϕ, that is, the 8 of the sample

unit. For instance, in this study, we selected 8 random EEG
channels for a sample unit, and acquired 600 sample units that
were randomly selected from the baseline states. The same 600
sample units determined in the baseline were then compared
across states to investigate the increase or decrease of 8 values.
Since the number of possible bipartitions of 8 channels is
∑4

k=1 C
(

8, k
)

= 162, where C stands for the combination of
k unique elements chosen from 8 possible elements (Figure 1D),
the 8 calculations for various frequency bands and states of all
subjects in two anesthetic experiments are possible in a relatively
short computational time period.

The average 8 is defined as follows.

8 =
1

k

∑k

i=1
8i(n) −

1

k

∑k

i=1
median(8surr(i)(n)) (8)

where n is the number of EEG channels for a sample unit
and k is the number of sample units of the n EEG channels.
8i(n) measures the effective information of MIP for the n
EEG channels, by definition, the integrated information of the
sample unit. Here, we chose n = 8 and k = 600 for the given
data, and tests for validity are described in the next section.
8surr (n) is the spurious8i(n) estimated from randomly shuffled
20 EEG data sets. Subtracting the randomness, 8 reflects the
average integrated information of 600 sample units taken from
the high-density EEG data that surpasses the spurious integrated
information from the surrogate data.

Reliability Test for the Random EEG
Channel Selection
Since the random selection of EEG channels can produce variable
8, we need to determine the appropriate number of sample units
that reliably represent a given EEG data. Here, we measured the
coefficient of variance, the ratio of variance against the mean
value, for different numbers of sample units (McLachlan, 1978;
Faber and Korn, 1991). We fixed the number of EEG channels
as 8 for a sample unit and changed the total number of sample
units from 10 to 600. The calculation of 8 for a certain number
of sample units was repeated 300 times to evaluate the coefficient
of variance with the mean and variance.

8k =
{

8k,1,8k,2,8k,3, . . . , 8k,300

}

) (9)

Coefficient of Variance (8k) =
σ

(

8k

)

< 8k >
, (10)

where the total number of the sample k is changed from 10 to
600. The coefficient of variance is decreased with an increase in
the total number of sample units. For k = 600 the coefficient is
smaller than 0.01 (Supplementary Figure 1). This result indicates
that when we use the 600 sample units and 8 random EEG
channels for each sample unit to estimate 8, the variance of the
estimated 8 over 300 iterations is <1% of the mean. In other
words, the estimation of 8 with the total 600 sample units and
8 random EEG channels for a sample unit gives us a stable value
close to the mean, which can be deemed to represent reliably the
increase or decrease of8 for high-density EEG data across states.
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Estimation of Regional 8R
We also estimated the contribution of a single EEG channel i on
8 based on the assumption that if many sample units including
a specific channel i have larger 8 values, then the channel i
probably contributes to the8 with a larger weight than the other
channels. Here, the contribution of an EEG channel i to the 8,
denoted as 8R(i), should be differentiated from the estimation of
8 for 96 channel EEG. With the 8R(i) of each EEG channel, we
constructed the topography of 8R, which enabled us to examine
the degree to which a given region contributes to 8. To find
the appropriate number of sample units for a stable 8R(i), we
evaluated the coefficients of variance for different number of
sample units k with 8 EEG channels per a sample unit. With k =
30, the coefficient of variance becomes <0.05 (Supplementary
Figure 2). In this study, we determined the number of sample
units to estimate reliable 8 and 8R, that is, 600 sample units of 8
EEG channels for 8 and 30 sample units of 8 EEG channels for
8R(i). The number of EEG channels as 8 for a sample unit was
determined by considering the robustness and computational
time together for the given data.

Graph Theoretic Network Analysis
To reconstruct a network from EEG data, we used weighted
Phase Lag Index (wPLI), which is robust to the EEG volume
conduction problem (Stam et al., 2007; Vinck et al., 2011).
The wPLI is a measure of phase locking between two EEG
signals, which improves Phase Lag Index (PLI) with weights
of the imaginary part of cross-spectrum, reducing noise and
volume conduction effects. When the imaginary part of cross-
spectrogram is ℑ[X],

wPLI ≡
|E{ℑ {X}}|

E{|ℑ {X}|}
=

|E{|ℑ{X}| sgn (ℑ{X})}|

E{|ℑ {X}|}
, (11)

where the signed PLI is the numerator normalized by
denominator, the imaginary part of cross-spectrum.

To reduce spurious connectivity of EEG, 20 surrogate data
sets were generated with a random shuffling method, in which
a time point is randomly chosen in each EEG channel; the
EEG epochs are then shuffled before and after the time point.
The shuffled data has almost the same amplitude distribution
and power spectrum of the original EEG but disruptions of the
original connectivity between two EEG signals. The non-zero
wPLI from the shuffled data is regarded as spurious connectivity.
We expected that different EEG frequency bands and different
states would have different levels of spurious connectivity (Lee
et al., 2012). Thus, after subtracting the median wPLI of 20
surrogate data sets, if the remaining wPLI was larger than 0.35,
the connectivity of two EEG signals was set as 1, otherwise, it
was set as 0. The threshold (0.35) was chosen to avoid an isolated
node in the EEG network in the baseline states. The basic EEG
network properties were examined across states during the two
anesthetic experiments. The node degree of an EEG channel was
defined by the numbers of links in the network. The high degree
nodes in a network were deemed as hubs with the expectation
that they play a more important role for integrating information
(Boccaletti et al., 2006; van den Heuvel and Sporns, 2013). We

examined the degree distributions in the EEG networks across
states, and compared them with the regional contribution 8R,
with the expectation that the hubs integrate more information
in the brain network. We also investigated how anesthetics
functionally segregated the normal EEG networks, which results
in a deviation of the network from a presumed optimal balance
between functional segregation and integration in the conscious
state. Modularity measures the functional segregation of an EEG
network and is defined by the concentration of the number of
links within modules compared to that of a random network
(Newman, 2006).

Modularity (Q) =
1

4m

∑

ij

(

Aij −
kikj

2m

)

(

sisj + 1
)

=
1

4m

∑

ij

(

Aij −
kikj

2m

)

sisj (12)

where ki and kj are the node degrees, m is the total number of
links in the network, and si = 1 if node i belongs to group 1 and
si = −1 if it belongs to group 2 for a particular division of the
network into two groups.

Construction of Multi-dimensional
Parameter Space
The overall strengths of 8R and EEG connectivity were
normalized by themaximum andminimum values of the baseline
(0–1 in y-axis of Figure 5), and the topographic similarities of
8R and EEG connectivity of a state were normalized from −1
to 1 (x-axis of Figure 5). For the normalization, we used the
baseline state as the reference state assuming that the baseline has
the largest 8 and an optimal structure of EEG connectivity for
information transfer compared to the anesthetized and recovery
states. Thus, the maximum values (1 s) in the x- and y-axes
correspond to the baseline. The topographic similarity was
evaluated with the Pearson correlation coefficient between the
channel values of baseline and other states.

Statistical Analysis
Linear mixed-effects model analysis was used to evaluate the
significance of the results (Pinheiro and Bates, 2000; Baayen et al.,
2008). The standard form of a linear mixed-effects model is

Y = Xβ + Zu + ε (13)

where Y is the known vector of observation, β is an unknown
vector of fixed effects, u is the unknown vector of random
effects, ε is an unknown vector of random errors, and X
and Z are known design matrices relating the observations Y
to β and u, respectively. The analyzed properties (integrated
information, degree, number of modules, and relative power)
were set as observation vector Y, the states and epochs were set
as fixed effect, and the epochs with subject numbers were set as
random effects. The MATLAB function ‘fitlme.m’ was used to
test all states pair-wise. Data from experiment 1 (ketamine) and
experiment 2 (propofol-isoflurane) were calculated separately.
Performance of the statistical tests was assisted by Consulting for

Frontiers in Human Neuroscience | www.frontiersin.org 6 February 2018 | Volume 12 | Article 42

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kim et al. Estimating Phi from High-Density Electroencephalography

Statistics, Computing & Analytics Research (CSCAR, University
of Michigan).

RESULTS

Configurations of 8 over Five EEG
Frequency Bands for Various States of
Human Consciousness
To determine the significance of 8 derived from the EEG
as a correlate of consciousness, it is necessary to examine its
dependence on the spectral components, which are often used
to characterize specific states of consciousness. To this end,
we calculated the 8 from EEG data filtered to five frequency
bands (delta, theta, alpha, beta, and gamma) in various states
(baseline, sedated, non-responsive, non-responsive with burst
and suppression activities, and recovery state). After anesthesia,
ketamine increased the relative powers of delta, theta, and
gamma bands, and decreased the relative power of alpha and
beta bands. On the contrary, propofol and isoflurane increased
the beta power and decreased the gamma power. Figure 2

illustrates the effects of (1) ketamine, and (2) propofol followed
by isoflurane on individual 8 values in each frequency band.
The anesthetics do not simply reduce or enhance the 8 values
of all frequency bands after loss of consciousness, but rather
demonstrate complex configurations of 8s depending on the
frequency. Specifically, the 8 of delta, theta, and gamma
bands significantly increased, whereas 8 in the alpha band
decreased with both anesthetic regimens (significance levels in
Supplementary Table 1). During deep anesthesia, 8 during the
burst period was higher than baseline (green area in Figure 2B),
whereas 8 of the suppression period was near zero (brown area
in Figure 2B). The change of8 over the five frequency bands was
variable across states (red areas in Figures 2A,B), demonstrating
that surrogates of integrated information in specific frequency
bands can significantly increase even during general anesthesia.
The significant changes in 8, EEG power, average node degree,
and number of modular network structures between baseline
and anesthesia are compared in Table 2. Of the four parameters
examined, only 8 showed significant and consistent changes in
all frequency bands (significance levels in Supplementary Table
2). Furthermore, only 8 during the suppression period in deep
anesthesia had values approaching zero in all frequency bands,
irrespective of variable EEG powers and network connectivity.

Relationship between 8 and Functional
Brain Network Structure
To find a relationship between 8 and functional brain network
structure, we focused on the alpha band. Functional brain
network structure is critical to integrate spatially distributed
information and dense functional connections may facilitate
information integration. We observed that the alpha band had
a significantly larger average degree and long range connectivity
compared with other frequency bands (Figures 3A,B). Thus, we
assumed for the current analysis that the 8 and the network
modularity of the alpha band could best reflect the relationship

between integrated information and functional brain network
structure.

There was a strong negative correlation between 8 and the
number of modules (R = −0.87, p = 0.0045), which is shown
in Figure 3C. As expected, 8 was largest in baseline (blue and
red circles) and lowest in deep anesthesia (unfilled star). The
number of modules was lower during baseline consciousness
and higher during deep anesthesia. As we separated isoflurane
anesthesia into burst and suppression periods that extended over
21% and 79% of the time, the suppression period had the lowest
8 and the largest number of modules. Conversely, the burst
period had the largest 8 and the smallest number of modules. 8
decreased and the number of modules increased during ketamine
anesthesia as well. However, these variables failed to regain their
baseline level after recovery of consciousness in both anesthesia
protocols, potentially suggesting incomplete elimination of the
anesthetic drugs from the brain at the time of EEG measurement
(in Figures 3D,E). The relationship between 8 and the number
of modules was also tested with the other frequency bands
(Supplementary Figure 3). Interestingly, only specific frequency
bands (theta, alpha, and beta) showed significant correlations
between 8 and the number of modules (Spearman correlation
coefficients; R=−0.78,−0.87, and−0.78, p< 0.05, respectively).
Analysis of theta, alpha, and beta bands demonstrated a higher
number ofmodules in association with smaller8. In other words,
the assessment of integrated information of theta, alpha, and
beta bands is associated with global network properties, whereas
the integrated information of delta and gamma bands does not
appear to be influenced by functional integration and segregation
of the brain network.

Topographic Structures of 8R and EEG
Connectivity across States of Human
Consciousness
We estimated the contribution of a single EEG channel on 8,
which we term 8R, and compared this with the node degree of
functional connectivity network in each state. We hypothesized
that network nodes with a high density of functional connections,
i.e., network hubs, would make a higher contribution to the
whole system’s integrated information and that a disruption
of hub connectivity during anesthesia would be accompanied
by a decrease in integrated information, that is, a decrease
in 8. Figure 4 demonstrates that the topographic structures
of node degree and 8R of the alpha band were similar to
each other although the match was not exact. The spatial
patterns of node degree and 8R were also state-specific. In
the baseline condition, node degree and 8R were higher
in the posterior regions but this distribution diminished in
anesthesia. The topographic structures during recovery were
similar to (Ketamine, Figure 4A) or even below (Propofol-
Isoflurane, Figure 4B) those in subanesthetic sedation and did
not approximate the corresponding levels in the awake baseline.
Interestingly, during the burst periods of isoflurane anesthesia,
the 8R substantially increased in the frontal area (Figure 4B).
This suggests that the spatial information integration during
bursting may be qualitatively different from that in the conscious
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FIGURE 2 | Configurations of 8 over five frequency bands of EEG for various states of consciousness induced by (A) ketamine and (B) propofol followed by

isoflurane. Each axis represents a frequency band of EEG, and different colors represent different states. (A,B) show the results of two independent experiments, and

the outmost pentagon represents the 0.4 and 0.6 of 8, respectively. The square root of the area is equal to the sum of 8 for each state (significance levels in

Supplementary Table 1). The anesthetics in both experiments do not simply reduce or enhance the 8s of all frequency bands, but rather demonstrate complex

configurations of 8s depending on frequency. Only the suppression period has significant decreases of 8s for all frequency bands.

TABLE 2 | The changes of power, connectivity, modularity, and 8 of the conventional frequency bands of EEG after anesthesia with ketamine and propofol.

Ketamine Delta Theta Alpha Beta Gamma

Propofal (0.1–4Hz) (4–8Hz) (8–13Hz) (13–25Hz) (25–45Hz)

Relative power of spectrogram

Integrated information (8AR)

Average degree (weighted PLI network)

Number of modules (modular structure)

Increase in anesthetized state Decrease in anesthetized state

Note that, for power, arrows represent overall values and that significant regional differences could still be observed. The red and blue arrows denote the significant changes (significance

levels in Supplementary Table 2).

baseline, despite a similar 8 (Figure 3B). The topographies
of node degree and 8R for the other frequency bands (delta,
theta, beta, gamma, broad band) are presented in Supplementary
Figure 4.

Multi-dimensional Parameter Space based
on 8R and EEG Connectivity
The EEG connectivity and 8R complement each other and
represent different aspects of a brain state. By definition, the
EEG connectivity reflects statistical similarity between activities
across brain regions and the 8R is intended to reflect the amount
of integrated information, possibly through the functional
connectivity. The strengths and the topographic similarities
of EEG connectivity and 8R change significantly during the
anesthetized state. In Figure 5, the multi-dimensional parameter
space consists of the strength and the topographic similarity
of EEG connectivity and of 8R, differentiating the overlapped
states in terms of the strength (for instance, baseline and burst

state in deep anesthesia in Figure 5B). Figures 5A,B illustrate
the multi-dimensional parameter spaces of the alpha band for
the two experiments with ketamine and propofol-isoflurane. The
size and shape of the area represent the profile of the strength
and topological similarity of a state. The significance levels of
the comparisons between states at each axis are presented in
Supplementary Table 4. In the ketamine experiment (Figure 5A),
the topographic similarities of node degree and 8R decrease
significantly during anesthesia (p < 0.01). Sedation has a
significantly higher node degree and topographic similarity of
8R than the recovery state (p < 0.05), which means that along
certain dimensions the sedated state is closer to the baseline.
In the propofol-isoflurane experiment (Figure 5B), anesthesia
with propofol and suppression with isoflurane induces significant
decreases in all dimensions (p < 0.05) compared to the baseline.
The burst period with isoflurane had similar 8 and node degree
compared with the baseline. However, the topological similarity
of node degree and 8R demonstrate consistent and significant
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FIGURE 3 | 8 and the modularity of the EEG network. Comparison of average degrees for (A) all connected nodes in baseline state, and (B) long-distance

connections across six frequency bands (delta, theta, alpha, beta, gamma, and broad band). The alpha band shows significantly higher degrees for both cases (p <

0.01). The long-distance connections were defined as nodes that have distances longer than 9 cm in the actual physical distances (1.8–18 cm) between all EEG

electrodes. For the alpha band, (C) strong negative correlation between 8 and the number of modules of wPLI network was demonstrated, and (D,E) significant

changes of 8 and the number of modules in wPLI network across states in the two experiments. The 8 and the number of modules significantly change across

states. (significance levels in Supplementary Table 3). The other frequency bands were also tested (Supplementary Figure 3).

changes across all frequency bands during all anesthetic states
in both experiments (p < 0.01), whereas the node degree and
8 show state- and anesthetic-specific responses. The multi-
dimensional parameter space of the other frequency bands
(delta, theta, beta, gamma, and broad band) are presented in
Supplementary Figures 5, 6.

DISCUSSION

Summary of the Findings
According to IIT, the level of consciousness is related to
the system’s functional differentiation and overall integration,
mathematically expressed by 8. The physical quantity and
spatiotemporal grain necessary to measure 8 empirically is
unclear. To test if there was a relationship between 8 estimated
from EEG and various states of human consciousness, we
modulated the state of healthy human volunteers with different

anesthetics in two independent experiments. We introduced a
method to estimate the relative change of 8 across states of
consciousness referenced to the baseline, rather than calculating
the precise 8 of a state. The method is based on estimating
the mean integrated information 8 of many small sample
units of randomly selected EEG channels. In the analysis, we
found that 8 is not simply reduced along with the loss of
consciousness, defined as non-responsiveness during general
anesthesia. Different anesthetics gave rise to distinctive profiles
of spectral power and connectivity depending on the frequency.
The comparison between power, connectivity, and 8 before
and after general anesthesia demonstrated that increased or
decreased power and connectivity of EEGs tend to increase
or decrease 8, respectively, independent of frequency bands
(Table 2). Only the alpha band showed consistently decreased 8

in both anesthetic experiments and only the suppression period
in the deeply anesthetized state was associated with near zero
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FIGURE 4 | Topographic structures of 8R and EEG connectivity of the alpha band across states of consciousness in the two anesthetic experiments of (A) ketamine,

and (B) propofol followed by isoflurane. The first and second row in (A,B) present the topography structure of 8R and node degree of 96 EEG channels, respectively,

which is averaged over all subjects across states. The topographical structures and the overall strengths represent various states of consciousness. For example,

higher 8R and node degree of the posterior region in the baseline state is disrupted in the anesthetized state and restored partly with recovery of responsiveness. The

scales of 8R and node degree topographies are the same among the states in each experiment, but different between the two experiments. The topographies of

node degree and 8R for the other frequency bands are presented in Supplementary Figure 4.

8 in all frequency bands. The results suggest that the state
transition from baseline (larger 8) to the deeply anesthetized
state (near zero 8) is not monotonic in terms of increase or
decrease of integrated information, but variable across states
and frequency bands (in Figure 2). Moreover, the large 8s of
some frequency bands during general anesthesia do not match
our prediction based on IIT. The reason for the relatively

high 8s of some frequency bands during general anesthesia

and relatively low 8s during the recovery state is unclear.
There are inherent limitations to the data acquisition method,

network reconstruction method, and analytic method that could

potentially distort 8. It is also possible that the level of 8 may
not fully reflect the level of consciousness. The structure of
integrated information in addition to the level of 8 might be
of importance. This possibility motivated us to investigate the
topographic structure of 8R to represent the various states of
consciousness.

Relationship between Network Structure
and 8

The alpha band was associated with the highest node degree
and long-range functional connectivity (Figures 3A,B). We
hypothesized that the alpha band may play an important role for
integrating information in the brain network, thus, there may be
a relationship between 8 and alpha connectivity. The modular
structure of network connectivity was analyzed because of its
presumed relevance for information integration (Tononi, 2012;
Oizumi et al., 2014). We found a significant correlation between
the modular structure of functional networks and 8 consistent
with the idea that a high number of modules (greater modularity)
in a network is incompatible with global information integration.
Interestingly, we found that the correlation between 8 and the
number of modules is frequency specific: the theta, alpha, and
beta bands demonstrated significant (and negative) correlations,
whereas the delta and gamma bands did not (Supplementary
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FIGURE 5 | Multi-dimensional parameter space based on EEG connectivity and 8R in the alpha band. The various states induced by (A) ketamine and (B)

propofol-isoflurane are represented in multi-dimensional parameter spaces, which consist of the relative 8 and relative connectivity as well as the topographic

similarities of 8R and node degree. Variables are all normalized to the baseline. In the 4-dimensional parameter space, the scales are (−1 to 1) in the horizontal axes

for both topographic similarities and (0 to 1) in the vertical axes for 8 and connectivity. Ketamine and propofol-isoflurane produce different states of consciousness,

which are represented as characteristic regional shapes in the parameter space (significance levels in Supplementary Table 4).

Figure 3). The results imply that the integrated information in
theta, alpha, and beta bands is associated with the global network
property (modularity), whereas the (increased or decreased)
integrated information in delta and gamma bands is less affected
by the modularity in the functional brain network.

Burst vs. EEG Silence
When data from EEG burst and suppression periods were
analyzed separately, the 8 of the EEG bursts is similar to
or even larger than wakeful consciousness. This could suggest
a similar or higher level of consciousness during the burst
period in deep anesthesia. However, other evidence suggests
alternative interpretations. First, the topographical structures of
node degree and 8R are significantly different between burst
and wakefulness. For instance, 8R for the alpha band are
higher in the posterior part of the brain during wakefulness
and higher in the frontal 8R during bursts. This implies
that the integrated information during bursting is qualitatively
different from that in the conscious baseline, despite a similar 8.
Second, Mudrik et al. suggested that information integration can
occur without conscious awareness, as the integration scope is
limited to smaller integration windows or to simpler associations
(Mudrik et al., 2016). This raises the question of whether 8

specifically measures conscious integration or also unconscious
integration–a question that does not yet have a definitive answer.
Third, another potentially important difference is that during
wakeful consciousness both 8 and modularity are temporally
persistent whereas during burst suppression they are temporally
fragmented. In our data, the burst periods occupied about 20% of
deep anesthesia and each burst period lasted for a few seconds.
Bursts are hypersynchronous states featuring high integration
but low differentiation (Li et al., 2013). They facilitate spatial
integration (low modularity) but disrupt temporal integration. It

is likely that both temporal and spatial integration of distributed
information are necessary for the maintenance of wakeful
consciousness. Otherwise, conscious brain states may not recover
during the short bursts or, even if they do, overt responsiveness
may not emerge within the limited duration of the bursts
available for integration.

Obviously, the separation of burst and suppression periods
into independent states may not be clinically relevant. Without
such separation, the 8 during deep anesthesia had the lowest
8, which is consistent with the general prediction of IIT.
However, this is unsatisfactory based on theoretical grounds:
time-averaging over burst suppression conflates the segments
of high EEG activity and absent activity, with electrocortical
silence contributing zero to EEG power, connectivity, 8, etc.
This means that during burst suppression, the8, modularity and
other related variables are onlymeaningful if estimated separately
for active and inactive electrocortical states.

Multi-dimensional Representations of
Consciousness
The multi-dimensional parameter representation (Figure 5 and
Supplementary Figures 5, 6) revealed how ketamine and propofol
altered the strength and the topographic similarity of 8R and
connectivity in distinct ways (Bayne et al., 2016). Anesthetized
states with ketamine and propofol as well as deep anesthesia
with isoflurane were all accompanied by a disruption of
topographic similarity of connectivity and 8R. Notably, the
multi-dimensional parameter space clearly differentiated the
burst period from the baseline, with differences of topographic
connectivity and 8R compared with the baseline.

The recovery of responsiveness following anesthesia in the
absence of a full recovery of integrated information implies that
there may be a threshold of integration above which subjects
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regain purposeful responsiveness (Tononi, 2008; Tononi and
Koch, 2015; Barbosa, 2017). The differential values are consistent
with what is likely a richer phenomenology at baseline compared
to just after emergence from anesthesia. The multidimensional
representation of parameters including network connectivity and
8R of the brain promises to be a useful approach to further
differentiate the level and contents of consciousness at different
behaviorally defined states.

Limitations of Estimating 8 from EEG
In this study, Barrett and Seth’s algorithm, 8̃AR, (Barrett
and Seth, 2011) was used to estimate 8 from the high-
density EEG recording during various states of consciousness.
However, Barrett’s algorithm contains potential problems. If
EEG is contaminated with highly correlated noise, 8̃AR could
fail to satisfy the theoretical upper boundary of 8. In a
recent paper, Oizumi et al. pointed out the theoretical problem
of Barrett’s algorithms (Oizumi et al., 2016a), which do not
satisfy the theoretical upper and lower boundaries of 8, i.e.,
the amount of integrated information should not be negative
and never exceed the information generated by the whole
system. Our random EEG channel selection circumvents this
potential problem of 8̃AR by reducing the correlated noise,
mostly due to volume conduction, among spatially proximal
EEG channels. In addition, the 8 of surrogate data was
subtracted to reduce the spurious 8 due to the EEG frequency
profiles and various volume conduction effects of diverse
states during anesthesia. Moreover, considering the fundamental
limitation of scalp EEG for recording neuronal population
activity in different experimental conditions, we only interpreted
the relative changes of 8 across states referenced to the
baseline. Furthermore, the near-zero 8 of the suppression
period suggests a negligible effect of correlated noise in our
EEG data.

Oizumi et al. attempted to solve the theoretical problem of
calculating 8 from empirical time series with a new approach
called “mismatched decoding,” but the method is subject to
the limitation of a Gaussian assumption (Oizumi et al., 2016a).
In practice, the errors resulting from a Gaussian assumption
would be difficult to correct if the EEG signals of diverse states
of consciousness have non-Gaussian distributions. In order to
examine the effect of the Gaussian assumption, we calculated
8̃E, Barrett’s other 8 measure using a Gaussian assumption,
and 8∗ from Oizumi et al. Both measures with a Gaussian
assumption showed similar patterns to each other across the
five states, which are also comparable with 8̃AR. However, the

8∗ of the suppression period was much higher than zero (in
Supplementary Figure 7).

CONCLUSION

This study introduced a novel and practical method to estimate
8 from high density EEG and applied it to various states of
consciousness altered by general anesthesia induced by ketamine
and propofol-isoflurane. The investigation of the EEG properties
corresponding to large and small8 enabled us to infer large-scale

network correlates of various states of consciousness. The multi-
dimensional parameter space consisting of various EEG-derived
measures of connectivity and8R was efficacious in differentiating
various states of consciousness and sub-states during burst and
suppression. This practical method could potentially facilitate the
empirical application of IIT to various states of consciousness in
normal and abnormal brains.
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