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Performance in visual quantification tasks shows two characteristic patterns as a
function of set size. A precise subitizing process for small sets (up to four) was
contrasted with an approximate estimation process for larger sets. The spatial
arrangement of elements in a set also influences visual quantification performance,
with frequently perceived arrangements (e.g., dice patterns) being faster enumerated
than random arrangements. Neuropsychological and imaging studies identified the
intraparietal sulcus (IPS), as key brain area for quantification, both within and above
the subitizing range. However, it is not yet clear if and how set size and spatial
arrangement of elements in a set modulate IPS activity during quantification. In an
fMRI study, participants enumerated briefly presented dot patterns with random,
canonical or dice arrangement within and above the subitizing range. We evaluated
how activity amplitude and pattern in the IPS were influenced by size and spatial
arrangement of a set. We found a discontinuity in the amplitude of IPS response
between subitizing and estimation range, with steep activity increase for sets exceeding
four elements. In the estimation range, random dot arrangements elicited stronger IPS
response than canonical arrangements which in turn elicited stronger response than
dice arrangements. Furthermore, IPS activity patterns differed systematically between
arrangements. We found a signature in the IPS response for a transition between
subitizing and estimation processes during quantification. Differences in amplitude and
pattern of IPS activity for different spatial arrangements indicated a more precise
representation of non-symbolic numerical magnitude for dice and canonical than for
random arrangements. These findings challenge the idea of an abstract coding of
numerosity in the IPS even within a single notation.
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INTRODUCTION

The ability to discriminate sets of entities based on their
number is one of the most basic numerical competencies.
Infants already show it prior to the emergence of language
and symbolic counting. When presented with arrays of dots,
sequences of sounds or tactile stimulations, even 6 month olds
are able to discriminate between numerosities (Starkey and
Cooper, 1980; Xu and Spelke, 2000; Xu et al., 2005). However,
this remarkable sensitivity to numerosity is not an exclusively
human quality. Comparative psychology demonstrated basic
quantification skills in a wide variety of species, ranging from
honey bees over fish to monkeys and great apes (Hanus and
Call, 2007; Beran, 2008; Dacke and Srinivasan, 2008; Agrillo
et al., 2012). Collectively, these findings provide support for the
existence of an evolutionarily ancient cognitive quantification
system that enables human and non-human animals to estimate
and compare numerosities without counting verbally (Dehaene,
2001).

Electrophysiological studies in monkeys provide insights into
the underlying mechanisms of this system, which is often referred
to as approximate number system or approximate number sense
(ANS; Feigenson et al., 2004; Cantlon et al., 2009; Piazza, 2010).
Researchers demonstrated that specific neurons in the lateral
prefrontal cortex and the intraparietal sulcus (IPS) responded
maximally to specific numerosities (e.g., the number of dots
in visual multiple-dot displays; Nieder et al., 2002; Nieder,
2005, 2012; see Ditz and Nieder, 2015 for similar findings
in crows). Although these numerosity selective neurons were
tuned to preferred numerosities, their spike rate also increased
when adjacent numerosities were presented. This led to the
idea that numerosity is represented in form of overlapping,
bell-shaped (Gaussian) tuning curves which increase in width
(i.e., imprecision) with increasing numerosity (for reviews see
Nieder and Dehaene, 2009; Nieder, 2016). Human neuroimaging
studies provided further support for the existence of a
quantification system with numerosity selective neurons as
neuronal underpinning (Nieder and Dehaene, 2009; Lyons
et al., 2015). For instance, by using a representational similarity
approach Lyons et al. (2015) suggested that non-symbolic
numerosities in humans are indeed represented in bilateral IPS by
overlapping bell-shaped tuning curves with increasing neuronal
overlap with increasing numerosities.

Psychophysical studies provided further evidence for a
qualitative distinction between quantification of large and small
visual arrays. For small set sizes containing up to four elements,
numerosity judgments were observed to be precise, effortless,
and extremely rapid. However, when a set exceeded four items,
a distinctive discontinuity in the slopes of response speed and
accuracy was observed (Jevons, 1871; Kaufman et al., 1949;
Trick and Pylyshyn, 1994). The fast, accurate, and non-verbal
quantification process of small set sizes up to four elements was
coined “subitizing” (Kaufman et al., 1949; Mandler and Shebo,
1982). In contrast, quantification of larger set sizes under time
restriction that prevents serial counting is assumed to involve an
approximate estimation process (Feigenson et al., 2004; Revkin
et al., 2008).

Neuropsychological and neuroimaging studies indicate that
the parietal cortex, in particular the intraparietal sulcus, is a key
brain area for visual quantification processes both within and
above the subitizing range (Piazza et al., 2002, 2004; Dehaene
et al., 2003; Demeyere et al., 2014). An fMRI adaptation study
identified bilateral IPS as the only brain region sensitive to a
change in numerosity of dot patterns in a passive viewing task
(Piazza et al., 2004). Recently, Demeyere et al. (2014) suggested
that this critical involvement of the IPS does not depend
on set size, since increased IPS activity was observed during
quantification of small and large sets of dots. In this line, using
functional near-infrared spectroscopy (fNIRS) Cutini et al. (2014)
observed hemodynamic activity in the IPS during dot pattern
quantification both in the subitizing and the estimation range.
Neuropsychological case studies reported severe impairments in
quantification performance in both subitizing and estimation
range for patients with lesions affecting the IPS (Lemer
et al., 2003; Ashkenazi et al., 2008). Supporting these findings,
developmental dyscalculia, for which impaired subitizing and
estimation performance was reported (e.g., Ashkenazi et al.,
2013), was associated with a reduction of gray matter volume in
the left and right IPS (Isaacs et al., 2001; Rotzer et al., 2008).

Visual quantification performance is also affected by the
spatial arrangement of the dots in an array. Symmetrical
patterns or patterns that are frequently perceived in the same
configuration are faster to enumerate and less error-prone
than random arrangements of dots (Mandler and Shebo, 1982;
Wender and Rothkegel, 2000; Piazza et al., 2002; Krajcsi et al.,
2013). For such “canonical” arrangements of dots, even an
extension of the subitizing range was discussed (Mandler and
Shebo, 1982). Research indicates that dice patterns hold a
special position within canonical arrangements, as they were
found to be enumerated even faster than other canonical
arrangements (Wender and Rothkegel, 2000). Further, the
facilitation effect of symmetrical arrangements and arrangements
frequently perceived in the same configuration was reported for
the estimation but not for the subitizing range (Mandler and
Shebo, 1982; Dehaene and Cohen, 1994).

However, although behavioral findings clearly indicate that
the visual quantification process differs for random, canonical,
and dice pattern, the question whether the neural response in
the IPS during quantification is sensitive to the arrangement
of dots is not answered yet. Only few studies investigated the
influence of dot pattern arrangement on brain activity during
visual quantification (e.g., Piazza et al., 2002). However, studies
have been mainly confined to evaluate the influence of dot
pattern arrangement on brain activity during subitizing or
serial counting. The question whether IPS activity is sensitive
to the arrangement of dots during estimation when time
restriction prevents serial counting has not yet been addressed
systematically.

In the present study, we, therefore, investigated whether set
size (subitizing vs. estimation) and spatial arrangement of dots
modulate IPS activity during quantification. To address these
questions, we conducted an fMRI study in which participants
had to enumerate briefly presented dot patterns with random,
canonical, and dice arrangement both within the subitizing
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and the estimation range. We pursued a two-step approach to
assess processing differences in the IPS between small and large
numerosities and between different spatial arrangements: in a
first step, we evaluated whether the amplitude of the neuronal
response in the IPS was sensitive to set size by means of a region of
interest (ROI) analysis. When subitizing and estimation processes
differ with respect to their recruitment of critical IPS areas this
should be reflected in a distinctive discontinuity in the slopes of
IPS activity, when the numerosity of dots in a pattern exceeds
four dots (analog to previous behavioral findings). To investigate
this transition between subitizing and estimation processes in the
IPS we analyzed the linear slopes of IPS activity as a function of
numerosity.

In a second step, we evaluated whether the spatial
arrangement of dots in an array influenced IPS activity
during visual quantification. For this purpose, we followed a
similar procedure as Lyons et al. (2015) who investigated whether
symbolic and non-symbolic numbers are coded qualitatively
differently in the IPS. However, we asked the question whether
non-symbolic numbers (i.e., dot patterns) are coded qualitatively
different in the IPS, depending on the spatial arrangement
of elements in a set (i.e., the spatial arrangement of dots in a
pattern). To address this question, we first assessed with a ROI
analysis whether the amplitude of IPS activity is influenced by
the spatial arrangement of dots in a set during quantification.
Behavioral studies reported a facilitation for canonical over
random arrangements in the estimation but not in the subitizing
range (Mandler and Shebo, 1982; Dehaene and Cohen, 1994).
Consequently, we expected that IPS activity should be sensitive
to the spatial arrangement of dots in the estimation but not in
the subitizing range.

Second, we evaluated whether activation patterns in the
IPS were influenced by the spatial arrangement of dots. Based
on similarity relations between activation patterns in the
IPS, revealed by a representational similarity analysis (RSA,
Kriegeskorte et al., 2008) it was then possible to infer properties
of the underlying neural representation. Thereby, we were able
to determine the precision of the magnitude representation
for random, canonical, and dice arrangements. Based on
behavioral studies indicating a facilitation for arrangements with
figural spatial features, we hypothesized that the magnitude
representation of canonical and dice arrangements are more
precise than that of random arrangements. This should be
reflected by the width of respective bell-shaped (tuning) curves
indicating similarity between activity patterns in the IPS.

Taken together, based on above theoretical considerations and
results of previous imaging studies investigating processes of
visual quantification, we derived the following hypothesis:

(1) We expected to observe a signature for a transition
between subitizing and estimation processes, reflected
by the neural response of IPS, a critical brain area for
magnitude processing. In line with previous behavioral
findings, which identified a distinctive discontinuity in
the slopes of response speed and accuracy during visual
quantification whenever an array exceeded four elements,
we expected to observe an analog discontinuity in the

slope of IPS activation when the numerosity of dots in a
visual quantification task exceeds four.

(2) Previous studies reported a facilitation of response times
for canonical and dice arrangements as compared to
random arrangements of dots during quantification, but
only within the estimation range. This indicates that
spatial figural features of such structured non-symbolic
numerical information impact magnitude processing only
in the estimation range. Therefore, we hypothesized
weaker IPS response for canonical and dice arrangements
than for random arrangements within estimation range.

(3) Finally, we suggested that a more precise neural
representation of number magnitude in the IPS for
structured stimuli could potentially explain why
quantification performance for canonical and dice
arrangements is faster and less prone to error than
quantification of random arrangements. Consequently,
we expected narrower tuning curves for numerosities
depicted as dice or canonical arrangement than for
those depicted as random arrangement of dots, when
comparing IPS activation patterns by means of RSA. This
would support the idea of a more precise representation
of numerosity in the IPS for structured non-symbolic
numerical stimuli with spatial figural features.

MATERIALS AND METHODS

Participants
Twenty-four right-handed volunteers (16 women, mean
age = 24 years; SD = 6) participated in the study. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Ethics Committee of
the Medical Faculty of the University of Tübingen. Participants
had normal or corrected to normal vision and reported no
previous history of neurological or psychiatric disorders.

Stimuli and Design
Dot pattern arrangements were adapted from Wender and
Rothkegel (2000). The number of dots in a pattern ranged from
two to eight. Dot pattern stimuli were divided into canonical
and random patterns based on the typicality of each dot pattern
for the respective numerosity (see Wender and Rothkegel,
2000 for procedure). For each number of dots, three random
and three canonical patterns were prepared. Behavioral results
indicate that dice patterns occupy a special position within
canonical arrangements because dot quantification for these
patterns is extremely fast and precise (Mandler and Shebo,
1982; Simons and Langheinrich, 1982; Wender and Rothkegel,
2000). Consequently, we subdivided the canonical patterns for
the number range 2–6 into “dice” and “canonical” (=non-dice)
arrangements. Therefore, we used three different kinds of
dot arrangements in the present study: random (range: 2–8),
canonical (range: 2–8), and dice (range: 2–6) patterns. We
restricted dice patterns to the range of 2–6, because patterns
for this number range are most common on traditional cubic
western dice. Representative examples of dot patterns for all
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three arrangements within subitizing and estimation range are
provided in Figure 1B. Examples of all dot patterns used in the
present study can be found in Appendix A.

Procedure
All participants underwent two functional runs of visual
quantification comprising 168 trials each, resulting in 336 critical
quantification trials in total. Each experimental trial started
with the presentation of a fixation cross (500 ms) followed
by the brief presentation of the dot pattern for 200 ms (see
Figure 1A). Subsequently, a random noise mask was presented
for 2000 ms to prevent afterimages. During the presentation of
the noise mask, participants had to respond as soon as they
recognized the numerosity of the dot pattern by pressing an
MRI compatible response button in the right hand. Next, a
number pad appeared on the screen for 3000 ms on which
participants had to select the numerosity by navigating to
the respective number on the number pad with left and
right button presses. Each trial was followed by a jittered
inter-trial-interval of 1000 ms on average (ranging from 750
to 1250 ms). Initial button presses after presentation of the
dot patterns were used to record reaction times (RT) and
selected numbers on the number pad entered performance data
analysis.

FIGURE 1 | (A) Scematic illustration of the trial procedure. Each trial started
with a fiaxtion period after which the critical dot pattern was presented for
200 ms. Subsequentially, a noise mask was presented that prevented
afterimages. Participants had to respond as soon as they recognized the
numerosity of a dot pattern with button press. Subsequently, a visual number
pad appeard on the screen and participants had to select the respective
number with left and right button presses. (B) Representative examples of dot
patterns with random, canonical and dice arrangement for subitizing and
estimation range. Examples of all dot patterns used in the present study are
depicted in Appendix A.

All stimuli were projected on a screen above the participant’s
head. Participants viewed the stimuli through a mirror mounted
on the head coil of the scanner. Foam pads were used to minimize
head movements within the head coil during fMRI acquisition.
Total scanning time was approximately 50 min. A baseline (rest)
condition was accomplished by including 20% null events in the
paradigm.

Eye Tracking
To ensure that eye movement patterns did not differ between
stimulus conditions within and outside the subitizing range as
well as all three stimulus arrangements (random, canonical, and
dice patterns) we recorded eye movements during all fMRI
sessions with an MR compatible tracking device (EyeLink 1000
Plus, SR Research Ltd., Ottawa, ON, Canada). Preprocessing of
the eye tracking data included selection of stimulus presentation
periods and saccade/fixation detection. Afterward, the distance of
gaze from the fixation cross was calculated for every data point.
We sorted the data for each subject by arrangement (random,
canonical, and dice patterns) and numerosity. We summarized
the data per subject by averaging numerosities within (i.e., trials
with two to four dots) and outside the subitizing range (i.e., trials
with five to eight dots) arrangement condition. Gaze data of
the whole stimulus presentations went into later data analysis.
Fixation periods, cue events and response periods were discarded
from the analysis. Five subjects had to be excluded for the eye
tracking analysis due to poor data quality.

MRI/fMRI Acquisition
A high-resolution T1-weighted anatomical scan was acquired
with a 3T Siemens Magnetom Prisma MRI system (Siemens AG;
Erlangen, Germany) equipped with a 64–channel head matrix
coil (TR = 2300 s, matrix = 256 mm ×256 mm, 176 slices,
voxel size = 1.0 mm × 1.0 mm × 1.0 mm; FOV = 256 mm,
TE = 2.92 ms; flip angle = 8◦). The anatomical scan was
performed after the functional runs were completed.

Functional images were obtained using gradient-echo
Echo planar imaging (TR = 2400 ms; TE = 30 ms; flip
angle = 80◦; FOV = 220 mm, 88 × 88 matrix; 42 slices, voxel
size = 2.5 mm× 2.5 mm× 3.0 mm, gap = 10%).

FMRI data were analyzed with SPM121. Images were motion
corrected and realigned to the mean functional image of each
participant. Imaging data were then normalized into standard
stereotaxic MNI space (Montreal Neurological Institute, McGill
University, Montreal, QC, Canada). Images were resampled every
2.5 mm using 4th degree spline interpolation and smoothed with
a 5 mm FWHM Gaussian kernel to accommodate inter-subject
variation in brain anatomy and to increase signal-to-noise ratio in
the data. The data were high-pass filtered (128 s) to remove low-
frequency noise components and corrected for autocorrelation
assuming an AR(1) process. Brain activity was convolved over the
experimental trials with the canonical haemodynamic response
function (HRF) and its first time derivative. The resulting
design matrices comprised 19 experimental regressors, one for
each combination of numerosity and arrangement. To capture

1http://www.fil.ion.ucl.ac.uk/spm
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residual movement-related artifacts, we included six motion
regressors of no interest. Individual participants’ contrast images
obtained from first-level analysis entered second-level analysis.
For the second level analysis we contrasted estimated beta weights
for the respective conditions using the flexible factorial design
option within SPM12.

Region of Interest Analysis
We defined two anatomical regions of interest (ROIs) using the
SPM Anatomy toolbox v2.0 (Eickhoff et al., 2005, 2006, 2007):
an anatomical ROI covering (1) left intraparietal sulcus (hIP1,
hIP2, and hIP3) and (2) right intraparietal sulcus (hIP1, hIP2,
and hIP3), respectively, because differential contributions of left
and right IPS to the processing of numerical magnitude have been
discussed (Chochon et al., 1999; Ansari, 2007; Cohen Kadosh
et al., 2007; Piazza et al., 2007). We used the SPM toolbox
MarsBar2 for ROI definition and the later ROI analysis.

Behavioural Analysis
We analyzed both error rates (ERs) and RTs of correct responses.
Five participants were excluded from analysis: three could not
be analyzed due to technical problems, and two participants
committed more than 20% errors in the subitizing range. ERs
were analyzed using a generalized linear mixed effects model
(GLME) with a binomial error distribution and logit as link
function utilizing the R package lme4 (Bates et al., 2015).
Fixed effects in this model were the categorical predictors
“arrangement” (i.e., random, canonical, vs. dice pattern) and
“number range” (i.e., subitizing vs. estimation) as well as their
interactions. We did not include the continuous predictor
“numerosity” (i.e., number of presented dots), because ERs were
zero for most of the participants in the subitizing range of the
dice condition and, thus, the slope could not be estimated. Both
predictors (i.e., “arrangement” and “range”) were effect coded.
Moreover, we included a random intercept for participants in the
GLME.

For analysis of RTs, linear mixed effect models (LME)
were applied. Prior to the analysis of RTs, a trimming
procedure was conducted excluding all RTs smaller than 200 ms.
As the distribution of RTs was right-skewed, we applied a
log-transformation (Ratcliff, 1993). In a next step, we ran a
LME with log-transformed RTs (log RT) as dependent variable,
“arrangement,” “number range,” and “numerosity” as fixed
effects as well as their interactions, and the maximum random
effects structure (i.e., including all fixed effects as random effects
as well as a random intercept for participants; Barr et al.,
2013). The continuous predictor variable “numerosity” was
centered separately for all conditions of stimulus arrangement
and range. Then, we applied a model-based trimming procedure
by z-standardizing residuals of the LME and excluding all log RTs
with residuals deviating more than ±3 SD (Baayen and Milin,
2015). In total (including eliminating erroneous responses), this
reduced the data set by less than 10%.

Both for the GLME and the LME p-values were calculated
using likelihood ratio tests (LRT) and the R package afex

2http://marsbar.sourceforge.net

(Singmann et al., 2016). Furthermore, we conducted post hoc
analyses using the R package multcomp (Hothorn et al., 2008).
In order to account for multiple testing, we adjusted the p-values
employing the Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995). Plots were drawn using the R packages ggplot2
(Wickham, 2009) and cowplot (Wilke, 2016).

RESULTS

Behavioral Data
An overview of performance data (i.e., ERs and RTs) separately
for the three conditions of arrangement (random, canonical,
and dice) as well as for the two number ranges (subitizing and
estimation) is given in Figure 2.

Error Rates
We investigated the effect of arrangement and number range on
task performance (i.e., errors made in the numerosity estimation
task) using a GLME. The results are summarized in Table 1. Our
results revealed a significant interaction between “arrangement”
and “number range,” which is depicted in Figure 2A. To
analyze this interaction, we first tested whether ERs differed
between arrangement conditions by running two GLME for
subitizing and estimation range, separately. For the subitizing
range, there was no significant effect of arrangement on ERs,
χ2(2) = 0.94, p = 0.625. Participants’ ERs in the subitizing
range for random patterns were: log odds = −5.51, SE = 0.42,
back transformed ER = 0.40%, for canonical patterns: log
odds = −5.44, SE = 0.49, back transformed ER = 0.43%, and
for dice patterns: log odds = −6.35, SE = 1.02, back transformed
ER = 0.17%. Thus, the ERs did not differ significantly between
the three arrangement conditions. In contrast, for the estimation
range a significant effect of arrangement on ERs was observed,
χ2(2) = 298.78, p < 0.001. Pairwise comparisons revealed
a significant difference between ERs in the random and the
canonical condition (z = 12.94, p < 0.001), between the random
and the dice condition (z = 4.45, p < 0.001), as well as between
the canonical and the dice condition (z = 2.53, p = 0.012). In the
estimation range, participants performed worse in the random
arrangement condition (log odds = −1.46, SE = 0.19, back
transformed ER = 18.81%) than in the canonical arrangement
(log odds =−3.38, SE = 0.22, back transformed ER = 3.30%) and
the dice condition (log odds =−5.94, SE = 1.02, back transformed
ER = 0.26%). Thus, the main effect of “arrangement” should not
be interpreted, as there was no coherent effect of arrangement on
task performance.

Secondly, we tested, whether performance between subitizing
and estimation range differed for each arrangement condition,
separately. ERs of the random and the canonical condition
differed significantly between subitizing and estimation range
(random: z =−10.45, p < 0.001, canonical: z =−4.38, p < 0.001).
However, there was no significant difference regarding ERs
between subitizing and estimation range for the dice condition
(z = −0.29, p = 0.773). Therefore, also the main effect of range
should not be interpreted as there was no consistent pattern of
range.
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FIGURE 2 | Back transformed error rates (ER) (A) and reaction times (B) as a function of arrangement and number range. Error bars indicate 95% confidence
intervals.

Reaction Times
Analog to the analysis of ERs, we investigated the effect of
arrangement and number range on log-transformed RT. The
respective results of the LME are given in Table 1.

In line with the results for ERs, we observed a significiant
interaction between arrangement and number range
(see Figure 2B). Again, to analyze this interaction, we first
ran two LMEs with arrangement as fixed effect for subitizing

TABLE 1 | Results of the (generalized) linear mixed effects model for errors, log-transformed RT (log RT) and percent signal change (PSC).

Dependent variable Fixed effect df χ2 p-value

Error Range 1 9.92 0.002

Arrangement 2 25.49 <0.001

Range × Arrangement 2 12.44 0.002

Log RT Numerosity 1 12.04 <0.001

Range 1 23.86 <0.001

Arrangement 2 23.76 <0.001

Numerosity × Range 1 1.77 0.183

Numerosity × Arrangement 2 17.81 <0.001

Range × Arrangement 2 25.65 <0.001

Numerosity × Range × Arrangement 2 9.75 0.008

PSC Numerosity 1 7.17 0.007

Range 1 23.18 <0.001

Arrangement 2 7.55 0.023

IPS 1 16.79 <0.001

Numerosity × Range 1 7.71 0.006

Numerosity × Arrangement 2 18.44 <0.001

Numerosity × Hemisphere 1 0.10 0.752

Range × Arrangement 2 12.01 0.002

Range × Hemisphere 1 0.11 0.739

Arrangement × Hemisphere 2 1.60 0.449

Numerosity × Range × Arrangement 2 34.74 <0.001

Numerosity × Range × Hemisphere 1 0.50 0.480

Numerosity × Arrangement × Hemisphere 2 0.03 0.985

Range × Arrangement × Hemisphere 2 0.08 0.962

Numerosity × Arrangement × Range × Hemisphere 2 0.18 0.914
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and estimation range, separately. The effect of arrangement on
log RTs was significant for subitizing, χ2(2) = 9.20, p = 0.010,
as well as for estimation range, χ2(2) = 26.22, p < 0.001. For
the subitizing range, participants’ log RT for the random, the
canonical, and the dice condition were 6.27 ms (SE = 0.05 ms,
back transformed RT = 528.29 ms), 6.23 ms (SE = 0.05 ms, back
transformed RT = 509.59 ms), and 6.23 ms (SE = 0.05 ms, back
transformed RT = 508.79 ms). Pairwise comparisons indicated
that only log RT of random and canonical conditions differed
significantly (z = −2.42, p = 0.046), whereas other comparisons
were not significant (dice vs. canonical: z = −0.08, p = 0.940;
dice vs. random: z = 1.92, p = 0.082). For the estimation
range, participants’ log RT for the random, the canonical,
and the dice condition were 6.82 ms (SE = 0.11 ms, back
transformed RT = 916.22 ms), 6.47 ms (SE = 0.07 ms, back
transformed RT = 648.02 ms), and 6.27 ms (SE = 0.06 ms,
back transformed RT = 526.85 ms). Pairwise comparisons
revealed that all three comparisons were significant (dice vs.
canonical: z = −6.23, p < 0.001; dice vs. random: z = −7.57,
p < 0.001; canonical vs. random: z =−6.77 p < 0.001).

Regarding differences between subitizing and estimation
range, our results revealed that log RT differed significantly
between the subitizing and the estimation range in the random
arrangement condition as well as in the canonical arrangement
condition (random: z = −7.72, p < 0.001; canonical: z = −6.93,
p < 0.001). However, in the dice condition no significant
difference between subitizing and estimation range was found
(z =−1.26, p = 0.209).

Moreover, we found a significant three-way interaction
between numerosity, range, and arrangement, which is depicted
in Figure 3. First, we investigated whether the effect of
numerosity differed significantly from zero in the subitizing as
well as in the estimation range separately for each arrangement
condition. The effect of numerosity on log RT was significant
in subitizing as well as in estimation range for the random
condition (subitizing: 0.045 ms, SE = 0.017 ms, z = 2.89, p = 0.008;
estimation: 0.155 ms, SE = 0.021 ms, z = 7.46, p < 0.001) and
in the estimation range for the canonical condition (0.010 ms,
SE = 0.015 ms, z = 4.06, p < 0.001), whereas it was not significant
in subitizing range for the canonical condition (0.041 ms,
SE = 0.010 ms, z = 0.69, p = 0.717) and in both ranges for the dice
condition (subitizing: 0.004 ms, SE = 0.019 ms, z = 0.22, p = 0.826;
estimation:−0.021 ms, SE = 0.039 ms, z =−0.53, p = 0.717).

Second, we analyzed the three-way interaction. To do so, we
evaluated the effect of arrangement on the slope of numerosity,
separately for the two number ranges subitizing and estimation.
In the subitizing range, there was no significant interaction
between numerosity and arrangement, χ2(2) = 4.82, p = 0.090.
In contrast, in the estimation range, we observed a significant
interaction between numerosity and arrangement, χ2(2) = 20.82,
p < 0.001. Post hoc comparisons indicated that the estimated
slope (i.e., effect of numerosity on log RT) was significantly
larger in the random than in the canonical condition (z = 5.71,
p < 0.001), as well as in the dice condition (z = 3.95, p < 0.001).
However, the estimated slope in the canonical condition was
not significantly larger than in the dice condition (z = 1.52,
p = 0.128).

FIGURE 3 | Effect of numerosity on predicted (including random effects) back
transformed reaction times, separately for the number range conditions
(subitizing and estimation) and the arrangement conditions (random,
canonical, and dice).

Next, we analyzed the effect of number range on the slope of
numerosity, separately for the three arrangement conditions. We
observed that in the dice condition as well as in the canonical
condition, the effect of numerosity on log RT did not differ
significantly between the subitizing range and the estimation
range (dice: z = 0.58, p = 0.564; canonical: z = −1.77, p = 0.115),
while in the random condition the effect of numerosity on log
RT was significantly larger in the estimation range than in the
subitizing range (random: z = 5.23, p < 0.001).

Eye Tracking
For each subject and stimulus condition, we calculated the
mean gaze position as well as the standard deviation of gaze
position as a measure of eye movement distribution. We
conducted two separate 2 × 3 ANOVAs with the factors
number range (subitizing vs. estimation) and arrangement
(random vs. canonical vs. dice) with the dependent variables
mean gaze position and standard deviation of gaze position,
respectively. For both dependent variables we neither observed a
significant main effect: mean gaze position: range: F(1,18) = 0.27,
p = 0.61, arrangement: F(2,17) = 1.66, p = 0.22; standard
deviation: range: F(1,18) = 0.55, p = 0.47, arrangement:
F(2,17) = 2.60, p = 0.11) nor an interaction [average gaze position:
F(2,17) = 1.33, p = 0.29; standard deviation: F(2,17) = 0.05,
p = 0.99].

Imaging Data
Whole Brain Analysis
Prior to the ROI analyses, we will present contrasts for the three
different spatial arrangements (i.e., dice, canonical, and random)
separately for subitizing and estimation range to provide the
interested reader with an overview of brain activation patterns
elicited by the respective conditions.
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Subitizing range
The comparison of brain activation for different spatial
arrangements within the subitizing range revealed no
suprathreshold clusters of activation.

Estimation range
Dice vs. random. Contrasting dice with random arrangements in
the estimation range revealed bilateral activation in angular gyrus
(PGa), supramarginal gyrus (PF) as well as middle temporal,
inferior frontal and superior frontal gyrus. Left hemispheric
clusters were observed in the frontal pole, the inferior temporal
gyrus as well as in the fusiform gyrus and subiculum (extending
into CA1 of the hippocampus). Right hemispheric activation
comprised a cluster in the retrosplenial cortex (see Figure 4
depicted in green, Table 2).

Random vs. dice. The contrast of random and dice arrangements
within the estimation range revealed bilateral IPS activation
(hIP1, hIP2, and hIP3) extending into the superior and middle
occipital gyrus. Further bilateral clusters were observed in the
inferior frontal (p. opercularis) and middle frontal gyrus as well
as in the insular lobe. Left hemispheric activation was found
in the putamen, the precentral gyrus and the calcarine gyrus.
Finally, right hemispheric clusters were observed in middle
cingulate cortex (extending into anterior cingulate cortex),
thalamus and caudate nucleus (see Figure 4 depicted in red,
Table 2).

Canonical vs. random. Contrasting brain activation for canonical
and random arrangements within the estimation range revealed
bilateral activation of the angular gyrus (PGa, PGp), the inferior
temporal gyrus as well as the fusiform gyrus (extending into CA1
of the hippocampus). Further a bilateral cluster was observed in

FIGURE 4 | Results of the whole brain analysis. The contrast between dice
and random arrangements within the estimation range (depicted in green)
revealed activity in bilateral angular gyrus, supramarginal gyrus, middle
temporal gyrus, inferior frontal gyrus as well as left hemispheric activation of
fusiform gyrus. The contrast between radnom and dice arrangements within
estimation ranged (depicted in red) revealed stronger activation in bilateral IPS,
anterior and middle cingulate cortex (ACC, MCC), middle frontal gyrus as well
as inferior frontal gyrus. Activation is depicted on a 3D rendered surface (all at
Pcluster-corr < 0.001, cluster size of k = 15 voxels).

the inferior frontal gyrus (p.orbitalis). Left hemispheric activation
comprised clusters in the middle temporal gyrus and the frontal
pole region. Finally, right hemispheric activation was observed
in the supramarginal gyrus (see Figure 5 depicted in green,
Table 2).

Random vs. canonical. Contrasting brain activation for random
and canonical arrangements within the estimation range revealed
right hemispheric activation of the intraparietal sulcus (hIP1,
hIP3) the middle cingulate cortex and the anterior cingulate
cortex (see Figure 5 depicted in red, Table 2).

For sake of completeness we provide the remaining contrasts
between arrangements within the estimation range as well as
simple contrasts against baseline in the Appendix B.

Region of Interest Analysis
The mean percent signal changes (PSC) relative to fixation within
left and right IPS ROI were extracted for each participant and
condition using MarsBar toolbox3. For the analysis of PSCs linear
mixed effect models were used with “arrangement,” “number
range,” “numerosity,” and “hemisphere” and their interactions as
fixed effects and “number range,” “numerosity,” and “hemisphere”
as well as their interactions as random effects. P-values were
calculated running LRTs using the R package afex (Singmann
et al., 2016). In order to account for multiple testing, p-values of
subsequent post hoc tests were adjusted following the Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995).

Percent Signal Change Results
An overview of PSC for the conditions of stimulus arrangement
(random, canonical, and dice) as well as for the two number
ranges (subitizing and estimation) and hemisphere (left and
right) is given in Table 3. The results of the LME are given in
Table 1.

The analysis of the PSC revealed a significant interaction
between “arrangement” and “number range,” which is depicted
in Figure 6. To break down this interaction, we ran post hoc tests
comparing the PSC between the three arrangements separately
for subitizing and estimation range. For subitizing range, PSC
did not differ significantly between arrangements, χ2(2) = 0.95,
p = 0.623. In contrast, for estimation range a significant effect
of arrangement on PSC was observed, χ2(2) = 12.10, p = 0.002.
Pairwise comparisons revealed significant differences in PSC
between the random and the canonical condition (z = 3.25,
p = 0.001), between the random and the dice condition (z = 3.81,
p < 0.001), as well as between the canonical and the dice
condition (z = 2.13, p = 0.033).

Our results also revealed that PSC differed significantly
between subitizing and estimation range in the random
arrangement condition as well as in the canonical arrangement
condition (random: z = −8.45, p < 0.001; canonical: z = −5.33,
p < 0.001). However, in the dice condition no significant
difference between the subitizing and the estimation range was
detected (z =−0.97, p = 0.331).

We further found a significant three-way interaction between
numerosity, number range, and arrangement, which is depicted

3http://marsbar.sourceforge.net
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TABLE 2 | Results of the whole brain analysis for different spatial arrangements within estimation range.

Contrast Brain region MNI (x, y, z) Cluster size T

Dice vs. random

RH angular gyrus (PGa) (extending into superior temporal gyrus) 50 −71 43 500 7.70

LH angular gyrus (PGa) −51 −76 38 402 6.18

LH supramarginal gyrus (PF) −66 −39 40 51 5.34

RH supramarginal gyrus (PF) 65 −31 30 45 4.27

RH retrosplenial cortex 12 −51 40 97 5.50

RH middle temporal gyrus 60 −19 −18 92 5.39

LH middle temporal gyrus −58 −24 −18 28 5.04

LH middle temporal gyrus −63 −49 −3 97 5.84

LH inferior temporal gyrus∗ −58 −61 0 4.52

LH fusiform gyrus −31 −44 −10 104 4.27

LH subiculum∗ −26 −31 −18 4.01

LH inferior frontal gyrus (p. orbitalis) −33 32 −8 22 4.83

RH inferior frontal gyrus (p. triangularis) 55 35 10 33 4.59

RH superior frontal gyrus 25 32 58 20 4.67

LH superior frontal gyrus −23 32 55 59 4.25

LH area Fp2 −1 47 −5 56 5.02

Random vs. dice

RH intraparietal sulcus (hIP1, hIP2, hIP3) 25 −64 65 783 9.53

LH intraparietal sulcus (hIP2, hIP3) −23 −64 63 335 8.11

RH middle cingulate cortex (extending into anterior cingulate cortex) 7 24 38 604 7.31

LH inferior frontal gyrus (p. opercularis) −46 7 33 32 5.60

RH inferior frontal gyrus (p. opercularis) 50 7 30 53 5.88

RH middle frontal gyrus 40 34 25 97 5.51

LH middle frontal gyrus −23 2 55 63 4.47

RH thalamus 2 −34 3 4.75 4.75

RH caudate nucleus 15 12 8 174 6.06

RH insula lobe 32 22 3 250 9.13

LH insula lobe −31 22 8 229 8.88

LH putamen∗ −23 4 −5 4.83

LH precentral gyrus −11 −76 18 70 4.44

LH calcarine gyrus −11 −76 18 70 4.44

LH middle occipital gyrus −28 −91 28 240 6.94

LH cerebellum −28 −71 −23 144 7.33

Canonical vs. random

LH angular gyrus (PGa) −43 −69 50 437 5.28

RH angular gyrus (PGp) 50 −74 43 271 6.44

RH supramarginal gyrus (PF) 60 −29 33 33 4.01

LH middle temporal gyrus −61 −51 −5 199 4.29

LH inferior temporal gyrus∗ −58 −21 −23 3.87

RH inferior temporal gyrus 60 −19 20 143 4.98

RH fusiform gyrus 32 −41 −10 267 5.61

LH fusiform gyrus −31 −44 −10 196 4.82

LH area Fp2 −6 42 −13 289 5.18

LH inferior frontal gyrus (p.orbitalis) −36 29 −13 69 5.20

RH inferior frontal gyrus (p.orbitalis) 27 29 −13 50 5.18

Random vs. canonical

RH intraparietal sulcus (hIP1, hIP3) 7 23 −63 50 4.83

RH middle cingulate cortex extending into anterior cingulate cortex 5 29 35 976 9.75

RH anterior cingulate cortex∗ 4 34 31 7.93

RH pre-supplementary motor area (preSMA)∗ 10 14 55 8.53

(Continued)
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TABLE 2 | Continued

Contrast Brain region MNI (x, y, z) Cluster size T

RH inferior frontal gyrus −3 22 45 443 7.93

RH insular lobe∗ 40 17 −5 8.60

RH middle frontal gyrus 40 34 28 137 6.78

LH putamen −15 9 5 52 6.03

∗Secondary peak. MNI, Montreal Neurological Institute; T, t-value; Pcluster-corr < 0.001 (k = 15 voxels).

FIGURE 5 | Results of the whole brain analysis. The contrast between
canonical and random arrangements within the estimation range (depicted in
green) revealed activity in bilateral angular gyrus, inferior temporal gyrus as
well as fusiform gyrus and inferior frontal gyrus. The contrast between radnom
and canonical arrangements within estimation ranged (depicted in red)
revealed stronger activation in bilateral IPS, anterior and middle cingulate
cortex (ACC, MCC), middle frontal gyrus as well as inferior frontal gyrus and
pre-supplemenatry motor areas (pre-SMA). Activation is depicted on a 3D
rendered surface (all at Pcluster-corr < 0.001, cluster size of k = 15 voxels).

in Figure 7. To break down this interaction, we evaluated
the influences of the continious predictor “numerosity” and
the predictor “arrangement” separately for the subitizing and
the estimation range. In the subitizing range, there was no

significant interaction between numerosity and arrangement,
χ2(2) = 2.44, p = 0.296. In the estimation range, we observed
a significant interaction between numerosity and arrangement,
χ2(2) = 35.99, p < 0.001. We estimated slopes separatly for
each arrangement in subitizing and estimation range: In the
subitizing range, slope estimates for the random (slope: −0.02;
SE = 0.01; z = −1.16, p = 0.490), the canonical (slope: 0.00;
SE = 0.01; z = 0.34, p = 0.880) and the dice condition (slope:
0.01; SE = 0.01; z = 0.96, p = 0.506) did not significantly differ
from zero. In the estimation range slopes of random (slope: 0.04;
SE = 0.01; z = 4.20, <0.001) and dice (slope: −0.14, SE = 0.03;
z = −5.12, p < 0.001) arrangements differed significantly from
zero whereas the slope of canonical arrangements did not (slope:
0.00; SE = 0.01; z =−0.08, p = 0.940).

To further investigate the influence of the factor
“arrangement” on IPS response during estimation, we compared
slope estimates for different arrangements within the estimation
range. These pairwise comparisons revealed that slopes differed
significantly between random and canonical (z = −3.25,
p = 0.002), random and dice (z = −3.81, p < 0.001) as well as
between canonical and dice arrangements (z = 2.13, p = 0.033) in
the estimation range (Figure 7).

Subsequently, we analyzed the effect of number range on
the slope of numerosity, separately for the three arrangement
conditions. We observed that in the canonical condition, the
effect of numerosity on PSC in the IPS did not differ significantly
between the subitizing range and the estimation range (z = 0.33,
p = 0.743), whereas in the random condition the effect of

TABLE 3 | Mean (M), standard deviation (SD), minimum and maximum percent signal change relative to fixation (PSC) for the six conditions of the numerosity estimation
task.

PSC

Arrangement Number range Hemisphere M SD Minimum Maximum

Random Subitizing Left 0.24 0.15 −0.25 0.66

Right 0.14 0.17 −0.24 0.58

Estimation Left 0.42 0.17 −0.04 0.81

Right 0.33 0.23 −0.04 1.00

Canonical Subitizing Left 0.23 0.16 −0.19 0.52

Right 0.12 0.18 −0.22 0.46

Estimation Left 0.38 0.17 −0.24 0.74

Right 0.28 0.22 −0.22 0.85

Dice Subitizing Left 0.28 0.25 −0.37 1.23

Right 0.16 0.24 −0.37 0.74

Estimation Left 0.32 0.23 −0.35 0.82

Right 0.19 0.28 −0.39 0.85
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FIGURE 6 | Percent signal change in bilateral IPS as a function of
arrangement and number range. Error bars indicate 95% confidence intervals.

FIGURE 7 | Effect of numerosity on percent signal change, separately for the
number range conditions (subitizing and estimation) and the arrangement
conditions (random, canonical, and dice).

numerosity on PSC in the IPS was significantly larger in the
estimation range than in the subitizing range (z = 5.01, p < 0.001).
In contrast, in the dice condition the effect of numerosity on PSC
in the IPS was significantly smaller in the estimation range than
in the subitizing range (z =−3.22, p = 0.002).

Finally, the main effect of hemisphere was significant (see
Table 3). It indicated that PSC was larger in the left than in the
right IPS (left = 0.31, SE = 0.02, z = 13.38, p < 0.001; right = 0.20,
SE = 0.03, z = 6.70, p < 0.001).

Representational Similarity Analysis
We further investigated the degree of similarity in IPS activity
patterns for different numerosities and arrangements. Therefore,
we conducted a logistic regression analysis for each combination
of numerosity and arrangement (e.g., can2 vs. dice 5) and

FIGURE 8 | Similarity curves of IPS activity patterns for different numerosities
and arrangements.

determined the classification accuracy for each of the resulting
combinations for each participant. We focused this analysis on
the anatomically defined bilateral IPS using the SPM Anatomy
Toolbox (Eickhoff et al., 2005), because this area is commonly
associated with the processing of absolute and relative number
magnitude information (e.g., Piazza et al., 2007; Jacob and Nieder,
2009; Arsalidou and Taylor, 2011). The logistic regression analysis
was based on β estimates obtained by rerunning the GLM
with unsmoothed images. Then, we applied the anatomically
defined bilateral IPS mask for each participant and each notation
format. In a next step classification accuracies were averaged
across participants and transformed into classification ERs. The
resulting classification ERs for the different arrangements are
depicted in the form of representational similarity curves in
Figure 8 with higher ERs indicating more similar activation
patterns resulting in a worse classification performance.

Similarity curves allow for the assessment of the similarity
of neural patterns in the IPS for different numbers and
arrangements. Based on similarity relations between pairs of
numbers it is then possible to infer properties of the underlying
neural representation (Kriegeskorte et al., 2008; Lyons et al.,
2015).

Highly overlapping similarity curves thereby indicate that
activity patterns and thus also the neural representations of those
two numbers are highly similar. Contrarily, similarity curves with
little to no overlap indicate that the neural representations of two
numbers are highly dissimilar.
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Based on these similarity values, we estimated the width of the
bell-shape similarity curves between numerosities for subitizing
and estimation as well as different arrangements using the linear
model for numerosity judgments with w indicating the width of
the Gaussian tuning curves (Pica et al., 2004).

f (x) =
1

√
2πwn

e
−

(x−n)2

2(wn)2

Fitting the linear model using the nls function of R with start
value of 0.4 revealed that the width of the bell-shape similarity
curves differed between arrangements. Overall w was smallest
for the dice condition with w = 0.094 indicating that IPS
activity patterns was most different for the dice condition. w of
the canonical condition with w = 0.241 was in between the w of
the dice and the random condition. Finally, w was largest for the
random condition with w = 0.276 that IPS activity patterns were
most similar in the random condition.

DISCUSSION

Quantification of visual objects is one of the most basic
numerical competencies, present already in infants and observed
for various non-human animals. Although this skill seems to
route in an evolutionary ancient cognitive system (Brannon,
2006), our knowledge of the neural mechanisms underlying
quantification is still rather patchy. Psychophysical studies
claimed a qualitative distinction between subitizing – the rapid
and accurate perception of small sets – and estimation –
an effortless but error-prone and approximate quantification
process (Kaufman et al., 1949; Mandler and Shebo, 1982; Trick
and Pylyshyn, 1994; Wender and Rothkegel, 2000). Moreover,
it was shown that quantification is faster and more precise
for symmetrical dot patterns and patterns that are frequently
perceived in the same configuration (e.g., dice patterns; Mandler
and Shebo, 1982; Wender and Rothkegel, 2000). However, the
question how activity of the IPS – the key area involved in
quantification of small and large visual arrays – is modulated by
the set size of a visual array and whether IPS activity is sensitive
to the spatial arrangement of elements is not fully answered
yet. The current study addressed these questions by evaluating
the neuronal response in bilateral IPS, a key area for number
magnitude processing, during visual quantification of random,
canonical, and dice dot patterns within the subitizing and the
estimation range.

Our behavioral data clearly reflected a qualitative change
between quantification of small (subitizing range) and large
visual arrays (estimation range). We observed a characteristic
discontinuity in the slopes of response times and ERs between
the subitizing and the estimation range. The increase in response
times and ERs was negligible within the subitizing range but
substantial for arrays exceeding four elements. Therefore, RT
and ER patterns reflected the transition between a subitizing and
estimation process observed in various other studies (e.g., Revkin
et al., 2008). Consequentially, the implemented quantification
paradigm with non-verbal responses revealed similar findings to
previous studies that used a verbal response outside of the MR

scanner (e.g., Mandler and Shebo, 1982; Wender and Rothkegel,
2000).

Moreover, behavioral data revealed that quantification
performance was also influenced by the spatial arrangement of
dots in an array (see also Mandler and Shebo, 1982; Wender and
Rothkegel, 2000; Piazza et al., 2002; Krajcsi et al., 2013 for similar
findings). This influence of arrangement on quantification
depended on the set size. A facilitation of response times when
quantifying canonical and dice arrangements over random
arrangements was observed in the estimation but not in the
subitizing range: the increase in response times and ERs in
the estimation range was steeper for random dot patterns
than for canonical and dice dot patterns. For dice patterns, we
observed no increase in RTs and ERs for increasing numerosity,
suggesting a larger subitizing range for these highly overlearned
arrangements. In sum, our behavioral findings are in agreement
with previous studies (e.g., Mandler and Shebo, 1982; Dehaene
and Cohen, 1994; Wender and Rothkegel, 2000; Piazza et al.,
2002) supporting the validity of our MRI compatible non-verbal
version of the subitizing task.

Before we outline in detail how activity of IPS, the key area
for magnitude processing, is modulated by set size and spatial
arrangement of elements in a given set, we will briefly discuss
fronto-parietal networks responsive to set size and arrangement
as identified by the whole brain analysis.

The Influence of Arrangement on Visual
Quantification
On whole brain level, contrasting activation for different
arrangements within the subitizing range revealed no
suprathreshold voxels of activity. This mirrors the behavioral
data that showed no facilitating effect of canonical and/or
dice over random arrangements for subitizing trials. This can
be explained by inherent spatial figural properties of random
arrangements within subitizing range. For instance, three
randomly distributed dots can often be perceived as a triangle
and four random dots as a rectangle, trapeze or another specific
spatial figure. Consequently, such inherent spatial features may
have reduced differences between the types of arrangements in
the subitizing range, so that we were not able to detect differences
in brain activation for different spatial arrangements on a whole
brain level.

Within estimation range, visual quantification of non-
structured (random) and structured (canonical and dice)
dot patterns revealed two fundamentally distinct patterns
of activation. Stimuli with spatial figural features (i.e., dice
and canonical patterns) elicited stronger activation in a
distributed network of areas associated with familiarity
processing comprising, amongst others, bilateral angular
gryus, supramarginal gyrus, and retrosplenial cortex (cf. Shah
et al., 2001; Sugiura et al., 2005; Horn et al., 2016). Interestingly,
this pattern of activation broadly replicates findings of studies
that compared brain activation for symbolic and non-symbolic
numerical input (e.g., Holloway et al., 2010). In line with that,
recruitment of middle temporal and inferior frontal brain
regions, associated with semantic processing (Röder et al., 2002;
Chou et al., 2009; Visser et al., 2012) indicate that structured and
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overlearned non-symbolic numerical stimuli like dice pattern
might gain iconic properties and thus carry semantic content
beyond their numerical magnitude. Furthermore, structured
arrangements with such spatial figural features elicited activation
in fusiform gyrus. This area of the ventral visual stream plays
a central role in differentiating between different categories
of objects and is particularly responsive to over-trained visual
stimuli (e.g., Rhodes et al., 2004; Tyler et al., 2013; Zhang et al.,
2016). Therefore, involvement of the fusiform gyrus further
suggested a substantially different processing of highly structured
non-symbolic numerical information in the brain.

In contrast, processing of random arrangements was
associated with stronger activation in a fronto-parietal network of
number related brain regions such as bilateral intraparietal sulcus
and dorsolateral prefrontal cortex. This pattern of activation
during visual quantification of unstructured arrangements
closely replicates findings of previous studies, investigating the
processing of non-symbolic numerical information (Piazza et al.,
2004, 2007). Further, the involvement of areas associated with
cognitive control comprising, amongst others, anterior and
middle cingulate and dorsolateral prefrontal cortex (MacDonald
et al., 2000) reflects that visual quantification of random
arrangements required stronger implementation of control
processes and performance monitoring.

In sum, whole brain results indicated different networks for
processing structured and unstructured non-symbolic numerical
information during estimation. Canonical and dice arrangements
elicited activation in networks associated with the processing
of familiarity, semantics and highly over-learned visual stimuli,
reflecting the iconic properties of this structured stimulus
material. In contrast, processing of random arrangements was
reflected by the interplay of a brain networks associated
with cognitive control and areas typically associated with
magnitude processing, namely prefrontal cortex and bilateral IPS.
Nevertheless, most areas constituting these two networks are not
specific for number magnitude processing such as prefrontal or
fusiform areas. Therefore, we specifically investigated the effect of
set size and arrangement in intraparietal cortex, a region crucial
for magnitude processing (e.g., Dehaene et al., 2003; Lyons et al.,
2015), by means of ROI analysis.

Neuronal Correlates of Subitizing and
Estimation within IPS
We observed significant IPS activity during quantification of dot
patterns within and above the subitizing range, with stronger
activity in the estimation than the subitizing range. However, the
amplitude of the neural response was modulated by numerosity
in the estimation range only. An increase in numerosity in
the subitizing range had no impact on the amplitude of the
observed IPS response. This discontinuity in the slopes of
neuronal response between subitizing and estimation range
closely resembled the characteristic response pattern observed
in the behavioral data. This seems to indicate a qualitative
distinction between the processing of numerosity for small and
large arrays of dots in bilateral IPS. To the best of our knowledge
this is the first fMRI study that reports a signature in IPS
response for a transition between subitizing and estimation

processes. Importantly, our findings are in line with the results
of a recent fNIRS study by Cutini et al. (2014) who reported
that the hemodynamic response in the IPS as a function of
numerosity was best fitted by a sigmoid function: for dot patterns
exceeding the subitizing range, a steep increase in IPS response
was observed followed by a tendency to plateau. However, Cutini
et al. (2014) only presented dot patterns ranging from 2 to 6.
Consequently, results regarding IPS response in the estimation
range have to be interpreted with caution. Consistent with the
findings of Cutini et al. (2014), we observed a steep increase in
IPS response when the subitizing limit was exceeded. However,
we did not observe an immediate tendency of the IPS response to
plateau. Instead, IPS response increased linearly in the estimation
range. This may be due to the fact that the estimation range in the
present study was larger than in the study of Cutini et al. (2014)
since participants enumerated dot patterns of up to 8 dots.

According to the abstract coding hypothesis of the ANS
account, neurons in the IPS coding numerosity should be
insensitive to the spatial arrangement of dots in a visual array
(Dehaene et al., 1998; Dehaene et al., 2003; for a review see Cohen
Kadosh and Walsh, 2009). To evaluate this, we presented dot
patterns in random, canonical, and dice pattern arrangements. In
the following the influence of the arrangement of elements in an
array on IPS response will be discussed.

Abstract vs. Format-Specific
Representation of Numerosity
We extended the findings of Cutini et al. (2014) by demonstrating
that the neural response in the IPS was also modulated by
the spatial arrangement of dots in the arrays. Within the
subitizing range the amplitude of IPS responses did not differ
significantly between arrangements, whereas in the estimation
range a clear differentiation of amplitudes was found. Random
spatial arrangements led to strongest IPS activity, followed
by canonical and dice arrangements. Interestingly, for dice
arrangements the amplitude of IPS responses was similar in
subitizing and estimation range. In fact, the slope of IPS
activity as a function of numerosity was close to zero indicating
that IPS activity did not increase with numerosity during
quantification of dice patterns. In our view, this finding is of
particular interest since it is hard to reconcile with the notion
of abstract coding of numerical magnitude in the IPS (e.g.,
Dehaene et al., 1998). According to this account, neuronal
populations in the IPS coding numerical quantity should be
insensitive to the input format in which numerical information
is presented (Dehaene et al., 2003). As a consequence, numerical
information in different input formats (e.g., symbolic digits and
non-symbolic dot patterns) should elicit a similar neural response
in number sensitive IPS areas. However, the abstract coding
account was recently challenged (Cohen Kadosh and Walsh,
2009). fMRI adaptation studies showed that recovery of IPS
response after presentation of a deviant numerosity subsequent
to repeated presentation of another numerosity in the adaptation
phase was notation dependent (Cohen Kadosh et al., 2007).
This challenges the assumption of an abstract representation
of numerosity in the IPS (but see Piazza et al., 2007, for an
alternative finding). Cohen Kadosh and Walsh (2009) pointed
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out that the amplitude of BOLD signal recovery after a deviant
numerosity also interacts with the format of the numerical
information and postulated format-specific representations of
number magnitude.

In line with this notion, Lyons et al. (2015) found
that although the IPS was involved during symbolic and
non-symbolic number processing, activation patterns in the IPS
differed fundamentally between notations. Applying RSA, they
demonstrated that similarity curves of symbolic numbers had
little to no overlap, whereas similarity curves of non-symbolic
numerosities overlapped significantly, with increasing overlap
as numerosities increased. The authors concluded that symbolic
numbers are represented “in a more discrete fashion” whereas
non-symbolic numbers are represented in “a more analog
fashion” (Lyons et al., 2015, p. 484). This finding supports a
notation dependent – and, therefore, non-abstract – quantity
representation in the IPS.

In sum, previous studies indicated that non-abstract
representations of numerical quantity exist that differ for
symbolic and non-symbolic numerical information. Our study
provides first evidence that even the quantity representation
for non-symbolic numerical information might be (at least to
some extent) format dependent and therefore non-abstract,
because we observed that the amplitude of IPS activity
was influenced by the spatial arrangement of dots during
quantification. Backing the results of the PSC analysis, the
RSA further revealed that the activation patterns in the IPS
differed significantly between arrangements. The observed
differences in the widths of similarity curves for dice,
canonical, and random dot patterns speak against the idea
of an abstract representation of non-symbolic numerosity (see
also Cohen Kadosh and Walsh, 2009). Similarity curves for
dice pattern were narrower than similarity curves for canonical
arrangements, which in turn were narrower than similarity
curves for random arrangements. Narrower similarity curves
can be interpreted to reflect a more precise representation of
numerosity in the IPS because the overlap between adjacent
numbers decreases.

In particular, for dice patterns (and partly so for canonical
arrangements) the precision of the underlying neural
representation of quantity (as reflected by the width of the
similarity curves) was not influenced by numerosity. This finding
is in line with the results for the representation of symbolic
numbers in a computational modeling study by Verguts and Fias
(2004). After repeated coupling of non-symbolic and symbolic
numerical input (e.g., “3” and “• • •”), numerosity-selective
neurons that developed during unsupervised learning in a
previously uncommitted neuronal network provided with
non-symbolic stimuli also responded to the symbolic code.
However, the overlap of tuning curves for symbolic input did
not increase with increasing numerosity, indicating a more
precise representation for this symbolic numerical input.
Similarly, the width of tuning curves did not increase with
increasing numerosity for dice patterns in the present study. This
provides evidence that the numerosity of frequently perceived
spatial arrangements (e.g., dice pattern and symmetrical
arrangements) might be represented in a manner comparable

to symbolic numerical input (e.g., Arabic digits) in the
IPS.

Quantification and Pattern Recognition
Another explanation for the difference between subitizing
and estimation and the influence of arrangement on IPS
activity might be the involvement of an additional mechanism
that supports quantification and the formation of a precise
representation of numerosity. We think that a pattern
recognition process that particularly supports subitizing
but also estimation of canonical and dice arrangements seems
plausible (e.g., Mandler and Shebo, 1982). According to studies
on pattern recognition, familiar configurations are recognized
faster and less error-prone than random configurations of local
elements. On the one hand, this would explain why we did not
observe an effect of arrangement in the subitizing range. Three
dots can often be perceived as a triangle and four dots as a
square, irrespective of their spatial arrangement, making pattern
recognition an efficient and reasonable process supporting visual
quantification of small sets of objects. On the other hand, the
distinct IPS response in the estimation range might also be
accounted for by processes of pattern recognition. In case of
canonical arrangements and dice patterns, the very same pattern
recognition mechanism might be active, resulting in less activity
but a more precise neural representation in the IPS (as indicated
by the ROI and RSA results). Shorter RTs and reduced ERs
for canonical and dice arrangements in the estimation range
may be interpreted as support for the involvement of a pattern
recognition mechanism. However, for random arrangements
in the estimation range this mechanism may not be effective.
Further fMRI studies are needed to revisit the question whether
pattern recognition or a similar cognitive process (e.g., Gestalt
perception, Wertheimer, 1923; Rennig et al., 2013) may explain
why the IPS response is sensitive to the arrangement of dots
during enumeration. Furthermore, it needs to be evaluated
whether pattern recognition mechanisms can adequately explain
the distinctive neural responses when processing small as
compared to large visual arrays.

It has to be noted that increasing task difficulty was observed
to be associated with stronger IPS activation itself. Because task
difficulty increases with numerosity, the observed modulation
of IPS response may simply reflect increasing task demands.
However, various fMRI adaptation studies demonstrated that
the IPS shows a number magnitude specific response even in
passive viewing paradigms with no task demands (Eger et al.,
2003; Piazza et al., 2004). Therefore, we are confident that IPS
modulation in the present study reflected magnitude processing
rather than mere difficulty effects. Moreover, the non-linearity
of the IPS response at the transition between subitizing and
estimation range cannot convincingly be explained by effects
of task difficulty alone. In particular, the striking discontinuity
in the IPS response around the subitizing limit violates the
prediction of a linear increase of IPS response with increasing
difficulty. Furthermore, numerosity for random and canonical
arrangements was matched within the estimation range, meaning
that dot patterns consisting of between 5 and 8 elements were
presented in both conditions. Therefore, differences in IPS
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response between arrangements conditions cannot be explained
by higher task difficulty due to an increase in numerosity
alone. Therefore, we think that the observed modulation of
IPS response as function of arrangement within the estimation
range might reflect the impact of arrangement on non-symbolic
magnitude processing. However, future studies should aim at
further clarifying how the spatial arrangement of non-symbolic
numerical information influences number processing.

CONCLUSION

Taken together, our results suggest that the IPS is a key brain area
for quantification processes both within and above the subitizing
range (Piazza et al., 2002, 2004; Dehaene et al., 2003; Demeyere
et al., 2014). However, the results of the ROI analysis showed
a striking discontinuity in the amplitude of the IPS response
between subitizing and estimation range, with a steep increase
of activity for arrays with more than four elements. To our
knowledge, this is the first fMRI study that found a signature
in the IPS response for such a transition between subitizing and
estimation processes. Furthermore, we observed that amplitude
and pattern of IPS activation during enumeration depended on
the arrangement of dots in the respective pattern. This is first
evidence that even the representation of non-symbolic quantities
in the IPS might not be abstract but format dependent (Cohen
Kadosh and Walsh, 2009). In particular, our findings raise the
question whether proposed models of non-symbolic magnitude
representation (e.g., linear and logarithmic model; Pica et al.,
2004) may only fit when the non-symbolic numerical input
(e.g., dot patterns) is randomly arranged. We propose that dot
patterns presented in a configuration frequently perceived (e.g.,

symmetrical or dice patterns) may even be represented similar to
symbolic input. Therefore, the findings of the present study are
hard to reconcile with the abstract coding of numerosity even
for numerical information within a single notation. However,
further studies with varying stimulus material are needed to
further substantiate the idea of format dependent representations
of numerical quantity within a single notation.
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APPENDIX A

Dot pattern with random, canonical and dice arrangement adapted from Wender and Rothkegel (2000).

APPENDIX B

FIGURE B1 | Results of the whole brain analysis. The contrast between dice and canonical arrangements within the estimation range (depicted in green) revealed
activation in bilateral supramarginal gyrus as well as right hemispheric activation in angular gyrus and retrosplenial cortex. The reversed contrast canonical vs. dice
within estimation ranged (depicted in red) revealed stronger activation in bilateral IPS as well as stonger activation in right inferior temporal gyrus and left middle
occipital gyrus. Activation is depicted on a 3D rendered surface (all at Pcluster-corr < 0.001, cluster size of k = 15 voxels).
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FIGURE B2 | Results of the whole brain analysis. To provide a sanity check of our data, we provide simple contrasts against baseline. Both contrasts, Subitizing vs.
baseline (A, depicted in red) as well as Estimation vs. Baseline (B, depicted in blue) reveald strong activation of a fronto parietal network (including bilateral IPS) and
various visual and motor areas (see Table B1 for details). Therefore, brain activation mirrors characteristics of the visual quantification task in which subsequent to the
presentation of a visual stimulus a manual response was required. Activation is depicted on a 3D rendered surface (all at p < 0.05 (FWE) correction, k = 15 voxels).
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TABLE B1 | For sake of completeness we provide the remaining relevant contrasts between arrangements within the estimation range as well as simple contrasts
against baseline.

Contrast Brain region MNI (x, y, z) Cluster size T

Dice vs. canonical

RH angular gyrus (PGa) 62 −54 23 271 4.91

RH supramarginal gyrus (PF)∗ 60 −54 35 4.92

LH supramarginal gyrus (PF) −66 −46 33 44 4.64

RH retrosplenial cortex 7 −44 36 16 4.51

Canonical vs. dice

RH intraparietal sulcus (hIP1, hIP3) 32 −49 53 560 6.55

LH intraparietal sulcus (hIP3) −24 −63 56 76 5.93

LH middle occipital gyrus −28 −94 28 64 6.33

RH inferior temporal gyrus 50 −64 −3 45 5.73

Subitizing

RH calcarine gyrus 10 −94 10 13504 30.01

LH calcarine gyrus∗ −1 −91 3 27.63

RH cuneus∗ 12 −99 20 30.97

LH cuneus∗ 64 23 84 26.07

LH thalamus parietal −21 −31 0 198 11.12

LH thalamus prefrontal∗ −13 −24 13 6.32

RH thalamus visual 22 −31 0 136 9.70

RH thalamus premotor∗ 15 −21 10 6.06

LH putamen −21 9 8 67 6.27

LH supplementary motor corex −6 13 50 382 9.97

LH middle frontal gyrus −28 1 53 432 9.79

LH precentral gyrus −53 6 38 58 7.51

Estimation

LH posterior-medial frontal gyrus −6 9 55 857 13.63

LH anterior cingulate cortex∗ −11 24 33 6.34

RH middle cingulate cortex∗ 7 14 50 9.44

RH superior frontal gyrus, extending into middle frontal gyrus 27 −4 58 243 9.71

RH inferior frontal gyrus (p.opercularis) 47 4 30 150 8.71

RH calcarine gyrus 12 −90 5 15799 29.03

RH cuneus∗ 12 −101 18 28.33

LH superior occipital cortex∗ −13 −101 10 23.85

LH middle occipital cortex∗ −18 −104 13 23.08

Left supplementary motor cortex −6 13 50 857 13.63

LH thalamus parietal extending into thalamus prefrontal −21 −27 −5 218 10.97

RH thalamus 22 −31 0 46 9.13

RH middle frontal gyrus 27 1 53 243 9.71

RH precentral gyrus 47 8 25 150 8.71

LH insular lobe −31 21 5 86 7.89

LH putamen −21 13 3 148 7.86

RH putamen 20 16 0 57 7.07

∗Secondary peak. MNI, Montreal Neurological Institute; T, t-value; complex contrasts: Pcluster-corr < 0.001, cluster size of k = 15 voxels; simple contrasts: P < 0.05 (FWE)
correction, cluster size of k = 15 voxels.
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