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Atypical brain function in attention-deficit/hyperactivity disorder (ADHD) has been

identified using both task-activation and functional connectivity fMRI approaches. Recent

work highlights the potential for another measure derived from functional neuroimaging

data, brain signal variability, to reveal insights into clinical conditions. Higher brain signal

variability has previously been linked with optimal behavioral performance. At present,

little is known regarding the relationship between resting-state brain signal variability

and ADHD symptom severity. The current study examined the relationship between a

measure of moment-to-moment brain signal variability called mean-square successive

difference (MSSD) and ADHD symptomatology in a group of children (7–12 years

old) with (n = 40) and without (n = 30) a formal diagnosis of ADHD. A categorical

analysis comparing subjects with and without a clinical diagnosis of ADHD showed

no differences in MSSD between groups. A dimensional analysis revealed a positive

relationship between MSSD and overall ADHD symptom severity and inattention across

children with and without an ADHD diagnosis. Specifically, this positive relationship was

found in medial prefrontal areas comprising the default mode network. These results

demonstrate a link between intrinsic brain signal variability and ADHD symptom severity

that cuts across diagnostic categories, and point to a locus of dysfunction consistent

with previous neuroimaging literature.

Keywords: ADHD, brain signal variability, resting-state fMRI, MSSD, prefrontal cortex

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is characterized by a lack of attention,
impulsivity, and hyperactivity and affects ∼11% of young individuals aged 4–17 years old (Visser
et al., 2014). Contemporary theories posit that beyond dysfunction of prefrontal-striatal circuitry,
ADHD symptomatology can also be linked to atypical patterns of functional connectivity within
and among a number of large-scale brain networks (Castellanos and Proal, 2012). While a great
deal of recent work has focused on delineating this atypical neural circuitry (Castellanos and Aoki,
2016), other neural properties associated with the disorder remain relatively unexplored.

Recently, analysis of BOLD signal variability has emerged as a valuable tool for investigating
individual differences in behavioral performance. Increased BOLD signal variability during fixation
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periods in a task-based fMRI paradigm is more prevalent in
younger compared with older adults (Garrett et al., 2010). These
increases in BOLD signal variability were found in frontal,
parietal, temporal, and subcortical brain areas. Intrinsic BOLD
signal variability in resting-state fMRI data has been shown to
generally decrease for most areas of the brain across the lifespan
and increase within the insula and ventral temporal cortex (Nomi
et al., 2017). These studies demonstrate how intrinsic BOLD
signal variability measures can identify meaningful differences
between and across subject populations.

Previous electrophysiological (Alba et al., 2016) and task-
based fMRI (Depue et al., 2010) investigations have identified
increased brain signal variability in participants with ADHD.
However, there has been virtually no work exploring how
underlying intrinsic brain signal variability is related to
ADHD symptomatology using resting-state fMRI approaches.
Investigations of variability in individuals with ADHD have
traditionally focused on behavioral measures of reaction
time or electrophysiological activity. Behavioral studies have
demonstrated that individuals with ADHD generally exhibit
greater reaction time variability that is thought to arise
from momentary lapses in attention (Alderson et al., 2007).
Electrophysiological investigations have shown that individuals
with ADHD have increased variability of intrinsic functional
connections between frontal, parietal, occipital, and temporal
brain areas (Barttfeld et al., 2014; Alba et al., 2016).

We are currently aware of only two studies that have
investigated brain signal variability in ADHD using fMRI (Depue
et al., 2010; Sørensen et al., 2016). Depue and colleagues
demonstrated that BOLD variability during an executive function
Stroop task was higher in young adults with ADHD in the
ventral medial prefrontal cortex (MPFC), parietal, subcortical,
and cerebellar brain areas compared with young adults without
ADHD (Depue et al., 2010). Sørensen and colleagues examined
trial-by-trial variability during an odditory oddball paradigm
and showed that adolescents with ADHD had greater BOLD
amplitude variabilty compared with adolescents without ADHD.
Higher BOLD amplitude variability in individuals with ADHD
was found in the ventral MPFC as well as the basal ganglia
(Sørensen et al., 2016). However, after controlling for age and
IQ, only amplitude variability in the ventral MPFC remained
significantly higher in adolescents with ADHD compared with
adolescents without ADHD. Both of these studies demonstrate
that individuals with ADHD have greater BOLD signal
variability compared with indivduals without ADHD during task
performance.

It is currently unknown if resting-state brain signal variability
is greater in individuals with ADHD compared with individuals
without ADHD. Previous fMRI studies have demonstrated that
the intrinsic functional organization of the brain during rest
is similar to the functional organization of the brain during
task-states (Cole et al., 2014; Bolt et al., 2017). Additionally,
the functional organization of the brain during rest can
predict the functional organization of the brain during task-
based fMRI (Cole et al., 2016; Tavor et al., 2016). These
studies support the idea that the increased fMRI resting-
state brain signal variability in individuals with ADHD may

underlie the increased brain signal variability found during task
performance.

The current study aimed to identify categorical and
dimensional relationships between BOLD brain signal variability
and ADHD symptom severity in children using resting-state
fMRI data. We computed a whole-brain voxel-wise measure of
BOLD signal variability called mean-square successive difference
(MSSD) previously used in task-based (Samanez-Larkin et al.,
2010) and resting-state (Nomi et al., 2017) fMRI investigations
to identify categorical and dimensional relationships between
MSSD and ADHD symptomatology. A categorical analysis
compared MSSD between individuals with and without a
diagnosis of ADHD, while a dimensional analysis examined the
relationship betweenMSSD and ADHD symptom severity scores
across individuals with and without an ADHD diagnosis. Based
on task-based fMRI findings in individuals with ADHD (Depue
et al., 2010; Sørensen et al., 2016), we hypothesized that increased
resting-state brain signal variability would be associated with a
diagnosis of ADHD and greater ADHD symptom severity.

METHODS

Participants
Data for 222 participants were downloaded from the ADHD-
200 database (http://fcon_1000.projects.nitrc.org/indi/adhd200/)
(Milham et al., 2012). All participants were from the New York
University Child Study Center at the Langone Medical Center.
As the goal of the current study was to investigate young children
with ADHD, individuals over the age of 12 were not included
(88 participants). From the remaining 134 participants, some
participants had two resting state scans for a total of 200 scans;
for these individuals, we selected the resting state scan with lower
levels of motion. Any scan with high absolute motion (>3mm
absolute rotation and/or translation) was removed (37 scans; 15
participants) and any participant with low IQ (Full-IQ < 80) or
no IQ scores were also removed (four participants). Participants
with negative handedness scores or no handedness scores were
also removed (four participants). The remaining scans were used
to match participants using random selection across groups on
IQ, age, framewise displacement (FD), and the total number of
volumes with an FD less than 0.5mm (p > 0.1) (Table 1). The
final dataset included 70 participants [n= 40 ADHD, 27 male; 30
typically developing (TD), 16 male; all right-handed, 7–12 years].
The NYU institutional review board approved all procedures for
data collection and sharing and written informed consent was
obtained from each participant.

In the ADHD group, 27 had an ADHD-combined diagnosis
while 13 had an ADHD-inattentive diagnosis. No participants in
the control group were on medication, four participants in the
ADHD group were on medication, and medication status for 25
ADHD participants was not available. Two participants in the
control group had a secondary diagnosis of anxiety. In the ADHD
group, secondary diagnoses consisted of anxiety (3), oppositional
defiant disorder (3), depression (2), reading disorder (1), phobia
(1), pervasive developmental disorder (1), and dysgraphia (1).

Inclusion as a TD child was based on the absence of
any current Axis-I psychiatric diagnoses as determined by
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TABLE 1 | Participant demographics.

n Mean

age (SD)

Mean full-scale

IQ (SD)

Mean FD

(SD)

Mean

volumes< 0.5mm

FD (SD)

ADHD 40 9.91

(1.24)

109.43 (14.81) 0.130

(0.042)

164.10 (7.44)

TD 30 9.43

(1.40)

112.17 (16.22) 0.129

(0.039)

163.73 (6.03)

p-value 0.13 0.46 0.94 0.83

administering the Kiddie-Schedule for Affective Disorder and
Schizophrenia-Present and Lifetime Version (KSADS-PL) to
each child and their parent. Inclusion as a child with ADHD
required a clinical ADHD diagnosis based on each parent and
child’s responses to the KSADS-PL. IQ was evaluated using the
Wechsler Abbreviated Scale of Intelligence (WASI). Finally, no
psycho-stimulant drugs were administered to participants for at
least 24 h prior to scanning. Full participant details can be found
at http://fcon_1000.projects.nitrc.org/indi/adhd200/.

Data Acquisition
All subjects were scanned using a 3T Allegra following the
diagnostic assessment. The resting state fMRI data were collected
using an echo-planner imaging (EPI) sequence (TR = 2,000ms;
TE = 15ms; flip angle = 90◦; FOV = 240mm; voxel size = 3
× 3 × 4mm; number of slices = 33, 4mm slice thickness; 180
volumes). Participants were asked to remain still, close their eyes,
think of nothing in particular and not to fall asleep, while a black
screen was presented to them.

One high-resolution T1-weighted anatomical image was
acquired using a magnetization prepared gradient echo sequence
(MP-RAGE: TR = 2,530ms; TE = 3.25ms; flip angle = 7◦;
FOV = 256mm; voxel size = 1.3 × 1 × 1.3mm; number of
slices = 128, 1.33mm slice thickness; 8.07min). Each image was
defaced to ensure patient confidentiality.

Data Preprocessing
The data were preprocessed using the Data Processing Assistant
for Resting-state fMRI Advanced Edition (DPARSF-A) toolbox
(Yan and Zang, 2010), along with FSL and AFNI tools.
Preprocessing steps consisted of the removal of the first 5
volumes to allow for BOLD signal stabilization, slice-timing
correction, realignment, normalization to the SPM EPI template
(3mm), and smoothing (6mm FWHM using FSL). ICA-FIX
denoising (Salimi-Khorshidi et al., 2014) was then applied
to all subjects by first classifying noise components from 10
randomly chosen individuals with ADHD and 10 randomly
chosen individuals without ADHD. ICA-FIX was then applied
to create a training file of independent component noise features
that was then used to regress out noise components from the data
of all subjects. Noise-regression (Friston 24 motion parameters)
was not used at this stage, as it was applied independently
in later preprocessing steps. Previous research has shown that
ICA denoising decreases non-neuronal sources of BOLD signal
variability (Ciric et al., 2017) while increasing effect sizes of

between-group brain signal variability differences (Garrett et al.,
2010). Further preprocessing steps included despiking (AFNI’s
“new” 3dDespike algorithm) and nuisance signal regression
Friston 24 motion parameters, cerebral spinal fluid (CSF), white
matter (WM), and linear detrending using DPABI (Yan et al.,
2016). Nuisance signals for WM and CSF were acquired using
masks from segmented T1 brain-extracted images in SPM.
The data were then band-pass filtered to isolate low frequency
fluctuations that characterize resting-state BOLD signals (0.01–
0.1Hz). Additional supplementary analyses were conducted
without the use of WM and CSF nuisance regressors.

Calculation of Voxel-Wise MSSD
Preprocessed resting-state fMRI data were first normalized to
z-statistics before calculation of voxel-wise MSSD statistics for
each subject (Samanez-Larkin et al., 2010; Nomi et al., 2017).
MSSD is calculated by subtracting time point t from time point
t+1 then squaring the result. The squared values across the entire
time series are then averaged together to produce a single MSSD
metric for each voxel for each subject (Von Neumann et al.,
1941).

δ2 =

∑n−1
i = 1 (xi+1 − xi)

2

n− 1

Categorical and Dimensional Analyses
All analyses were carried out on subject-level whole-brain
voxel-wise MSSD maps using ordinary least squares (OLS)
regression in FSL (Benjamini and Hochberg, 1995). A categorical
analysis compared MSSD values between children with an
ADHD diagnosis and children without an ADHD diagnosis
(i.e., TD children). Dimensional analyses examined the
relationship between voxel-wise whole-brain MSSD and
ADHD symptom severity across all children regardless of
ADHD diagnosis. Three measures of symptom severity were
examined in the current study from the Conners’ Parent
Rating Scales-Revised: Long-version (CPRS-LV). They were the
ADHD-index (identifies children “at risk” for ADHD), ADHD-
inattentive (correspondence with the DSM-IV diagnostic
criteria for inattentive type of ADHD), and ADHD-hyperactive
(correspondence with the DSM-IV diagnostic criteria for
hyperactive type of ADHD) scores. One participant with an
ADHD diagnosis and one participant without an ADHD
diagnosis did not have behavioral scores for all three measures;
these participants were excluded from all dimensional analyses.
Both categorical and dimensional analyses included handedness,
gender, and FD as nuisance regressors in the OLS model.
All analyses were carried out using p < 0.05 for voxel-wise
(uncorrected) and p < 0.05 for cluster-wise (Guassian Random
Field theory corrected) significance thresholds.

RESULTS

Categorical Analysis
There were no significant voxel-wise differences surviving
cluster-correction between children with ADHD and TD
children across the whole brain.
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Dimensional Analyses
Significant relationships with MSSD were found for ADHD-
index and ADHD-inattentive symptom severity scores across
children with and without an ADHD diagnosis (Figure 1). The
cluster-corrected results demonstrated that higher scores (e.g.,
increased symptom severity) on the ADHD-index measure were
related to increased MSSD in the dorsal MPFC and ventral
MPFC, while higher scores on the ADHD-inattentive measure
were associated with greater MSSD in the ventral MPFC. No
significant relationships between MSSD and ADHD-hyperactive
scores were observed.

Additional analyses were conducted without the use of
WM and CSF nuisance regressors. The average within-subject

correlation between the MSSD values without WM and
CSF nuisance regressors and MSSD values with WM and
CSF nuisance regression were extremely high (r = 0.997,
SD= 0.0017), demonstrating the preservation of spatial
MSSD patterns between the two preprocessing pipelines.
Similar spatial representations of positive correlations between
MSSD and ADHD symptomatology were also observed
(Supplementary Figure 1).

Post-hoc Spearman’s rho correlations were conducted in order
to demonstrate that the positive relationship between MSSD
values and ADHD symptomatology remained significant when
averaging MSSD values across voxels within identified clusters.
Significant correlations were found between average MSSD

FIGURE 1 | (Top) Significant clusters of MSSD values related to ADHD-Index (red) and ADHD-Inattentive (blue) scores; (Bottom) Scatterplots of averaged MSSD

values within clusters plotted against ADHD scores. DMPFC, dorsal medial prefrontal cortex; VMPFC, ventral medial prefrontal cortex.
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values within the MPFC and ADHD-index scores (rho = 0.502,
p = 0.000013) and also between average MSSD values within
the ventral MPFC and ADHD-inattentive scores (rho = 0.506,
p= 0.000011).

Framewise Displacement and MSSD
In order to examine the influence of head motion on brain signal
variability, an additional OLS regression was run using mean FD
values to predict MSSD values. The results showed both positive
and negative relationships between FD and MSSD across various
areas of the cortex (Supplementary Figure 2) demonstrating
the importance of controlling for head motion in brain signal
variability studies.

DISCUSSION

The current study provides initial evidence that voxel-wise
intrinsic brain signal variability is related to ADHD symptom
severity. This relationship was only present in a dimensional
analysis examining ADHD symptom severity across children
with and without a clinical diagnosis of ADHD. There were
no categorical differences in voxel-wise whole-brain brain signal
variability between children with and without a diagnosis of
ADHD. The examination of dimensional relationships between
brain signal variability and ADHD symptomatology regardless of
ADHD diagnosis follows recent efforts that focus on quantitative
measures of clinical disorders [e.g., Research Domain Criteria
(RDoC), (Insel et al., 2010)] rather than categorical separations
of diagnosis/no diagnosis (Uddin et al., 2017).

The current results also demonstrate that increased resting-
state brain signal variability may underlie increased task-based
brain signal variability in individuals with ADHD (Depue et al.,
2010; Sørensen et al., 2016). This builds on previous work
showing that the brain can have a similar functional organization
during rest and task (Cole et al., 2014; Bolt et al., 2017) and that
functional properties of the brain at rest can predict functional
properties of the brain during task (Cole et al., 2016; Tavor
et al., 2016). Thus, increased task-based brain signal variability
in ADHD may not be solely a result of task-driven influences.
The current study suggests that increased task-based pre-frontal
cortex brain signal variability related to ADHD symptomatology
may be partly driven by endogenous rather than exogenous
factors.

The current finding of a relationship between brain signal
variability in the dorsal and ventral MPFC and ADHD symptom
severity is in line with previous task-based and resting-
state fMRI studies identifying aberrant MPFC brain activity
in ADHD. Previous task-based fMRI studies in adolescents
and adults demonstrated categorical effects where individuals
with ADHD showed increased brain signal variability in the
MPFC compared with individuals without ADHD (Depue
et al., 2010; Sørensen et al., 2016). A previous resting-state
fMRI study in children showed atypical functional connections
underlying both categorical and dimensional aspects of ADHD
in the dorsal MPFC and ventral MPFC (Elton et al., 2014).
Finally, decreased regional homogeneity (functional connections
between neighboring voxels) in the PFC in individuals with

ADHD has been found in previous resting-state fMRI studies
in children (Cheng et al., 2012; An et al., 2013) and adults
(Uddin et al., 2008; Liu et al., 2010). The current study builds on
these previous studies by demonstrating that resting-state brain
signal variability within the MPFC is related to ADHD symptom
severity in children.

The dorsal and ventral MPFC are anterior nodes within the
default mode network (DMN) (Andrews-Hanna et al., 2010).
The DMN is generally involved in internally oriented, evaluative
cognitive processes (Uddin et al., 2007). More specifically, the
dorsal MPFC has been implicated in a DMN subsystem that is
related to self-relevant and affective processing, while the ventral
MPFC has been implicated in a DMN subsystem tied to mental
imagery (Andrews-Hanna et al., 2010). Atypical activation in
posterior nodes of the DMN such as the precuneus has been
identified in ADHD in a task-based meta-analysis (Cortese et al.,
2012) while several resting-state studies have found decreased
functional connections between anterior and posterior nodes
of the DMN (Castellanos and Aoki, 2016). In tasks engaging
executive function processes, the DMN typically deactivates
while an externally-oriented central executive network (CEN)
increases in activation. Increased anti-correlations between the
DMN and CEN during rest and task have been tied to
reduced reaction time variability in a flanker task in typical
individuals (Kelly et al., 2008). Increased reaction time variability
commonly found in individuals with ADHD may be accounted
for by atypical relationships between the DMN and CEN, with
DMN dysfunction playing a role in DMN-CEN anti-correlation
strength (Castellanos and Proal, 2012). Underlying differences in
brain signal variability of network nodes within the DMN during
rest may contribute to atypical DMN-CEN dysfunction during
task, and in turn may help to explain attentional lapses in ADHD
that lead to inefficient cognitive processing.

The utility of brain signal variability measures for providing
meaningful information about brain activity apart frommeasures
of BOLD activation strength has been demonstrated in previous
research. Depue and colleagues showed that brain areas differing
in brain signal variability between individuals with and without
a diagnosis of ADHD did not differ in univariate activation
strength, while brain areas that did differ in univariate activation
strength between groups did not differ in brain signal variability
(Depue et al., 2010). Garret and colleagues showed that
differences in brain signal variability (measured by standard
deviation) during fixation periods between visual detection,
perceptual matching, attentional cueing, and working memory
trials predicted age better than differences in the mean level of
BOLD activation (Garrett et al., 2010). These studies demonstrate
the utility of brain signal variability for providing unique
information that is at times unrelated to BOLD activation
measures. Thus, the findings of the current study provide another
avenue to describe atypical BOLD signal properties related
to ADHD symptomatology that can offer unique information
compared with measures of functional connectivity or univariate
BOLD activation levels.

The finding of a positive relationship between increased brain
signal variability and ADHD symptomatology in the current
study during rest and previous studies during task (Depue et al.,
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2010; Sørensen et al., 2016) is seemingly at odds with the
plethora of research demonstrating that increased brain signal
variability is associated with younger individuals (Nomi et al.,
2017) and improved task performance (Garrett et al., 2013).
However, optimal brain function may be supported by a Yerkes-
Dodson curve where increased brain signal variability becomes
detrimental to cognitive performance after a yet unidentified
critical window. It may be the case that individuals with
ADHD have brain areas within the PFC that surpass this
optimal window of variability, where it becomes detrimental to
their cognitive performance. Additional considerations should
also be given to differences in the type of paradigm (rest
vs. task), the measurement of brain signal variability (e.g.,
standard deviation vs. MSSD), and differences in individual
study population samples. Further research is needed to clarify
the relationship between brain signal variability, cognition, and
clinical symptomatology.

Finally, brain signal variability has also become an important
avenue of investigation in autism spectrum disorder (ASD),
with researchers proposing that atypical variability may have
cognitive and behavioral consequences for afflicted individuals
(Dinstein et al., 2015). Functional connectivity studies have
recently demonstrated that hyper-variability may be responsible
for the hypo-connectivity between brain areas often present
in ASD (Falahpour et al., 2016; Chen et al., 2017). Because
individuals with ASD are often co-diagnosed with ADHD
(Simonoff et al., 2008), brain signal variability is increasingly
becoming an important area of investigation for both ASD
and ADHD. Investigating the relationship between brain signal
variability, ASD, and ADHD would provide valuable insight into
the nature of each disorder, and the consequences of comorbidity
for cognition and behavior (Dajani et al., 2016).

Limitations
One limitation of the current study may be related to the
significance threshold (p < 0.05) for voxel-wise correction.
Previous research on task-based fMRI data suggests that a stricter
voxel-wise criterion (p < 0.001) in conjunction with a cluster-
wise criterion (p < 0.05) provides better protection against type
I errors (Eklund et al., 2016). However, as previous work focused
on false positives related to task-based fMRI activation clusters,
it is currently unknown how this translates to investigations of
resting-state brain signal variability.

Another concern is the use of participants with both
a combined diagnosis and inattentive diagnosis of ADHD.
Previous research has shown that differences in functional
connections can be observed between ADHD-combined and
ADHD-inattentive diagnostic groups in fMRI research (Fair
et al., 2012). The current study used a combination of both

diagnostic groups, as the main concern was to equate ADHD
and control groups on IQ and head motion. As head motion has
been shown to artificially increase the magnitude of the BOLD
signal (Power et al., 2012), it may be possible that increased
head motion can lead to increased BOLD signal variability. A
supplementary analysis using FD as a predictor of MSSD in an
OLS voxel-wise regression analysis showed both positive and
negative relationships between FD andMSSD. We note that both
groups had extremely low FD due to careful participant selection
and matching criteria. This demonstrates the importance of
controlling for head motion in brain signal variability studies
(Supplementary Figure 2). Thus, the current study prioritized
avoiding group differences in head motion between children
with and without an ADHD diagnosis. Future work should
investigate associations between ADHD subtypes and brain
signal variability.

CONCLUSIONS

The current study demonstrates that resting-state BOLD
signal variability is related to dimensional, but not categorical
differences in ADHD symptomatology. The dimensional analysis
demonstrated that areas within the medial PFC are positively
correlated with measures of the ADHD index and ADHD
inattentive symptom severity. These results provide initial
evidence that resting-state brain signal variability in children is
a viable avenue of investigation to identify brain function related
to ADHD symptomatology.
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