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Hierarchically-organized data arise naturally in many psychology and neuroscience

studies. As the standard assumption of independent and identically distributed samples

does not hold for such data, two important problems are to accurately estimate

group-level effect sizes, and to obtain powerful statistical tests against group-level

null hypotheses. A common approach is to summarize subject-level data by a single

quantity per subject, which is often the mean or the difference between class means,

and treat these as samples in a group-level t-test. This “naive” approach is, however,

suboptimal in terms of statistical power, as it ignores information about the intra-subject

variance. To address this issue, we review several approaches to deal with nested

data, with a focus on methods that are easy to implement. With what we call the

sufficient-summary-statistic approach, we highlight a computationally efficient technique

that can improve statistical power by taking into account within-subject variances, and

we provide step-by-step instructions on how to apply this approach to a number of

frequently-used measures of effect size. The properties of the reviewed approaches and

the potential benefits over a group-level t-test are quantitatively assessed on simulated

data and demonstrated on EEG data from a simulated-driving experiment.

Keywords: hierarchical inference, group-level effect size, significance test, statistical power, sufficient summary

statistic, inverse-variance-weighting, Stouffer’s method, event-related potentials

1. INTRODUCTION

Data with nested (hierarchical) structure arise naturally in many fields. In psychology and
neuroimaging, for example, multiple data points are often acquired for the same subject throughout
the course of an experiment; thus, there exists a subject (lower) and a group (higher) level in the
data hierarchy. Two important questions are how to obtain precise estimators for group-level effect
sizes from nested data, and how to obtain powerful statistical tests for the presence of group-level
effects. The main difficulty associated with such nested data is that the assumption of identically
distributed observations is typically violated: while samples acquired from the same subject can
be considered to be identically distributed, different distributions must be assumed for different
subjects. Therefore, simply pooling the data of all subjects in order to apply a standard statistical
test like a t-test would lead to wrong results.

A flexible way to model nested data is to combine the data of all subjects in a single linear
model, referred to as the nested linear model, hierarchical linear model, multi-level model or
linear mixed model (Quené and Van den Bergh, 2004; Hox et al., 2010; Woltman et al., 2012;
Chen et al., 2013). Parameter estimation in such models is, however, difficult to implement and
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computationally expensive, as it typically requires non-linear
optimization of non-convex objective functions. Moreover, the
range of effects that can be modeled is limited to linear
coefficients. It is, therefore, worthwhile to study how group-level
inference can be implemented for other commonly used effect
size measures such as correlations or differences in the general
central tendencies of distributions.

In the neuroimaging (e.g., electro- and
magnetoencephalography, EEG/MEG) literature, the use of
suboptimal inference procedures is currently still widespread,
as discussed in Mumford and Nichols (2009) and Pernet et al.
(2011). Common hierarchical approaches often summarize
subject-level data by a single quantity per subject, which is
often the mean or the difference between class means, and
treat these as single samples in a group-level test. This “naive”
summary-statistics approach is, however, not optimal in terms of
statistical power, as it ignores information about the intra-subject
variance. Given the low signal-to-noise ratios and small sample
regimes that are typical for neuroimaging studies, the potential
loss of statistical power is unfortunate.

Group-level statistical power can be improved by
incorporating variances at the lower level in relatively simple
ways. The problem of estimating group-level effect sizes
and estimating their statistical significance can, moreover,
be formulated in a compellingly simple framework, where
group-level inference is conducted using the sufficient summary
statistics of separate subject-level analyses. The resulting
statistical methods are simple to implement, computationally
efficient, and can be easily extended to settings with more
than two nesting levels, which are common, e.g., in the
analysis of functional magnetic resonance imaging (fMRI)
data.

Sufficient summary statistics approaches are popular in
the field of meta analysis (Borenstein et al., 2009; Card,
2011). In neuroimaging, they are commonly used to estimate
group-level coefficients of hierarchical linear model (see
Beckmann et al., 2003; Monti, 2011, for methodological reviews).
Here, we argue that a wider range of popular effect size
measures can benefit from the high statistical power of
sufficient-summary-statistic-based estimators. While this has
been exploited in various experimental studies (Schubert et al.,
2009; Haufe et al., 2011; Winkler et al., 2015; Lur et al.,
2016; Batista-Brito et al., 2017), the theoretical grounds on
which such estimators are derived for different effect size
measures have not yet been summarized in a single accessible
source.

With this paper, we aim to fill this gap by providing a
review of ways to estimate group-level effect sizes and to assess
their statistical significance in the context of neuroimaging
experiments.We first provide a reference for a number of popular
parametric and non-parametric effect size measures (section 2.2),
which may be skipped by readers who want to proceed directly
to the nested setting. We then discuss the need to choose an
appropriate group-level model, as between-subject variability
differs depending on whether a “random effects” or “fixed effect”
model is assumed (section 2.3). We also demonstrate why the
simple approach of ignoring the group structure by pooling

the data of all subject is invalid (section 2.4). We then outline
the popular “naive” summary-statistic approach of computing
effect sizes on the subject level and treating these effect sizes as
single samples in a group-level test (section 2.5). With what we
call the sufficient-summary-statistic approach, we then discuss a
family of techniques capable to yield unbiased group-level effect
size estimates and powerful statistical tests of group-level null
hypotheses, and we highlight a particular approach that yields
minimum-variance effect size estimates by weighting each effect
with the inverse of its variance. In a tutorial style, we outline the
steps that are required to apply this approach to different effect
size measures (section 2.6). Lastly, we discuss the advantages
and drawbacks of Stouffer’s method of combining subject-level p-
values (section 2.7) in relation to summary-statistic approaches.

Using synthetic data representing a two-sample separation
problem, we empirically assess the performance of the reviewed
approaches (section 3). The properties of the various approaches
and the advantages of the sufficient-summary-statistic approach
are further highlighted in an application to EEG data acquired
during simulated emergency braking in a driving simulator
(section 4). All data are provided in Matlab format along with
corresponding analysis code1.

The paper ends with a discussion of nested linear models,
of multivariate extensions, and a note on non-parametric
(bootstrapping and surrogate data) approaches (section 5).

2. THEORY

2.1. Statistical Terminology
An effect size θ is any quantitative measure that reflects the
magnitude of some phenomenon of interest (e.g., a parameter in a
model). An estimator θ̂ for θ is unbiased, if its expected value is θ .

A statistical test is a procedure to decide, based on observed
data, whether a hypothesis about a population is true. In this
paper, our goal is tomake inference about the presence or absence
of an effect in the population. The null hypothesis is that no effect
is present. The zero effect is denoted by θ0. The null hypothesis
of no effect is denoted by H0 : θ = θ0. The alternative hypothesis
that an effect is present is denoted by H1. A one-tailed alternative
hypothesis assumes that eitherH1 : θ > θ0 orH1 : θ < θ0, while a
two-tailed alternative hypothesis assumes that H1 : θ 6= θ0.

A test statistic needs to be derived from the observed effect
size, where its distribution under the null hypothesis is known
or can be reasonably well approximated. The p-value denotes the
probability of obtaining a result at least as strong as the observed
test statistic under the assumption of the null hypothesis.
Denoting the test statistic by T, its cumulative distribution
function under the H0 by FT , and its observed value in a given
sample by τ , the p-values for a one-tailed alternative hypothesis
are given by

Pr(T ≤ τ |H0) = FT(τ ) (1)

Pr(T ≥ τ |H0) = 1− FT(τ ) , (2)

1https://github.com/stefanhaufe/GroupStats
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where Pr(·) denotes probability. The p-value for a two-tailed
alternative hypothesis is given by

2 ·min
{
Pr(T ≤ τ |H0), Pr(T ≥ τ |H0)

}
. (3)

The null hypothesis is rejected if the p-value falls below an alpha-
level α. In the opposite case, no conclusion is drawn. The most
commonly used alpha-levels are α = 0.05 and α = 0.01.
If the null hypothesis is rejected, we speak of a statistically
significant effect. The value of the test statistic that is required for
a significant effect is called critical value. The power of a statistical
test is the probability that the test correctly rejects the null
hypothesis when the alternative hypothesis is true. Conversely,
the false positive rate is the fraction of non-existent effects that
are statistically significant.

2.2. Common Effect Size Measures
Before introducing the nested data setting, we review a number
of popular effect size measures. For eachmeasure, we also present
an analytic expression of its variance, which is a prerequisite
for assessing its statistical significance. We will later need the
variance for performing statistical inference in the nested setting,
too.

2.2.1. Mean of a Sample
A common measure of effect size is the mean of a sample.
Consider a neuroimaging experiment, in which the participant
is repeatedly exposed to the same stimulus. A common question
to ask is whether this stimulus evokes a brain response that
is significantly different from a baseline value. Assume that we
observe N independent samples x1, . . . , xN ∈ R. The sample
mean is denoted by x̄ = 1

N

∑N
i=1 xi, and the unbiased sample

variance is given by σ̂ 2
x = 1

(N−1)
∑N

i=1(xi− x̄)2. The variance of x̄

is given by

V̂ar(x̄) = σ̂ 2
x

N
. (4)

Assuming independent and identically distributed (i.i.d.) samples,
which are either normal (Gaussian) distributed or large enough,
the null hypothesis H0 : x̄ = θ0 can be tested using that the
statistic

t = x̄− θ0√
V̂ar(x̄)

(5)

is approximately Student-t-distributed with N − 1 degrees of
freedom. This is the one-sample t-test.

A similar effect size is the mean difference x− y =
1
N

∑N
i=1 xi− yi of two paired samples (x1, y1), . . . , (xN , yN) ∈ R

2.
Here, the yi could, for example, represent baseline activity that
is measured in each repetition right before the presentation of
the experimental stimulus. A natural null hypothesis is that the
mean difference is zero, i.e., H0 : x− y = 0. This hypothesis
can be tested with a paired t-test, which replaces x by x − y in
Equations (4), (5).

Note that, if x or y cannot be assumed to be normal
distributed, a more appropriate test is the non-parametric

Wilcoxon signed-ranked test which tests whether the mean
population ranks differ (Wilcoxon, 1945). Alternative robust
techniques can lead to a more detailed understanding of how
the groups differs, see e.g., Rousselet et al. (2017) for a recent
summary.

2.2.2. Difference Between Class-Conditional Means
A slightly different treatment is required for the difference
between the means of two unpaired samples. Consider an
experiment with two conditions X and Y . In neuroimaging
studies, these could differ in the type of stimulus presented. We
observe NX samples x1, . . . , xNX

∈ R of brain activity within
condition X , and NY samples y1, . . . , yNY

∈ R within condition
Y . The sample means are denoted by x̄ and ȳ, and their difference
is given by

d̂ = x̄− ȳ . (6)

The variance of d̂ is estimated as

V̂ar(d̂) = σ̂ 2
x

NX

+
σ̂ 2
y

NY

, (7)

where σ̂ 2
x and σ̂ 2

y are the unbiased sample variances of X and Y .
The null hypothesis of equal means is given byH0 : d = 0. Under
the assumption of either normal distributed xi and yi, or large
enough samples, the null hypothesis can be tested with Welch’s
two-sample t-test. It computes the test statistic

t = d̂
√
V̂ar(d̂)

(8)

which is approximately Student-t-distributed. The degrees of
freedom can be approximated using the Welch-Satterthwaite
equation (Welch, 1947). Note that assuming equal variances of
X and Y leads to the better known Student’s t-test, which is,
however, less recommendable thanWelch’s t-test (Ruxton, 2006).

2.2.3. Area Under the ROC Curve
In many cases, one may be interested in quantifying the
predictive accuracy of a binary classifier to separate experimental
condition X from condition Y . A host of evaluation criteria are
available for this task, and we refer the interested reader to Baldi
et al. (2000) for a comprehensive review. The receiver operating
characteristic (ROC) is a plot that visualizes the performance of
such a binary classification system. It is obtained by plotting the
true positive rate (TPR) against the false positive rate (FPR) when
varying the threshold that divides the predicted condition into
X and Y . Assume without loss of generality that condition X

is associated with a positive label indicating that the detection
of instances of that condition is of particular interest, while
Y is associated with a negative label. TPR is defined as the
fraction of correctly classified positive samples among all positive
samples, while FPR denotes the fraction negative samples that are
incorrectly classified as positives.

A common way to reduce the ROC curve to a single quantity
is to calculate the area beneath it (Fawcett, 2006). The resulting
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statistics is called the area under the curve (AUC), and is
equivalent to the probability that a classifier will correctly rank
a randomly chosen pair of samples (x, y), where x is a sample
from X and y is a sample from Y (Hanley and McNeil, 1982).
The AUC is also equivalent (see Hanley andMcNeil, 1982; Mason
and Graham, 2002) to the popular Mann-Whitney U (Mann
and Whitney, 1947) and Wilcoxon rank-sum (Wilcoxon, 1945)
statistics, which provide a non-parametric test for differences in
the central tendencies of two unpaired samples. It is therefore
an appropriate alternative to the two-sample t-test discussed in
section 2.2.2, if the data follow non-Gaussian distributions.

Assuming, without loss of generality, that higher values are
indicative for class X , the AUC is given as

A = Pr(x > y | x ∈ X , y ∈ Y) . (9)

Perfect class separability is denoted by A = 0 and A = 1, while
chance-level class separability is attained at A = 0.5. Thus, a
common null hypothesis is H0 :A = 0.5.

Assume we have NX samples from condition X and NY

samples from condition Y . To compute the test statistics, all
observations from both conditions are pooled and ranked,
beginning with rank one for the smallest value. Defining by
rank(xn) the rank of xn (the n-th sample from condition X ), the
Wilcoxon rank-sum statistic for class X is defined as

W =
NX∑

n=1
rank(xn) , (10)

while the Mann-Whitney U statistic is given by

U =W − NX (NX + 1)

2
. (11)

Finally, the AUC statistic is given by

Â = U

NXNY

. (12)

The exact distributions ofW, U and Â under the null hypothesis
can be derived from combinatorial considerations (Mann and
Whitney, 1947; Mason and Graham, 2002), and critical values for
rejecting the null hypothesis can be calculated using recursion
formulae (Shorack, 1966). However, these distributions are
approximately normal distributed for samples of moderate size
(NX + NY ≥ 20). The mean and variance of Mann-Whitney’s U
is given by

EH0 (U) = NXNY

2
VarH0 (U) = NXNY (NX + NY + 1)

12
,

(13)

where EH0 (·) and VarH0 (·) denote expected value and variance
under the null hypothesis (Mason and Graham, 2002). From
Equation (12), the mean and variance of the AUC statistic follow
as

EH0 (Â) =
1

2
VarH0 (Â) =

VarH0 (U)

N2
XN2

Y

. (14)

Note that this null distribution does not depend on the
distribution of the data, and is only based on the assumptions
of i.i.d. samples, equal variances of both classes, and that
observations are ordinal (that is, it is possible to rank any two
observations).

If the null hypothesis is violated (e.g., A 6= 0.5), the variances

ofU,W, and Â become data-dependent. The variance for general
A can be approximated as (Hanley and McNeil, 1982; Greiner
et al., 2000)

V̂ar(Â) = Â(1− Â)+ (NX − 1)(Q1 − Â2)+ (NY − 1)(Q2 − Â2)

NXNY
,

(15)

where Q1 = Â/(2− Â) and Q2 = (2Â2)/(1+ Â). The variances
of U and W follow accordingly. A statistical test for the null
hypothesis can be devised using that

z = Â− 0.5
√
V̂ar(Â)

(16)

is approximately standard normal distributed for large sample
sizes (analogous for U andW).

2.2.4. Pearson Correlation Coefficient
The Pearson product-moment correlation coefficient ρ̂ is used
when one is interested in the linear dependence of a pair of
random variables (X,Y). Suppose that for each subject, we have
N i.i.d. pairs of observations (x1, y1), . . . , (xN , yN) ∈ R

2 with
sample mean (x̄, ȳ). In a neuroimaging context, these pairs could
reflect neural activity in two different anatomical structures,
or concurrently-acquired neural activity and behavioral (e.g.,
response time relative to a stimulus) data. The sample Pearson
product-moment correlation coefficient is given by

ρ̂ =
∑N

n=1(xn − x̄)(yn − ȳ)√∑N
n=1(xn − x̄)2

√∑N
n=1(yj − ȳ)2

, (17)

where ρ̂ = 1 denotes perfect correlation, and ρ̂ = −1
denotes perfect anti-correlation. The null hypothesis of no
correlation is given by H0 : ρ = 0. Assessing the statistical
significance of Pearson correlations can be done using the Fisher
z-transformation (Fisher, 1915), defined as

ζ (ρ̂) := 1

2
ln

(
1+ ρ̂

1− ρ̂

)
= arctanh(ρ̂) . (18)

If (X,Y) has a bivariate normal distribution, then ζ (ρ̂) is
approximately normal distributed with mean arctanh(ρ) and
variance

Var
(
ζ (ρ̂)

)
= 1

N − 3
. (19)

Therefore the test statistic

z = ζ (ρ̂)
√

Var
(
ζ (ρ̂)

) (20)
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is approximately standard normal distributed.
The Fisher-transformation is also used when averaging

correlations, where the standard approach is to Fisher-transform
each individual correlation before computing the average.
The reason behind this step is that the distribution of the
sample correlation is skewed, whereas the Fisher-transformed
sample correlation is approximately normal distributed and
thus symmetric (cf., Silver and Dunlap, 1987). Results can be
transformed back into a valid Pearson correlation using the
inverse transformation

ρ̂ := e2ζ (ρ̂) − 1

e2ζ (ρ̂) + 1
= tanh(ζ (ρ̂)) . (21)

The same back transformation can be applied to map confidence
intervals derived for ζ (ρ̂) into the Pearson correlation domain.

Pearson correlation can also be used to derive the coefficient of
determination, which indicates the proportion of the variance in
the dependent variable that is predictable from the independent
variable in a linear regression. If an intercept term is included
in the regression, the coefficient of determination is given as
the square of the Pearson product-moment correlation between
the two variables. Another strongly related quantity is the
point-biserial correlation coefficient, which is used when one
variable is dichotomous, i.e., indicates membership in one of two
experimental conditions. Pearson correlation is mathematically
equivalent to point-biserial correlation if one assigns two distinct
numerical values to the dichotomous variable. Note that Pearson
correlation can be seriously biased by outliers. We refer the
interested reader to Pernet et al. (2013) for possible remedies.

2.2.5. Linear Regression Coefficients
A multiple linear regression model has the form

yn = β0 + xn,1β1 + . . .+ xn,KβK + ηn , (22)

where the dependent variable yn, n ∈ {1, . . . ,N} is the n-
th sample, xn,k, k ∈ {1, . . . ,K} are independent variables (or,
factors), β1, . . . ,βK are corresponding regression coefficients, β0

is an intercept parameter, and ηn is zero-mean, uncorrelated
noise. In a neuroimaging context, the samples yn could represent
a neural feature such as the activity of a particular brain location
measured at various times n, while the xn,k could represent
multiple factors thought to collectively explain the variability
of yn such as the type of experimental stimulus or behavioral
variables. In some fields, such a model is called a neural encoding
model. It is also conceivable to have the reverse situation, in
which the xn,k represent multiple neural features, while the
dependent variable yn is of non-neural origin. This situation
would be called neural decoding.

The independent variables xn,k could be either categorial
(i.e., multiple binary variables coding for different experimental
factors) or continuous. The specific case in which all independent
variables are categorial is called analysis of variance (ANOVA).
Linear models therefore generalize a relatively broad class
of effect size measures including differences between class-
conditional means and linear correlations (Poline and Brett,
2012).

The most common way to estimate the regression coefficients
βk, k ∈ {0, . . . ,K} is ordinary least-squares (OLS) regression.
The resulting estimate is also the maximum-likelihood estimate
under the assumption of Gaussian-distributed noise. Using the
vector/matrix notations y = (y1, . . . , yN)

⊤, β = (β0, . . . ,βK)
⊤,

η = (η1, . . . , ηN)
⊤, xn = (1, xn,1, . . . , xn,K)

⊤, and X =
[x1, . . . , xN]

⊤ ∈ R
N×(K+1), Equation (49) can be rewritten as

y = Xβ + η. The OLS estimate is then given by

β̂ = (X⊤X)−1X⊤y . (23)

The estimated coefficients β̂k can be treated as effect sizes
measuring how much of measured data is explained by the
individual factors xn,k. The null hypothesis for factor k having no

explanatory power is H0 :βk = 0. The estimated variance of β̂k is

V̂ar(β̂k) = Ck,k , (24)

where C = σ̂ 2
η (X

⊤X)−1 and σ̂ 2
η = 1

N−(K+1)
∑N

n=1(yn− β̂
⊤
xn)

2 is

an unbiased estimator of the noise variance. A statistical test for
the null hypothesis can be devised using that

t = β̂k√
V̂ar(β̂k)

(25)

is t-distributed with N − (K + 1) degrees of freedom. A similar
procedure can be devised for regularized variants such as Ridge
regression (Hoerl and Kennard, 1970).

2.3. Nested Statistical Inference
In the following, our goal is to combine the data of several
subjects to estimate a population effect and to assess its statistical
significance. We denote the number of subjects with S. The
observed effect sizes of each individual subject are denoted by
θ̂s (s = 1, . . . , S). Other quantities related to subject s are also
indexed by the subscript s, while the same quantities without
subject index denote corresponding group-level statistics.

Two different models may be formulated for the overall
population effect.

2.3.1. Fixed-Effect (FE) Model
In the fixed-effect (FE) model, we assume that there is one (fixed)
effect size θ that underlies each subject, that is

θ1 = θ2 = . . . = θS = : θ . (26)

The observed effect θ̂s can therefore be modeled as

θ̂s = θ + ǫs, with Var(ǫs) = σ 2
s , (27)

where ǫs denotes the deviation of the subject’s observed effect
from the true effect θs = θ . We assume that the noise terms ǫs are
independent, zero-mean random variables with subject-specific
variance σ 2

s .
The null hypothesis tested by a fixed-effect model is that no

effect is present in any of the subjects. Thus, H0 : θ = θ1 = . . . =
θS = θ0, where θ0 denotes the zero effect.
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2.3.2. Random-Effects (RE) Model
In the random-effects (RE)model, the true effect sizes are allowed
to vary over subjects. They are assumed to follow a common
distribution of effects with mean θ . The observed effect θ̂s is
modeled as

θs = θ + ξs with Var(ξs) = σ 2
rand (28)

θ̂s = θs + ǫs with Var(ǫs) = σ 2
s , (29)

where ǫs denotes the deviation of the subject’s observed effect
from the true subject-specific effect θs, and where ξs denotes the
deviation of the true subject-specific effect θs from the population
effect θ . ξs and ǫs are assumed to be zero-mean, independent
quantities. The subject-specific variance of ǫs is σ 2

s , while the
variance of ξs is σ 2

rand
. For σ 2

rand
= 0, we recover the fixed-effect

model.
The null hypothesis being tested is that the population effect

is zero (H0 : θ = θ0), while each individual subject-specific effect
θs may still be non-zero.

Besides testing different null hypotheses, fixed-effect and
random-effects models assume different variances of the
observed effect sizes. In the fixed-effect model, all observed
variability is assumed to be within-subject variability

Var(θ̂s) = σ 2
s . (30)

The random-effects model additionally accounts for variability
between subjects

Var(θ̂s) = σ 2
s + σ 2

rand . (31)

If the data follow a random-effects model, neglecting σ 2
rand

in a
fixed-effect analysis leads to an underestimation of the variance.
This has negative consequences if we attempt to make inference
on the mean population effect (H0 : θ = θ0) relying only
on a fixed-effect analysis: We may arrive at spurious results,
as the underestimated variance leads to p-values that are too
low (Hunter and Schmidt, 2000; Field, 2003; Schmidt et al.,
2009). On the other hand, there is little disadvantage of using
a random-effects analysis, even when the data follows a fixed-
effect model. As the assumption of a fixed population effect is
unrealistic in most practical cases, it is often recommended to
carry out random-effects analysis per default (Field, 2003; Penny
and Holmes, 2007; Card, 2011; Monti, 2011).

2.4. Data Pooling
Themost naive approach to conduct group-level inference would
be to pool the samples of all subjects, and thus to disregard
the nested structure of the data. In electroencephalography
(EEG) studies, this approach is sometimes pursued when
computing “grand-average” (group-level) waveforms of event-
related potentials (ERP) that are elicited by the brain in response
to a stimulus.

Pooling the samples of all subjects may violate the assumption
of identically distributed data underlying many statistical tests.
Depending on the type of analysis, this may result in an over- or

underestimation of the effect size, an over- or underestimation
of the effect variance, and ultimately in over- or underestimated
p-values.

The following two examples illustrate the problem. In both
cases, two variables, X and Y , are modeled for S = 4 subjects.
N = 20 samples were independently drawn for each subject
and variable from Gaussian distributions according to xn,s ∼
N (µs − 1, 4), yn,s ∼ N (µs + 1, 4), s = 1, . . . , S, n = 1, . . . ,N,
where the notation N (µ, σ 2) denotes a Gaussian distribution
withmeanµ and variance σ 2. The subject-specific offsetsµs were
independently drawn from another Gaussian: µs ∼ N (0, 152).
In a practical example, these means may indicate individual
activation baselines, which are usually not of interest. Given
the generated sample, a difference in the means of X and Y is
correctly identified for each subject by Welch’s two-sample t-test
(p ≤ 0.02). Because of the substantial between-subject variance,
this difference is, however, not significant in the pooled data of all
subjects (p = 0.29). See Figure 1A for a graphical depiction.

A Pearson correlation analysis of the same data correctly
rejects the hypothesis of a linear dependence between X and Y
for each subject (|r| ≤ 0.14, p ≥ 0.55). However, the presence
of subject-specific offsets µs causes a strong correlation of X
and Y across the pooled data of all subjects (r = 0.98, p ≤
10−16, see Figure 1B for a depiction). In many practical cases,
this correlation will not be of interest and must be considered
spurious.

These examples motivate the use of hierarchical approaches
for testing data with nested structure, which we introduce below.

2.5. Naive Summary-Statistic Approach
The simplest variant of the summary-statistic approach ignores
subject-specific variances σ 2

s , treating subject-level effect sizes θ̂s
as group-level observations. In this approach, which is somewhat
popular in the neuroimaging literature (Holmes and Friston,
1998; Penny andHolmes, 2007), the null hypothesisH0 : θ = θ0 is
tested based on the S subject-level effect sizes θ̂1, . . . , θ̂S, which are
considered i.i.d. . The variance of the mean effect θ̂ = 1

S

∑S
i=s θs

is estimated as

V̂ar(θ̂) = 1

S− 1

S∑

s=1
(θ̂s − θ̂)2 , (32)

which is an unbiased estimate of Var(θ̂) even if variances σ 2
s vary

across subjects (Mumford andNichols, 2009). If the θs are normal
distributed (for example, because they represent the means of
normal distributed or many quantities), the test statistic

t = θ̂ − θ0√
V̂ar(θ̂)

(33)

is t-distributed with S−1 degrees of freedom. This is the standard
one-sample t-test applied to the individual effect sizes θ1, . . . , θS.

The naive summary-statistic approach is valid both under the
fixed-effect and random-effects models (Mumford and Nichols,
2009). Its statistical power is, however, limited due to two factors.
First, it assigns equal importance to each subject. This is sub-
optimal if subject-level variances σ 2

s vary across subjects (for
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FIGURE 1 | Wrong conclusions when pooling data with nested structure for statistical testing. Samples were independently drawn for four subjects, s = 1, . . . , 4, and

two variables, X and Y , according to xn,s ∼N (µs − 1, 4), yn,s ∼N (µs + 1, 4), where offsets µs were drawn independently for each subject from N (0, 152).

(A) Depiction of the means and standard errors for each subject. A significant difference between means is correctly identified for each subject, but not for the pooled

data of all subjects (see lower panels). This is because of the substantial between-subject variance (see upper panels). (B) Depiction of the data as a function of

sample number (upper panel) and as scatter plots (lower panels). The common subject-specific offsets of X and Y cause strong significant correlation in the pooled

data, which is not present in any individual subject, and may be considered spurious. 95% confidence intervals of the regression line obtained from 1,000 Bootstrap

samples are marked by dashed blue curves.

example, because of different amounts of recorded data). In
this case, a weighting scheme taking into account subject-level
variances is optimal (see section 2.6.2). Second, the approach does
not make use of all the available data, as only the group level data
is used to estimate the variance V̂ar(θ̂) through Equation (32).
However, even if subject-level variances σ 2

s are constant across
subjects, it is beneficial to make use of their estimates (see
section 2.6.1).

Both issues are addressed by the sufficient-summary statistic
approach described in the next section. An empirical comparison
of the statistical power of both approaches on simulated data is
provided in section 3.

2.6. Sufficient-Summary-Statistic
Approach
If estimates of the variances Var(θ̂s) of the subject-level effect
sizes θ̂s, s = {1, . . . , S} can be obtained, this gives rise to a more

powerful summary-statistic approach compared to the naive
approach outlined above. To this end, we estimate the group-level
effect size estimate θ̂ as a convex combination

θ̂ :=
∑S

s=1 αsθ̂s∑S
s=1 αs

(34)

of the subject-level effect size estimates θ̂s with non-negative
weights αs, s ∈ {1, . . . , S}. Under the assumption that the θ̂s
are unbiased and statistically independent of the weights αs, θ̂ is
also unbiased (has expectation E(θ̂) = θ), as the denominator of
Equation (34) ensures that the weights sum to one. Importantly,
with the exception of the coefficient of determination discussed
in section 2.2.4, all effect size measures discussed in this paper are
unbiased estimators of the corresponding population effects. The
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variance of θ̂ defined in Equation (34) is given by

Var(θ̂) =
∑S

s=1 α2
s Var(θ̂s)(∑S

s=1 αs

)2 . (35)

If the θ̂s are normal distributed (for example, because they
represent the means of normal distributed or many quantities),
the weighted mean θ̂ is also normal distributed. According to the
central limit theorem, this is also approximately the case if the θ̂i
are not normal distributed but the number of subjects S is large.
In both cases, we can test the null hypothesis H0 : θ = θ0 using
that the test statistic

z = θ̂ − θ0√
Var(θ̂)

(36)

is standard normal distributed.
The variances Var(θ̂s) typically need to be estimated, as the

exact population values are unknown. As any estimate V̂ar(θ̂)
integrates information from all samples of all S subjects, it can
be considered a fairly accurate estimate, justifying the use of a
z-test even when we replace Var(θ̂) by its estimate V̂ar(θ̂) in
Equation (36) (Borenstein et al., 2009; Card, 2011). Sometimes,
however, the more conservative t-distribution with S− 1 degrees
of freedom is assumed for z (Thirion et al., 2007; Jackson et al.,
2010).

2.6.1. Equal Weighting
The z-test introduced in Equation (36) is valid regardless of the
choice of the non-negative weights αs, s ∈ {1, . . . , S} as long as
these weights are statistically independent of the corresponding
effect size estimates. One popular choice is to assign equal weights

α1 = . . . = αS =
1

S
(37)

to all subjects, such that θ̂ becomes the arithmetic mean of the θ̂s.
This procedure is similar to the naive summary-statistic approach
introduced in section 2.5 in that both approaches assign equal
importance to each subject-level effect size. However, it differs in
the way the variance is estimated, and in terms of the distribution
that is assumed for the test statistic. For the naive summary-
statistic approach, variances are estimated through Equation (32)
using the S data points on the group-level only. The equal-
weighting approach instead uses the subject-level variances. That
is, following Equation (35):

V̂ar(θ̂) = 1/S2
S∑

s=1
V̂ar(θ̂s) . (38)

If the individual V̂ar(θ̂s) are unbiased, both methods yield an
unbiased estimate of the variance Var(θ̂). But the variance of
this variance estimate is typically smaller for the equal variance
weighting approach, because it makes use of all the available
data. This more accurate estimate means that the test statistic is
approximately normal distributed rather than t-distributed with

S − 1 degree of freedoms. This translates into a power gain, as
illustrated in the simulation presented in section 3. However,
estimating the between-subject variance for a random-effects
model is not straightforward, and also may introduce biases and
variability (see section 2.6.3).

2.6.2. Inverse-Variance Weighting
Interestingly, the choice of equal weights is suboptimal in terms
of obtaining a group-level effect size estimate θ̂ with minimal
variance. It is generally desirable to minimize the variance of the
weighted average, as unbiased estimators with smaller variance
achieve a lower mean squared error (MSE), and lead to more
powerful statistical tests. The minimum-variance estimate is
obtained by weighting each subject-level effect size proportional
to the inverse of its variance using weights

αs =
1

Var(θ̂s)
. (39)

This result is consistent with the intuition that less precise θs
should have a lower impact on the overall estimate than those that
are estimated with high confidence. Inserting into Equation (35),
we obtain the optimal value

Var(θ̂) = 1
∑S

s=1 1/Var(θ̂s)
= 1

∑S
s=1 αs

. (40)

Note, however, that, by using data-dependent weights, the
inverse-variance-weighting approach may not always result
in unbiased group-level effect size estimates. The potential
implications of correlations between individual subject-level
effect sizes and their variances are demonstrated in section 3.3
and further discussed in section 5.1.

2.6.3. Estimation of Between-Subject Variance
To perform inverse-variance weighting under the random-
effects model, the between-subjects variance σ 2

rand
needs to be

estimated in order to obtain the total subject-wise variance
Var(θ̂s) = σ 2

s + σ 2
rand

. Several iterative and non-iterative
alternative methods have been proposed (Worsley et al., 2002;
Guolo andVarin, 2015; Veroniki et al., 2016). A popular and easy-
to-implement approach is the non-iterative procedure proposed
by DerSimonian and Laird (1986). For a given estimate σ̂ 2

s

of the within-subject variances (which can be obtained using
the procedures discussed in section 2.2), and for fixed-effect
quantities

αFE
s =

1

σ̂ 2
s

, θ̂FE =
∑S

s=1 αFE
s θ̂s∑S

s=1 αFE
s

, (41)

the between-subject variance σ 2
rand

according to DerSimonian
and Laird (1986) is estimated as

σ̂ 2
rand = max

{
0,

∑S
s=1 αFE

s (θ̂s − θ̂FE)2 − S+ 1
∑S

s=1 αFE
s −

∑S
s=1(α

FE
s )2/

∑S
s=1 αFE

s

}
. (42)

where αFE
s and θ̂FE are the fixed effect quantities defined in

Equation (41).
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As this estimate may be quite variable for small sample sizes,
the resulting p-values may become too small when the number
of subjects S is small (Brockwell and Gordon, 2001; Guolo and
Varin, 2015). On the other hand, the truncation of the estimated
variance to zero introduces a positive bias; that is, σ 2

rand
(and

thus, p-values) are generally over-estimated (Rukhin, 2013). In
summary, the Dersimonian and Laird approach is acceptable for
a moderate to large number of subjects (Jackson et al., 2010;
Guolo and Varin, 2015), and is the default approach in many
software routines in the meta-analysis community (Veroniki
et al., 2016).

After σ̂ 2
rand

has been calculated, the random-effects quantities
are finally computed as

αRE
s =

1

σ̂ 2
s + σ̂ 2

rand

, θ̂RE =
∑S

s=1 αRE
s θ̂s∑S

s=1 αRE
s

. (43)

2.6.4. Algorithm
The sufficient-summary-statistic approach is summarized in
Algorithm 1. First, the subject-level effect sizes θs and the within-
subject variances σ 2

s , s ∈ {1, . . . , S}, are estimated based on the
available subject-wise data samples. Second, if random-effects are
assumed, the correlation between θs and σs, s ∈ {1, . . . , S} across
subjects is assessed, preferably using a robust measure such as
Sperman’s rank correlation. Third, the between-subject variance
σ 2
rand

is estimated as outlined in section 2.6.3 (unless a fixed-effect
model can reasonably be assumed). The variance of a subject’s
estimated effect θ̂s around the population effect θ is calculated
as the sum of the within-subject measurement error variance σ 2

s

and the between-subject variance σ 2
rand

(cf. Equation 31). Fourth,

the estimated population effect θ̂ is calculated as the weighted
average of the subjects effects. If a fixed-effect is assumed, or if
no correlation between effect size and variances estimates has
been found in the random effects setting, weights αs, s = 1, . . . , S
are set to the inverse of the estimated subject-level variances as
outlined in section 2.6.2. If a correlation between subject-level
effect sizes and standard deviations has been found, it is instead
advisable to use equal weights for all subjects (section 2.6.1) or
weights that are proportional to the subjects’ sample sizes (Marín-
Martínez and Sánchez-Meca, 2010). Given the weights αs, the
variance of the variance of the population effect can be calculated
either using the general formula given by Equation (35) or
specific versions derived for equal and inverse-variance weighting
schemes in Equations (38) and (40). Finally, the estimated mean
effect is subjected to a z-test as introduced in Equation (36).

Different effect sizes and their corresponding variances have
been discussed in section 2.2. With the exception of the Pearson
correlation coefficient, these measures can be directly subjected
to the inverse-variance-weighting approach. That is, θ̂s and
σ̂ 2
s for the mean difference are given in Equations (6) and
(7), for the AUC in Equations (12) and (15), and for linear
regression coefficients in Equations (23) and (24). As discussed
in section 2.2.4, it is, however, beneficial to transform correlation
coefficients ρ̂s into approximately normal distributed quantities
with known variance prior to averaging across subjects. We can
proceed with the application of the sufficient-summary-statistic
approach just as outlined before, treating the transforms ζ (ρ̂s)
given in Equation (18) rather than the ρ̂s as effect sizes. The

Algorithm 1 Sufficient-summary-statistic approach

Step 1: Within-subject analysis

for all Subjects s = 1 . . . S do
Estimate effect size θ̂s and its variance σ̂ 2

s

end for

Step 2 : Correlation between effect size and variance

Random effects setting: test Hcorr
0 : ρθs ,σs = 0

Fixed effect setting: accept Hcorr
0

Step 3: Between-subject variance σ 2
rand

Random effects setting: use, e.g., Equations (41)–(42)
Fixed effect setting: σ̂ 2

rand
← 0

Step 4: Population mean effect and variance

for all Subjects s = 1 . . . S do
if Hcorr

0 is accepted then

Perform inverse-variance weighting:
αs ← 1/(σ̂ 2

s + σ̂ 2
rand

)

θ̂ ←
∑S

s=1 αsθ̂s/
∑S

s=1 αs

V̂ar(θ̂)← 1/
∑S

s=1 αs

else

αs ← 1/S (equal weighting)
or αs ← Ns/

∑S
s=1 Ns (sample-size weighting)

θ̂ ←
∑S

s=1 αsθ̂s

V̂ar(θ̂)←
∑S

s=1 α2
s (σ̂

2
s + σ̂ 2

rand
)

end if

end for

Step 5: Statistical inference (H0 : θ = θ0)

z← (θ̂ − θ0)/
√
V̂ar(θ̂)

z is approximately standard normal distributed
⇒ Reject H0 at 0.05 level if |z| > 1.96

resulting population effect can be transformed back into a valid
Pearson correlation using the inverse transformation described
in Equation (21).

2.7. Stouffer’s Method of Combining
p-Values
A general approach for combining the results of multiple
statistical tests is Stouffer’s method (Stouffer et al., 1949;
Whitlock, 2005). For a set of independent tests of null hypotheses
H0,1, . . . ,H0,S, Stouffer’s method aims to determine whether all
individual null hypotheses are jointly to be accepted or rejected,
or, in other words, if the global null hypothesis H0 : (∀s :H0,s is
true) is true. In general, the individual H0,s may not necessarily
refer to the same effect size or even effect size measure, and the
p-values for each individual hypothesis may be derived using
different test procedures including non-parametric, bootstrap- or
permutation-based tests. In the present context of nested data,
Stouffer’s method can be used to test group-level null hypotheses
in the fixed-effect setting, i.e., the absence of an effect in all S
subjects of the studied population.

Denote with H0,s : θs = θ0 the null hypothesis that there is
no effect in subject s, and with ps the one-tailed p-value of an
appropriate statistical test for H0,s. If the null hypothesis is true,
ps is uniformly distributed between 0 and 1 (see Murdoch et al.,
2008, for an illustration). Therefore, the one-tailed p-values ps can
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be converted into standard normal distributed z-scores using the
transformation

zs := F−1z0,1
(ps) , (44)

where F−1z0,1
denotes the inverse of the standard normal cumulative

distribution function. For Gaussian-distributed subject-level
effect sizes with known variance, this step can be carried out more
directly using

zs =
θ̂s − θ0√
Var(θ̂s)

. (45)

The cumulative test statistic

z = 1√
S

S∑

s=1
zs (46)

follows the standard normal distribution, which can be used to
derive a p-value for the group-level H0.

Notice that Stouffer’s method as outlined above is applied to
one-tailed p-values. However, testing for the presence of an effect
often requires a two-tailed test. In this case, it is important to take
the direction of the effect in different subjects into account. We
cannot simply combine two-tailed tests—a positive effect in one
subject and a negative effect in another subject would be seen
as evidence for an overall effect, even though they cancel each
other out. However, the direction of the effect can be determined
post-hoc. To this end, one-tailed p-values for the same direction
are calculated for each subject and combined as outlined in
Equations (44) and (46) into a group-level one-tailed p-value
p1. The group-level two-tailed p-value is then obtained as p2 =
2 ·min(p1, 1− p1) (see Equations 1–3) (Whitlock, 2005) .

3. SIMULATIONS

In the following, we present a set of simulations, in which we
compare the statistical approaches reviewed above to test for a
difference between two class-conditional means in artificial data.
We consider two conditions X and Y with true means µX and
µY and class-conditional mean difference d = µY − µX . We
want to test the null hypothesis H0 :µX = µY or, equivalently,
H0 : d = 0. The following scenarios are investigated: (1) The
data are generated either within a fixed-effect or a random-effects
model. (2) The data are generated from either a Gaussian or
a non-Gaussian distribution. In each scenario, we compare the
methods’ abilities to reject the null hypothesis when we vary the
true class-conditional mean difference d.

Data for S = 5 or S = 20 subjects s, s ∈ {1, . . . , S},
were generated as follows. First, subject-specific class-conditional
mean differences ds were sampled according to

ds = d + ξs , ξs ∼ N (0, σ 2
rand) ,

where σ 2
rand

is the between-subject variance. For the fixed-effect
model, we set σrand = 0, while for the random-effects model, we
set σrand = 0.2.

We then sampled Ns,X data points for condition X and
Ns,Y data points for condition Y from Gaussian distributions
with variance v2s and class-conditional means µs,X and µs,Y =
µs,X + ds, respectively. A separate set of samples was drawn
from non-Gaussian F(2,5)-distributions adjusted to have the
same class-conditional means and variance. The number of
data points, Ns,X and Ns,Y , the class-conditional means, µs,X

and µs,Y , and the variance, v2s , were randomly drawn for
each subject such that vs is uniformly distributed between
0.5 and 2, Ns,X and Ns,Y ∈ N are uniformly distributed
between 50 and 80, and the true mean of class X , µs,X , is
uniformly distributed between -3 and 3. In each scenario, the
true class-conditional mean difference, d, was varied across
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

All experiments were repeated 1,000 times with different
samples drawn from the same distributions. We report the H0

rejection rate, which is the fraction of the test runs in which
the null hypothesis was rejected. When the null hypothesis is
true (d = 0), the H0 rejection rate is identical to the error
or false positive rate of the statistical tests under study. In the
converse case, in which the null hypothesis is false (d 6= 0),
the rejection rate determines the power of the test. All statistical
tests were performed at significance level α = 0.05. An ideal
test would thus obtain a H0 rejection rate of 0.05 when the null
hypothesis is true (d = 0), and a rejection rate of 1 otherwise.
The higher the H0 rejection rate in the presence of an effect
(d 6= 0), the higher is the power of a test. However, if the null
hypothesis is true, a H0 rejection rate greater than α indicates
the occurrence of spurious findings beyond the acceptable α-
level.

3.1. Simulation 1: Fixed Effect vs. Random
Effects
Figure 2 depicts the results achieved by the tested statistical
procedures in the fixed-effect (top row) and random-effects
(bottom row) scenarios for Gaussian-distributed data, using data
from S = 5 and S = 20 subjects. The “pooling” approach consists
of pooling the samples of all subjects and performing one two-
sample t-test (cf. section 2.4). “Naive (paired t-test)” refers the
naive summary-statistic approach, in which each subject’s mean
difference is treated as an observation for a group-level paired
t-test (cf. section 2.5). Four variants of the sufficient-summary-
statistic approach are considered (cf. section 2.6). These variants
differ in assuming either random effects (RE) or one fixed effect
(FE), and in using either the inverse-variance-weighting scheme
(Equation 39) or equal weights (Equation 37). “Stouffer” finally
refers to using Stouffer’s method to combine p-values obtained
from subject-level two-sample t-tests (cf. section 2.7). Note that
all group-level tests are carried out two-tailed.

In line with our previous considerations, data pooling yielded
very low power in the presence of an effect both under the
fixed-effect and random-effects models. The highest power
is achieved in both cases by the inverse-variance-weighted
sufficient-summary-statistic approach, followed by Stouffer’s
method, the sufficient-summary-statistic approach using equal
weights, and the paired t-test.
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FIGURE 2 | The probability of rejecting the null hypothesis H0 :d = 0 as a function of the true mean difference d of Gaussian-distributed simulated data from S = 5

resp. S = 20 subjects. (Top) Data following a fixed-effect model. (Bottom) Data following a random-effects model.

Considerable differences are observed between the fixed-
effect and random-effects settings. For data following the fixed-
effect model, the fixed-effect variants of the sufficient-summary-
statistic approach display only a negligible advantage over their
random-effects counterparts, indicating that the latter succeed
in estimating the between-subject variance to be zero. Moreover,
in the case of equal class means, all approaches achieve a false
positive rate close to the expected value of α = 0.05.

The situation is different for data following a random-
effects model. Here, the fixed-effect variants of the sufficient-
summary-statistic approach as well as Stouffer’s method and the
pooling approach display false positive rates that are between
two and five times higher (26%) than what would acceptable
under the null hypothesis. This problem is substantially
alleviated by the random-effect variants of the sufficient-
summary-statistic approach. Nevertheless, when data is only
available from S = 5 subjects, the null hypothesis is still
rejected too often (9% for inverse-variance weighting). This is
due to the variability in the estimate of the between-subject
variance σ 2

rand
(cf. section 2.6.3). When S = 20 subjects are

available, the expected false positive rate of α = 0.05 is
achieved.

The naive summary-statistic approach (paired t-test of
subject-wise means) achieves the expected false positive rate

of 0.05 regardless of the number of subjects, and therefore
represents a valid statistical test also in the random-effects setting.

3.2. Simulation 2: Gaussian vs.
Non-Gaussian
Figure 3 depicts the results of parametric and non-parametric
statistical tests for simulated non-Gaussian-distributed data of
S = 20 subjects following either the fixed-effect model (top
left panel) or the random-effects model (top right panel). For
comparison, the results obtained on Gaussian-distributed data
following a random-effects model are displayed in the bottom
panel. Four different statistical tests are compared: (1) the
random-effects inverse-variance-weighted sufficient-summary-
statistic approach for the difference between class-conditional
means, (2) the same test for the area under the non-parametric
receiver-operating curve (AUC), (3) the naive summary-statistic
approach in the form of a paired t-test between subject-wise
means, and (4) its non-parametric equivalent, the Wilcoxon
signed rank test. Note that for the naive summary-statistic
approaches, the mean differences of each subject are treated as
observations for a group-level paired t-test or Wilcoxon signed
rank test, respectively.

The figure shows that, as for Gaussian-distributed data,
the inverse-variance-weighted sufficient-summary-statistic
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FIGURE 3 | The probability of rejecting the null hypothesis H0 :d = 0 as a function of the true mean difference d in simulated data of S = 20 subjects. (Top Left)

Non-Gaussian data from a fixed effect model. (Top Right) Non-Gaussian data from a random effects model. (Bottom) Gaussian data from a random effects model.

approach achieves considerably higher statistical power
than the corresponding naive summary-statistic approaches.
Furthermore, non-parametric approaches achieve a higher
power for non-Gaussian-distributed data than their parametric
equivalents assuming Gaussian-distributed data. This difference
is particularly pronounced for the better performing inverse-
variance-weighted sufficient-summary-statistic approaches.
The difference for the naive summary approaches is much
smaller, because subject-level averages tend to be more Gaussian
according to the central limit theorem. In contrast, parametric
approaches have only a very minor advantage over non-
parametric ones for Gaussian-distributed data. Note further that,
when the Gaussianity assumption of the parametric approaches
is violated, spurious results can, in theory, not be ruled out.
However, such effects are very small here.

3.3. Simulation 3: Correlation Between
Subject-Level Effect Size and Variance
In the presence of dependencies between subject-level effect sizes
and corresponding variances, the resulting group-level effect size
may become biased if inverse-variance weighting is used. To

demonstrate this adverse effect, we simulated data exhibiting
a perfect correlation between the difference of the two group
means and the standard deviation associated with this difference,
represented by the square root of Equation (7). The between-
subject variance was thereby kept at the same level as in the
preceding random-effects simulations (cf. bottom-right panel of
Figure 2, bottom panel of Figure 3, and corresponding texts).
The left panel of Figure 4 shows H0-rejection rates for a negative
correlation, implying that subjects with lower (negative) mean
differences exhibit larger variability. In the inverse-variance-
weighting approach, the influence of these subjects is down-
weighted, which leads to an overestimation of the actual mean
difference at the group-level. As a result, the number of
false positive detections under the null hypothesis H0 : d =
0 dramatically increases. The right panel of Figure 4 shows
analogous results for a positive correlation, implying that subjects
with larger (positive) mean differences exhibit larger variability,
and that inverse-variance weighting, consequently, introduces a
negative bias on the group-level mean difference. Thus, when
using a two-tailed statistical test, it may happen that a significant
negative mean difference is found even in the presence of positive
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FIGURE 4 | The probability of rejecting the null hypothesis H0 :d = 0 as a function of the true mean difference d of Gaussian-distributed simulated data from S = 20

subjects. (Left) Data following a random-effects model and exhibiting a perfect negative correlation between the difference of the two group means and the standard

deviation associated with this difference. (Right) Perfect positive correlation.

difference or the absence of any difference. This behavior is
illustrated by the U-shape of the read and cyan curves. Note,
however, that these problems do not occur if the sufficient-
summary-statistics approach with equal weighting or the naive
group-level t-test are used.

4. ANALYSIS OF EMERGENCY-BRAKING-
RELATED BRAIN ACTIVITY

We analyzed neuro- and myoelectrical activity of human
participants during a simulated driving experiment. During
the experiment, participants had the task to closely follow
a computer-controlled lead vehicle. This lead vehicle would
occasionally slow down abruptly, in which case the participant
had to perform an emergency braking. The full study is described
in Haufe et al. (2011). Brain signals were acquired using
64 EEG electrodes (referenced to an electrode on the nose),
while we here only report on the central EEG electrode Cz.
Muscular activation of the lower right leg was acquired from two
electromyographic (EMG) electrodes using a dipolar derivation.
EEG and EMG Data were recorded from 18 participants in
three blocks à 45 min. On average, clean data from 200
emergency situations were obtained from each participant (min:
123, max: 233). After filtering and sub-sampling to 100 Hz,
the data were aligned (“epoched”) relative to the onset of the
braking of the lead vehicle as indicated by its brake light.
For each time point relative to this stimulus, EEG and EMG
measurements were contrasted with a sample of identical size
that had been obtained from normal driving periods of each
participant. While for the present study only preprocessed and
epoched data were used, original raw data are also publicly
available2.

2http://bnci-horizon-2020.eu/database/data-sets (#24)

Figure 5 (top left) shows the deviation of EEG and EMG
signals in emergency braking situations from signals obtained
during normal driving periods as a function of time after
stimulus. For each participant, the mean difference between the
two driving conditions was computed (Equation 6). Assuming
a random-effects model, the within-subject (i.e., within-
participant) variance was estimated using Equation (7), while
the between-subject variance was estimated using Equation (42).
We tested for Pearson correlations between subject-level
mean differences and corresponding within-subject standard
deviations and found strong significant positive correlations
for almost all time points post-stimulus at both electrodes.
As, under these circumstances, inverse-variance weighting is
expected to produce biased results, we resorted to using
the sufficient-summary-statistics approach in combination with
equal weights for each subject. Results are presented in
terms of the absolute value of the group-level z-score, which
was computed using equal weighting along the lines of
Algorithm 1. It is apparent that the brain activity measured
by EEG exhibits a significant amount of emergency-braking-
related information at an earlier point in time than the
activity measured at the right leg muscle, but is superseded
in terms of class separability by the EMG later on. This
result reflects the decision-making process that is taking place
in the brain prior to the execution of the physical braking
movement.

The top right panel of Figure 5 depicts the same EEG time
course in comparison to the curve obtained under the fixed-
effect model. Compared to the RE model, the FE model leads
to an inflation of z-scores starting 300ms post-stimulus. Note
that this is consistent with the result of Cochran’sQ-test for effect
size heterogeneity (Cochran, 1954) indicating non-zero between-
subject variability after 200ms post-stimulus (p < 0.05), but not
before.

The bottom left panel of Figure 5 depicts the difference
between the equal-weighting sufficient-summary-statistic
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FIGURE 5 | Analysis of event-related EEG (neural) and EMG (muscular) activity of N = 18 car drivers during simulated emergency braking. Shown is the z-scaled

difference between the mean activity during emergency braking situations and the mean activity during normal driving periods as a function of time after the

emergency-initiating situation. (Top Left) Comparison of EEG and EMG under the random-effects (RE) model using two-sample subject level t-tests and equal

weighting. EEG displays a significant class separation at an earlier time than EMG, reflecting the logical order of the underlying perceptual decision-making process.

(Top Right) Comparison between the fixed-effect (FE) and RE models for EEG. The FE model displays inflated z-scores, indicating substantial but unaccounted

between-subject variability. (Bottom Left) Comparison of the naive summary statistic approach and the sufficient-summary-statistic approach using equal weighting

for EEG (RE model). By taking the subject-level variances into account, the sufficient-summary-statistic approach achieves a clearer separation. (Bottom Right)

Comparison between the two-sample t-test and the non-parametric Wilcoxon-Mann-Whitney test for a group-level area under the ROC curve (AUC) greater than

chance-level (RE model, equal weighting). Both tests lead to similar results, indicating that the distribution of samples is close to normal.

approach and the naive summary-statistic approach
implemented as a paired t-test for differences in the subject-wise
means of the two conditions. As expected, the equal-weighting
approach achieves a higher power than the naive approach
(at least during later time points) by taking the subject-level
variances into account.

Finally, the bottom right panel of Figure 5 depicts the
difference between subject-level two-sample t-tests and non-
parametric AUC tests according to Equations (12) and (15).
No substantial difference is found between the two except for
a narrow time interval around 200 ms post-stimulus, in which
the non-parametric test yields higher z-scores. Overall, this
result suggests that the raw samples are approximately normal
distributed, justifying the use of the parametric test.

5. DISCUSSION

In this paper we have provided a review of existing methods to
assess the statistical significance of group-level effect sizes in data
with nested structure. We demonstrated that simply pooling the

data of all subjects is not a valid approach. The naive summary-
statistic approach of performing a paired t-test on subject-level
effect sizes is valid, but has suboptimal statistical power. With
the sufficient-summary-statistic approach and Stouffer’s method,
we discussed two general strategies that combine the simplicity
and low complexity of “naive” approaches with higher statistical
power by using prior knowledge about the distributions and
variances of the subject-level effect sizes. The benefit of these
two strategies over the “naive” approaches was demonstrated in
a set of simulations. Note that the degree of improvement due
to using sufficient summary statistics depends on the number of
trials per subject vs. the number of subjects. Therefore, differing
observations can be found in the literature (e.g., Beckmann et al.,
2003; Mumford and Nichols, 2009).

The simulations as well as the presented real-data analysis

also highlighted the necessity to account for between-subject

variances through a random-effects analysis. A failure to do so
results in underestimated p-values and the spurious detection of

non-existing effects. Stouffer’s method is a fixed-effects analysis,

and thus provides a valid group-level test only if the assumption
of zero between-subjects variance can be theoretically justified.
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In most practical cases, this is not the case (Holmes and
Friston, 1998; Field, 2003; Schmidt et al., 2009; Stephan et al.,
2009; Allefeld et al., 2016). We thus recommend the use of
the sufficient-summary-statistic approach when the number of
subjects is modest and the subject-wise variances can be reliably
estimated.

Importantly, while we here only considered data with
two nesting levels, both Stouffer’s method and the sufficient-
summary-statistic approach naturally extend to hierarchies with
arbitrary numbers of levels. For example, p-values derived from
individual subjects of a study, e.g., using Stouffer’s method,
can again be combined at a higher level to test for consistent
effects across multiple studies. In a similar way, group-level
effects with variances derived from subject-level samples through
Equation (36) can be further combined into a higher-level
average with known variance.

5.1. Limitation of Inverse-Variance
Weighting
Our simulations demonstrated that inverse-variance weighting
consistently outperformed all other approaches provided that
no dependencies between subject-level effect sizes and their
variances were present. Our analysis of real EEG data, however,
also showed that such dependencies are not unlikely. In this
example, participants with stronger emergency-related brain
responses also showed larger variability. The opposite case
is also conceivable, as participants with weaker responses
(e.g., due to missing to process experimental stimuli) may
exhibit more variable activity representing their less constrained
mental state. In practice, it is, therefore, advisable to test for
monotonous relationships between effect size and variance,
for example using Spearman’s rank correlation. If no such
relationship is found, the inverse-variance-weighted sufficient-
summary-statistics approach can be used. In the opposite case,
we recommend the use of the sufficient-summary-statistics
approach using equal weights, which still improves upon
the naive group-level t-test. An alternative is to use weights
proportional to the subject-level sample sizes (Marín-Martínez
and Sánchez-Meca, 2010). Notwithstanding these considerations,
dependencies between effect sizes and their variances must not
be considered ubiquitous. By definition, they cannot occur in the
presence of a fixed effect. Moreover, the variances of some effect
size measures (e.g., Fisher-transformed Pearson correlations)
only depend on the number of subject-level samples, and are
constant if identical samples sizes are available for all subjects. In
these settings, no systematic correlations and, for that matter, no
biases can be expected, implying that inverse-variance weighting
remains a valid and powerful approach.

5.2. Alternative Definitions of Fixed and
Random Effects
The notions of “fixed” and “random” effects are used differently
in different branches of statistics. See, for example, Gelman
(2005) for a discussion of five different definitions of “fixed”
and “random” effects in the statistical literature. In ANOVA, the
factor levels of a “random effect” are assumed to be randomly
selected from a population, while the factor levels of a “fixed
effect” are chosen by the experimenter. In contrast to the

definition of a “fixed effect” used here (Equation 27), the effect
sizes of a “fixed effect” factor in ANOVA are allowed to differ
across subjects.

Here we define a fixed effect (FE) to be constant across
subjects, while a random effect (RE) is allowed to vary across
subjects. The fundamental model underlying RE analysis is given
by Equations (28) and (29), while the FE model is defined in
Equation (27). These definitions are used in the meta-analysis
literature (Field, 2003; Borenstein et al., 2009; Card, 2011),
which contains most statistical discussion of between-subject
variance estimators (DerSimonian and Laird, 1986; Brockwell
and Gordon, 2001; Schmidt et al., 2009; Rukhin, 2013).

In parts of the neuroimaging literature, a different
interpretation of the fixed-effect model is predominant (Penny
and Holmes, 2007; Monti, 2011). Here,

θ̂s = θs + ǫs, (47)

where ǫs denotes the deviation of the subject’s observed effect
from the subject-specific true effect θs, which is not modeled as
a random variable. In this view, the subjects are not randomly
drawn from a population, but are “fixed.” There is no overall
population effect θ and the implicit null hypothesis behind
the model is H0 : 1/S

∑S
s=1 θs = θ0. This yields an alternative

interpretation of the same analysis: a fixed-effect analysis allows
one to draw valid inference on the mean effect—but only for the
specific mean of the observed subjects. Such an analysis would
correspond to a case study, but a generalization to the population
from which the subjects were drawn is not possible (Penny and
Holmes, 2007). In contrast, the fixed-effect model Equation (27)
we assume throughout this paper allows such a generalization—
but the assumption of a constant effect across subjects has to be
theoretically justified.

5.3. Nested Multiple Linear Models
Another approach to handle nested data are nested linear models
(also called hierarchical linear models, multi-level models or
mixed linear models). These models extend the multiple linear
regression model discussed in section 2.2.5 to deal with nested
data. Following Hox et al. (2010), this is done by introducing
subject-specific regression coefficients βk,s, k ∈ {0, . . . ,K}, s ∈
{1, . . . , S}. The model for the n-th sample of subject s then reads

yn,s = β0,s + xn,1β1,s + . . .+ xn,KβK,s + ǫn,s . (48)

The subject-specific coefficients are further expressed as

βk,s = γ0,s + γ⊤s zs + εk,s , (49)

where γ0,s is a subject-specific intercept, zs = (z1,s, . . . , zL,s)
⊤

models L known subject-resolved independent variables zl,s,
γ s = (γ1,s, . . . , γL,s)

⊤ is a vector of corresponding coefficients
modeling the influence of these variables on βk,s, and εk,s
is group-level zero-mean noise. In this complete form, all
coefficients are subject-specific. We therefore speak of a random-
effects nested linear model. It is also conceivable that only some
of the coefficients are subject-specific, while others are shared
between subjects. For example, in some applications it may be
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reasonable to model subject-specific intercepts β0,s, but identical
effects βk,1 = . . . = βk,S = βk for all subjects. A resulting model
would be called a mixed-effects nested linear model.

Nested linear models are very general and allow for more
complex statistical analysis than the procedures for estimating
and testing group-level effects discussed here. On the downside,
the estimation of nested linear models is difficult because no
closed-form solution exists in the likely case that the variances of
the subject- and group-level noise terms are unknown (e.g., Chen
et al., 2013). Fitting a nested linear model using iterative methods
is time consuming when the number of subjects and/or samples
per subject is large, as all data of all subjects enter the samemodel.
This is especially problematic when the number of models to be
fitted is large, as, for example, in a mass-univariate fMRI context,
where an individual model needs to be fitted for ten-thousands of
brain voxels.

When only the group-level effect is of interest, the presented
sufficient-summary-statistic approach is the more practical
and computationally favorable alternative. In this approach,
regression coefficients β̂k,s are estimated at the subject level,
which bears the advantage that the global optimum for each
subject can be found analytically in a computationally efficient
manner. As the individual β̂k,s are normal distributed with
variance given in Equation (24), they can then be combined,
e.g., using the inverse-variance-weighting scheme. This approach
is mathematically equivalent to a nested-linear model analysis
when the covariances are known (Beckmann et al., 2003). For
these reasons, we here refrained from a deeper discussion of
nested linear models. The interested reader is referred to, for
example, Quené and Van den Bergh (2004), Woltman et al.
(2012), Hox et al. (2010), and Chen et al. (2013).

5.4. Resampling and Surrogate-Data
Approaches
While the variances of the effect size measures discussed here
can be derived analytically, this may not be the case in general.
However, given sufficient data, the variance of the observed effect
θ̂ can always be estimated through resampling procedures such
as the bootstrap or the jackknife (Efron, 1982). Assuming an
approximately normal distribution for θ̂ , the inverse-variance-
weighting approach can be applied.

For some types of data such as time series, the subject-
level i.i.d. assumption underlying most statistical procedures
discussed here is, however, violated. For such dependent
samples, the variance of an observed effect θ̂—be it analytically
derived or obtained through a resampling procedure under
the i.i.d. assumption—is underestimated. This problem can be
addressed through sophisticated resampling techniques which
accommodate dependent data structure. A detailed describtion
of these techniques can be found, for example, in Kreiss and
Paparoditis (2011) and Lahiri (2013).

For some types of analysis questions, it is not straightforward
to determine the expected effect under the null hypothesis θ0.
A potential remedy to this problem is the method of surrogate
data. Surrogate data are artificial data that are generated by
manipulating the original data in a way such that all crucial

properties (including the dependency structure of the samples)
are maintained except for the effect that is measured by θ . As
such, surrogate data can provide an empirical distribution for θ̂

under the null hypothesis. This may be used to derive subject-
level p-values, which can be subjected to Stouffer’s method to
test for population effects under the fixed-effect model. Originally
introduced in the context of identifying nonlinearity in time
series (Theiler and Prichard, 1997), variants of this approach are
increasingly often applied to test for interactions between neural
time series (e.g., Honey et al., 2012; Haufe and Ewald, 2016; Haufe
et al., 2017).

5.5. Multivariate Statistics
In the present paper we assumed that only a single effect is
measured for each subject. However, massively multivariate data
are common especially in neuroimaging, where brain activity is
typically measured at hundreds or even thousands of locations in
parallel. When (group) statistical inference is performed jointly
for multiple measurement channels, the resulting group-level
p-values must be corrected for multiple comparisons using,
e.g., methods described in Genovese et al. (2002), Nichols and
Hayasaka (2003), and Pernet et al. (2015).

Another way to perform inference for multivariate data
is to use inherently multivariate effect size measures such as
canonical correlations, coefficients of multivariate linear models,
the accuracy of a classifier (e.g., Haxby et al., 2001; Norman et al.,
2006), or more generally univariate effect size measures that are
calculated on optimal linear combination of the measurement
channels (e.g., Haufe et al., 2014; Dähne et al., 2015). However,
most multivariate statistics involve some sort of model fitting. If
the number of data channels is high compared to the number of
samples, overfitting may occur, and may bias the expected value
of the effect under the null hypothesis. One way to avoid that
bias by splitting the data into training and test parts, where the
training set is used to fit the parameters of themultivariate model,
while the actual statistical test is carried out on the test data using
the predetermined model parameters (Lemm et al., 2011).

5.6. Activation- vs. Information-Like Effect
Size Measures
A distinction is made in the neuroimaging literature between
so-called “activation-like” and “information-like” effect size
measures. Allefeld et al. (2016) argue that measures that quantify
the presence of an effect without a notion of directionality (that
is, are “information-like”) cannot be subjected to a subsequent
random-effects group-level analysis, because their domain is
bounded from below by what would be expected under the null
hypothesis of no effect. Their arguments refers in particular to
the practice of plugging single-subject classification accuracies
into a group-level paired t-test. Because the true single-subject
classification accuracies can never be below chance-level, the
group-level null hypothesis being tested is the fixed-effect
hypothesis of no effect in any subject. Another problem with
“information-like” measures is that certain confounds are not
appropriately controlled for, because confounding effects of
different direction do not cancel each other out (Todd et al.,
2013). For the current investigation, these issues are, however, of
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minor importance, as, except for the coefficient of determination,
all effect size measures discussed here are directional and
therefore “activation-like.”

6. CONCLUSION

In this paper, we have reviewed practical approaches to
conduct statistical inference on group-level effects in nested data
settings, and have demonstrated their properties on simulated
and real neuroimaging data. With the sufficient-summary-
statistic approach, we highlighted an approach that combines
computational simplicity with favorable statistical properties. We
have furthermore provided a practical guideline for using this
approach in conjunction with some of themost popularmeasures
of statistical effects.
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