
fnhum-12-00111 March 19, 2018 Time: 17:23 # 1

ORIGINAL RESEARCH
published: 21 March 2018

doi: 10.3389/fnhum.2018.00111

Edited by:
Xiaolin Zhou,

Peking University, China

Reviewed by:
Jed A. Meltzer,

Baycrest Hospital, Canada
Suiping Wang,

South China Normal University, China
Helene Van Ettinger-Veenstra,
Linköping University, Sweden

*Correspondence:
Hiroki Kurashige

h.kura00@gmail.com

Received: 06 October 2017
Accepted: 08 March 2018
Published: 21 March 2018

Citation:
Kurashige H, Yamashita Y,

Hanakawa T and Honda M (2018) A
Knowledge-Based Arrangement

of Prototypical Neural Representation
Prior to Experience Contributes

to Selectivity in Upcoming Knowledge
Acquisition.

Front. Hum. Neurosci. 12:111.
doi: 10.3389/fnhum.2018.00111

A Knowledge-Based Arrangement of
Prototypical Neural Representation
Prior to Experience Contributes to
Selectivity in Upcoming Knowledge
Acquisition
Hiroki Kurashige1,2* , Yuichi Yamashita2, Takashi Hanakawa3 and Manabu Honda2

1 Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan, 2 National
Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan, 3 Integrative Brain Imaging Center,
National Center of Neurology and Psychiatry, Tokyo, Japan

Knowledge acquisition is a process in which one actively selects a piece of information
from the environment and assimilates it with prior knowledge. However, little is
known about the neural mechanism underlying selectivity in knowledge acquisition.
Here we executed a 2-day human experiment to investigate the involvement of
characteristic spontaneous activity resembling a so-called “preplay” in selectivity in
sentence comprehension, an instance of knowledge acquisition. On day 1, we
presented 10 sentences (prior sentences) that were difficult to understand on their
own. On the following day, we first measured the resting-state functional magnetic
resonance imaging (fMRI). Then, we administered a sentence comprehension task using
20 new sentences (posterior sentences). The posterior sentences were also difficult to
understand on their own, but some could be associated with prior sentences to facilitate
their understanding. Next, we measured the posterior sentence-induced fMRI to identify
the neural representation. From the resting-state fMRI, we extracted the appearances
of activity patterns similar to the neural representations for posterior sentences.
Importantly, the resting-state fMRI was measured before giving the posterior sentences,
and thus such appearances could be considered as preplay-like or prototypical
neural representations. We compared the intensities of such appearances with the
understanding of posterior sentences. This gave a positive correlation between these
two variables, but only if posterior sentences were associated with prior sentences.
Additional analysis showed the contribution of the entorhinal cortex, rather than the
hippocampus, to the correlation. The present study suggests that prior knowledge-
based arrangement of neural activity before an experience contributes to the active
selection of information to be learned. Such arrangement prior to an experience
resembles preplay activity observed in the rodent brain. In terms of knowledge
acquisition, the present study leads to a new view of the brain (or more precisely of the
brain’s knowledge) as an autopoietic system in which the brain (or knowledge) selects
what it should learn by itself, arranges preplay-like activity as a position for the new
information in advance, and actively reorganizes itself.
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INTRODUCTION

Activeness and spontaneity are characteristic features of the
human brain. We act according to the psychological and
physiological internal drives, regardless of whether we do so
consciously or unconsciously, and we are not dominated by
external stimuli. Even during knowledge acquisition, we do not
indiscriminatingly receive information from the environment.
We actively select such information according to internal factors.

Prior knowledge is one of the vital factors governing selectivity
in knowledge acquisition. In some cases, prior knowledge
facilitates the acquisition of additional information (Tse et al.,
2007; van Kesteren et al., 2010a,b, 2013, 2014; Brod et al.,
2016; Armelin et al., 2017). In other cases, prior knowledge
inhibits the acquisition of information (Lipson, 1982; Alvermann
et al., 1985; Kendeou and van den Broek, 2007). Sometimes,
these contradicting effects cancel each other and there is no
behavioral reflection; however, this competition can be recorded
with brain imaging (Oren et al., 2017). One important notion is
that knowledge acquisition is hampered when prior knowledge
is sufficient to achieve a given goal (Sweegers et al., 2015), which
implies that rationality is involved during knowledge acquisition.

Several studies have shown that, in order to update existing
knowledge, one effectively explores the available information
for the task and for the environment where the task will take
place (Huang et al., 2008; Gureckis and Markant, 2012). This
aspect of knowledge acquisition has been developed in machine
learning and robotics studies as active learning (Krogh and
Vedelsby, 1995; Tong and Koller, 2002; Settles, 2012). Curiosity
is also an important epistemic value for our explorative behavior
(Berlyne, 1966) and it determines whether or not the presented
information is assimilated (Kang et al., 2009; Gruber et al.,
2014). Interestingly, humans seem to have the greatest curiosity
for an information that gives them an intermediate feeling of
knowing (Kang et al., 2009), rather than a complete unknown.
This suggests that the recognition of a deficit in knowledge
encourages selective acquisition of this knowledge for efficient
completion.

Anticipation of the use of information also facilitates
knowledge acquisition through sleep consolidation (Fischer
and Born, 2009; Wilhelm et al., 2011; van Dongen et al.,
2012). Additionally, the application of knowledge strengthens
knowledge acquisition (Karpicke and Roediger, 2008; Karpicke
and Blunt, 2011). This is relevant because information that is used
should have a greater value than information that is not used.

The evidence mentioned above implies that, based on prior
knowledge, we actively select the information that is missing
and/or would improve our knowledge, and thus, should be
learned. In other words, our brain seeks novel information
to complement, augment, and upgrade current knowledge.
However, how the brain mechanistically and computationally
realizes such selective acquisitions of knowledge, and how that
knowledge is upgraded, remains unknown.

Here, we hypothesize that prior knowledge guides the
selectivity of knowledge acquisition by arranging prototypical
neural representations prior to concrete experience. The
observations of “preplay” activity in the rodent hippocampus

(Dragoi and Tonegawa, 2011, 2013) support this hypothesis.
Preplay is a distinguishing spontaneous neural activity
observed during periods of rest that organizes before an
experience and becomes an actual representation after the
experience.

In a conventional view, neural representation forms during
and after learning or an experience. Following a learning
experience, several studies analyzing the rodent hippocampus
(Louie and Wilson, 2001; Lee and Wilson, 2002; Foster and
Wilson, 2006; Diba and Buzsáki, 2007; Carr et al., 2011; Wu
et al., 2017) and the rodent entorhinal cortex (Ólafsdóttir
et al., 2016; O’Neill et al., 2017) have reported the appearance
of learned neural representations during spontaneous activity,
namely replay. Using functional magnetic resonance imaging
(fMRI), several studies have suggested the existence of replay-
like activity in the human brain (Deuker et al., 2013; Staresina
et al., 2013; Tambini and Davachi, 2013; Schlichting and Preston,
2014; de Voogd et al., 2016; Hermans et al., 2017). These
studies identified positive relationships between the strength of
replay-like activity in offline processing and performance during
memory recall.

As opposed to replay activity, preplay activity suggests that
the neural representation forms before the experience, although
the relevance of this activity has been controversial (Silva et al.,
2015; Grosmark and Buzsaki, 2016). Therefore, we naturally
consider the predictive or proactive characteristics in preplay
activity. In the present study, we investigated the effects of
preformed neural representations on knowledge acquisition. Our
main hypothesis was that prototypical neural representations that
are arranged prior to experience facilitate knowledge acquisition.
Moreover, we hypothesized that it depends on existence of
prior knowledge. To these ends, we executed a 2-day sentence
comprehension experiment in which the subjects learned prior
and posterior sentences on days 1 and 2, respectively. These
sentences were difficult to understand on their own, but the
association between prior and posterior sentences was meant
to facilitate understanding. We measured the resting-state fMRI
(rsfMRI) prior to the learning of the posterior sentences. Then,
after learning the posterior sentences, we measured the induced
fMRI during the presentation of posterior sentences to identify
the neural representations of them. Based on correlation between
this neural representation and activity pattern in the rsfMRI, we
defined the prototypical neural representation. We compared the
appearance strengths of the prototypical neural representation
in the hippocampal and entorhinal rsfMRI with the ratings
of sentence comprehension. This gave a positive correlation
between these two variables in the condition where the prior
sentences were available for understanding. Moreover, since the
previous rodent study suggested that preplay activity is stabilized
and established through experience (Grosmark and Buzsaki,
2016), we examined this stabilization effect. Moreover, we
showed that the entorhinal cortex, rather than the hippocampus,
contributes to the observed effect. In addition, we conducted
a whole-brain analysis to explore brain regions involved with
the effect beyond the hippocampus and entorhinal cortex.
Finally, we proposed a possible mechanism to explain our
findings.
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MATERIALS AND METHODS

Subjects
Seventeen right-handed subjects (7 females; mean age 21.4 years;
age range 20–23 years) without a history of a neurological
or psychiatric disease participated in this study. All subjects
were native Japanese speakers and had normal or corrected-to-
normal vision. This study was carried out in accordance with
the recommendations of the institutional ethics committee of
the National Center of Neurology and Psychiatry (NCNP) with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the institutional ethics
committee of the National Center of Neurology and Psychiatry
(NCNP). One male subject was excluded from the final analysis
because he fell asleep during the experiment on day 1.

Experimental Procedures
The experiment consisted of two continuous days (Figure 1A).
The subjects were tasked with understanding 10 prior and 20
posterior sentences on days 1 and 2, respectively. Individually,
each sentence was difficult to understand. However, several
posterior sentences were associable with prior sentences, and
therefore they became more understandable through the
associations.

On day 1, we first measured the rsfMRI (Day 1) and then
acquired a T1-weighted structure MRI. Next, the subjects were
removed from the MRI scanner and engaged in the sentence
comprehension task for prior sentences. On day 2, we first
acquired the rsfMRI (Day 2 pre). Then, outside the scanner,
we presented the same prior sentences as on day 1 and asked
the subjects to perform the rating task. Next, the subjects
re-entered the scanner and, while the fMRI measurements
were being performed, subjects were asked to imagine the
meaning of the prior sentences (see section “Stimulus-Induced
fMRI”). The subjects were removed from the scanner and
given the sentence comprehension task for posterior sentences.
This was followed by a question and answer session regarding
the inferred association between prior and posterior sentences.
Then, the subjects re-entered the MRI scanner and were
asked to imagine the meaning of posterior sentences while
the fMRI measurements were taking place. After a 5-min
rest with no scans, we acquired another rsfMRI (Day 2
post).

Prior and Posterior Sentences
We extracted 20 propositional sentences from Japanese-
translated literature of various disciplines and adjusted them
to be used as prior sentences. In Supplementary Table S1,
we show the English versions of the sentences in published
translated materials (if they exist) or those translated by us
with bibliographic information. Then, we created 20 posterior
sentences beginning with “Therefore” or “This is because”
where the thematic words were replaced with pronominal
expressions. Originally, we intended to have an association
between each posterior sentence and each prior sentence.

However, instead we considered which prior and posterior
sentences the subjects thought were associated (see section
“Posterior Sentence Presentation”), as we did not focus on the
“ground truth” of correspondence. Both prior and posterior
sentences were difficult to understand on their own, but
identifying associations between the sentences facilitated their
understanding.

Prior Sentence Presentation
We applied the sentence comprehension task for the 10 prior
sentences that were randomly selected from the 20 prior
sentences for each subject. For each trial, we presented one prior
sentence on the display and asked the subjects to deeply consider
the meaning of the sentence. When the subjects felt they had
enough time for consideration, they pressed a key to proceed
to the next sentence. After finishing their deep analysis of all 10
sentences, the subjects proceeded to the next session, which was
the same task but with the sentences in a shuffled order. The
subjects repeated the sessions for up to 60 min. The task was
constructed using Win32 API programming.

Prior Sentence Rating
The subjects rated the prior sentences presented on day 1 for four
items: (1) the understanding of prior sentences, (2) the expected
increment of prior understanding, (3) the importance, and (4)
the subjective need. For (1), subjects assessed the depth of their
understanding of prior sentences from 0 to 100. These self-ratings
were used as the indexes of understanding of prior sentences for
subsequent analyses. For (2), subjects reported their expectations
of change in the depth of understanding of prior sentences from
0 to 100, assuming that they would be given the new related
sentences. For (3), subjects answered the subjective importance of
knowing the new sentences relating to prior sentences on a five-
point scale. For (4), subjects answered how much they wanted to
know the new sentences that were related to prior sentences on a
five-point scale. The task was completed with a wxWidgets GUI
application constructed by the wxPython module1 in Python. The
responses were acquired using sliders for (1) and (2), and radio
buttons for (3) and (4).

Posterior Sentence Presentation
The sentence comprehension task was applied for 20 posterior
sentences. This task was executed using a wxWidgets GUI
application made with the wxPython module in Python. For this
task, we presented all 20 sentences and the corresponding sliders
on one screen. Subjects were required to understand them and
to rate their degree of understanding of the posterior sentences
from 0 to 100. As with prior sentences, we used those self-ratings
as the indexes of understanding of the posterior sentences in
subsequent analyses. Before the task, the subjects were told that
10 of the 20 sentences were to be posterior to the prior sentences
and that the prior sentences would be useful to understand the
posterior sentences. Subjects were also instructed to memorize
the sentences, as they would only be briefly presented as the
stimuli in a subsequent fMRI scanning.

1https://wxpython.org/
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After the comprehension and rating tasks, the subjects were
asked which prior sentences they thought were associated with
posterior sentences. For each posterior sentence, the subjects
selected one prior sentence or N/A from a pull-down menu. If a
subject thought that several posterior sentences were associated
with the same prior sentence, they were required to give
overlapping answers. As a result, the number of N/A answers
for each subject did not necessarily add up to 10. As discussed
in Section “Prior and Posterior Sentences,” we considered the
associations described by the subjects as the true associations for
the following analyses.

MRI Scanning
We used a 3T MRI scanner (Trio, Siemens Medical Solutions,
Erlangen, Germany) with an 8-channel head coil for all
measurements. Structural images were acquired with a T1
weighted 3D magnetization-prepared-rapid-gradient-echo
(MPRAGE) sequence (flip angle = 8◦; voxel size = 1 mm
isotropic; TR = 2000 ms; TI = 990 ms; TE = 4.38 ms; number
of voxels = 208 × 256 × 208). fMRI images were acquired with
a T2∗-weighted echo planar imaging sequence (flip angle = 90◦;
voxel size = 3 mm isotropic with no slice gap; TR = 3000 ms;
TE = 30 ms; number of voxels = 64 × 64 × 44). The slices were
acquired in interleaved order.

Resting-State fMRI
For each session of rsfMRI, 200 volumes of images were acquired.
Since TR = 3 s, the total acquisition time for each session was
about 10 min. During imaging, a fixation point centered on a
gray background was presented on the screen using the projector
(DLA-HD10K, JVC, Kanagawa, Japan). The subjects saw the
screen through the mirror equipped with a head coil of the
scanner. We instructed the subjects to gaze onto the fixation point
and to think of nothing in particular.

Stimulus-Induced fMRI
To identify the neural representations of the prior and posterior
sentences, we measured the fMRI of the subjects while they
judged whether the sentences were semantically related to two-
character Japanese words. Both sets of fMRI measurements
for prior and posterior sentences consisted of five sessions.
A session for prior sentences contained 10 trials, each of
which corresponded to one prior sentence and included a
rest block (two scans), a sentence presentation block (six
scans), and a word presentation and response block (one
scan). We added three rest scans at the beginning and end
of the session. Therefore, one session for prior sentences
consisted of 96 total scans. The session for posterior sentences
was similar, but the number of trials was 20, because there
were 20 posterior sentences. Thus, one session for posterior
sentences consisted of 186 total scans. The setting of the
projector, screen, and mirror was same as for the measurement
of rsfMRI. To acquire a response in the response block, we
used the MRI compatible button box with four buttons for
each hand (HHSC-2x4-C, Current Designs, Philadelphia, PA,
United States).

In the sentence presentation block, one sentence was displayed
and the subjects were asked to imagine the meaning of the
sentence. They were also asked to be ready for the successive
word presentation and response block. Additionally, subjects
were instructed to return their gaze to the fixation point after
grasping the sentence as rapidly as possible.

In the word presentation and response block, a word was
presented during the first 2.5 s of the block, and subjects were
asked to push the button within this period. Subjects were
instructed to press the button with their right index finger if they
thought that the word was semantically related to the sentence
that was presented immediately before. If the subjects did not
identify a relationship, they were asked to press the button with
their right middle finger. In the remaining 0.5 s, the circle symbol
was used as a feedback indicator that the button was pressed with
the index finger, and the cross symbol was used as a feedback
indicator that the button was pressed with the middle finger. If
the subject did not press with any finger, a hyphen was used as
a feedback indicator. The words were randomly chosen from the
3,000 most frequent two-character Japanese words recorded in
the balanced corpus of contemporary written Japanese (Maekawa
et al., 2014). The purpose of this task was to task the subjects
with keeping the images of the meanings of presented sentences
during the sentence presentation block. Since the subjects had to
respond to the words within a short duration, this task forced
them to keep the images to ready to judge semantic relatedness
with the words. The resultant responses generated by the subjects
were not relevant to this study. Therefore, we did not analyze the
responses.

Preprocessing of MRI Data
Preprocessing was completed primarily using SPM12 (Wellcome
Trust Centre for Neuroimaging, England, United Kingdom)
MATLAB toolbox (Mathworks, Natick, MA, United States) and
custom-made Python scripts. To make the individual cortical and
subcortical atlases, we also used Freesurfer (Version 5.3.02) and
FSL (FMRIB Software Library Version 5.0.63).

The same pipeline of preprocessing was applied for both of
stimulus-induced and resting-state fMRI. All steps were executed
by running functions in SPM12 from custom-made MATLAB
scripts, and not from GUI. The three initial scans for each series
of functional imaging data were discarded to exclude the T1-
saturated images. As the first step of preprocessing, the slice time
correction was applied. Then, the realign and reslice procedure
was performed using the mean slices of all sessions as a reference,
including resting-state and stimulus-induced imaging. Next, co-
registration of the structural images with the mean functional
images was completed. After that, we divided preprocessing
pipeline into two: one for main region of interest (ROI) analysis
and the other for additional exploratory whole-brain analysis.

For the main ROI analysis, the functional images were spatially
smoothed with FWHM= 5 mm. The use of spatial smoothing in
multi-voxel pattern analysis (MVPA) is controversial because it is
useful for noise reduction but it also reduces the dimensionality

2https://surfer.nmr.mgh.harvard.edu/
3http://www.fmrib.ox.ac.uk/fsl/
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of the data. However, several recent studies support to the use of
smoothing (Op de Beeck, 2010; Gardumi et al., 2016; Hendriks
et al., 2017), and the effective dimensionality was large enough
in our analyses even if we applied the smoothing. Therefore,
we chose to use spatial smoothing. We did not normalize to a
standard brain image since we analyzed the data in individual
atlases to avoid distortion resulting from the normalization.

To identify the individual brain atlases, the recon-all
procedure in Freesurfer was applied to obtain two kinds of
cortical atlases (Desikan et al., 2006; Destrieux et al., 2010)
and one subcortical segmentation (Fischl et al., 2002) for
each subject. In the present study, the Desikan–Killiany atlas
was used as the cortical atlas. To register the individual
atlas with the functional images, atlas mgz files were first
transformed to nifti files using the mri_convert command
in Freesurfer. Then, atlas nifti files were resliced using the
reslice_nii function in Tools for NIfTI and ANALYZE image4.
Then, transformation matrix was identified from resliced orig
image in Freesurfer to the structural image that was already
co-registered to the mean functional image using the flirt
command in FSL. Finally, individual atlas was constructed in
the functional images by corresponding the atlas images to the
functional images through the transformation matrix described
above.

For the exploratory whole-brain analysis, we executed the
segmentation and normalization to map the images into the
Montreal Neurological Institute (MNI) standard space. Then, the
functional images were weakly smoothed (FWHM= 3 mm).

Representational Similarity Analysis
To measure the intensities of preplay-like and replay-like
activities in the rsfMRI, we adopted the representational
similarity analysis (Kriegeskorte, 2008; Kriegeskorte and Kievit,
2013) between the stimulus-induced and resting-state fMRI data.
The aim of this analysis was to detect spontaneous activation of
the patterns similar to neural representations for sentences in
rsfMRI.

Previous studies showed that an experience could induce
changes in rsfMRI pattern, which is found not only in areal level
but also in voxel level (Albert et al., 2009; Lewis et al., 2009;
Taubert et al., 2011; Guidotti et al., 2015). Especially, the MVPA
approach showed that task learning increases the similarity
between voxel patterns in rsfMRI and in task fMRI (Guidotti
et al., 2015). An important point is that this was shown through
applying MVPA classifier trained with task fMRI into rsfMRI,
which is similar to what we did in the present study. In line
with basically same idea, several studies used the representational
similarity analysis to compare the rsfMRI or task-irrelevant fMRI
with task fMRI (Staresina et al., 2013; de Voogd et al., 2016).
Those studies also reported that the similarity between voxel
patterns in rsfMRI and in task fMRI was related to the task
performance or task condition.

In addition, a recent study using MVPA suggested that brain
activity patterns that are induced by sentences are predictable

4https://jp.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-
analyze-image

from the patterns that are induced by the word that compose the
sentences (Anderson et al., 2017). Moreover, it has been suggested
that the representational similarity analysis can successfully
quantify the semantic difference and similarity of word stimuli
(Bruffaerts et al., 2013; Carota et al., 2017). Taken together, this
analysis is applicable to the aim of this study.

Using SPM12, we applied first level analysis for the prior
and posterior sentence fMRIs to estimate the beta maps for
each stimulus. Using the spm_getSPM function in SPM with the
contrast including the beta maps belonging to the same sentence,
we obtained a t-statistics map for each sentence. For the main
ROI analysis, we regarded each t-statistics map masked by the
anatomical ROI as the neural representation for each sentence.
The ROIs were defined with the individual atlas mentioned
above. Since the previous rodent studies reported replay activity
not only in the hippocampus but also in the entorhinal cortex
(Ólafsdóttir et al., 2016; O’Neill et al., 2017), we used the merged
ROI of the hippocampus and entorhinal cortex (Figures 2–6) and
the separated hippocampal and entorhinal ROIs (Figure 7). As
we had 10 prior and 20 posterior sentences, we obtained 10 and 20
representations for prior and posterior sentences, respectively. To
exclude the non-informative voxels, we discarded the voxels with
the lowest 3% variances of the t-values across prior (or posterior)
sentences.

For the rsfMRI, we first standardized the time course for
each voxel to the z-score to remove spatial biases. Next, we
measured the correlation between the representation defined
above and the voxel pattern for each time slice in the rsfMRI.
Since there were 10 and 20 representations for prior and posterior
sentences, respectively, this resulted in 10 and 20 time courses of
correlations, each of which corresponded to a sentence.

In the present study, we defined the mean of the top Ntop
Fisher Z-values of the correlations in the scans of rsfMRI
as the intensity of preplay-like or replay-like activity for the
representation (Figure 1B). The aim of this average operation
was noise reduction. Therefore, the value of Ntop had to be
large enough to resist a noise. At the other extreme, baseline
activity would hide the preplay-like activity and make it invisible
if we used overall mean. Therefore, we needed to choose an
adequate value of Ntop. We theoretically decided the best value of
Ntop based on the estimation of variance of preplay-like activity
over the posterior sentences. The variance of the intensities of
preplay-like activity is the sum of the noise-derived component
and the signal component. Since the noise-derived component
is proportional to N−1

top, we identified the signal component as
the residual of linear fitting of the variance of the preplay-like
activity to N−1

top. Then, we assigned the value of Ntop as the point
for maximum signal component. This resulted in 14.81 ± 3.52
(mean ± SD; n = 16). Thus, we set Ntop = 15. Note that
we never used any information about the understanding of the
sentences in this process. Additionally, we found that a wide
range of Ntop values ([10,15,...,80]) gave qualitatively invariant
main results (shown in Figure 2A) and the “15” was located
near the edge of such a range. Therefore, we also used the
median of the range (i.e., Ntop = 45) and have showed this
result in the Supplementary Material. Note that this theoretical
estimation explained above might not be exact since we premised
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the i.i.d. condition. However, it is good approximation when
exact statistical model is not available.

In the present study, we mainly used the results of the
representational similarity analysis for comparison with the
understanding rating of the prior and posterior sentences.
Therefore, we treated data combinations of rsfMRI sessions (Day
1, Day 2 pre, and Day 2 post), stimulus-induced fMRI sessions
(prior and posterior sentences), and understanding ratings (prior
and posterior sentences). We included a table to show which
combination we used to generate each figure (Supplementary
Table S2).

In addition to the main ROI analysis, we also conducted
whole-brain analysis. To define the intensity of preplay-like
activity for each voxel, again we applied the representational
similarity analysis that was same to the analysis described in this
section but to small cube neighboring each voxel aligned in the
MNI space. See the next section for the detailed explanation of
the whole-brain analysis.

Exploratory Analysis of the Whole Brain
To investigate the preplay-like activity across the whole brain,
we adopted the method similar to the searchlight approach
(Kriegeskorte et al., 2006). We executed this analysis only for the
pair of the preplay-like activity for the posterior sentences in Day
2 pre rsfMRI and the understanding of the posterior sentences. To
obtain t-statistics maps for the posterior sentences, the processing
described in Section “Representational Similarity Analysis” was
used but in MNI standard space. We considered a pattern of each
t-statistics map within the 5 × 5 × 5 cube of voxels neighboring
a voxel as the neural representation of corresponding posterior
sentence at the voxel. As with the ROI analysis mentioned above,
we measured the correlation between the neural representation
and the voxel pattern for each time slice in the rsfMRI within
each cube. Then, for each neural representation, we defined the
mean of the top Ntop Fisher Z-values of the correlations as the
intensity of preplay-like activity for each voxel. We determined
that Ntop = 13 since the value resulted from the estimation of
variance was 13.13 ± 2.52 (mean ± SD, n = 16). This resulted in
the whole-brain map of the preplay-like activity for each posterior
sentence.

To compare those maps with the understanding of the
posterior sentences, the general linear model (GLM) analysis
was completed using the randomize command in FSL, in which
we set the understanding ratings and the categorical variables
for the subjects as the explanatory variables. The number of
permutations was 5,000. We used the mask of the gray matter
and subcortical nuclei that was constructed from the Freesurfer
atlas. To identify significant cluster, we utilized the threshold-
free cluster enhancement method with default parameter values
(Smith and Nichols, 2009).

Statistical Analyses
For statistical tests, we mainly used SciPy5 and statsmodels6

modules in Python. We executed the paired t-tests using the

5https://www.scipy.org/
6http://www.statsmodels.org/

ttest_rel function in SciPy. We completed the analysis of variance
(ANOVA) and the analysis of covariance (ANCOVA) using the
ols function in statsmodels where repeated designs were modeled
using the subject as a categorical variable. We utilized the
multipletests function in statsmodels with Bonferroni methods
for correcting for multiple comparisons. We also used the
aov function and the multcomp package in R7 for executing
ANOVA and Tukey post hoc tests. When we analyzed our main
hypothesis (the prototypical neural representations arranged
prior to experience facilitate knowledge acquisition), we utilized
one-sided tests (Figures 2, 4C, 7, 8). In addition, we used one-
sided tests if we drew a conclusion based on the acceptance of
the null hypothesis because it was more conservative (Figures 3,
4AB, 5), and if a prediction from a previous study was
available (Figure 6). In all other cases, two-sided tests were
used.

To test our main hypothesis, we first calculated the correlation
between the intensities of preplay-like activity and the degrees
of sentence comprehension (the understanding ratings) for each
subject. Then, we merged them across subjects. The number
of posterior sentences associated with prior sentences was
different across subjects, as discussed in the section “Posterior
Sentence Presentation.” This meant that the sample sizes for
calculating the correlations varied and, therefore, we needed
to weight the statistical values based on the sample sizes. We
obtained the weighted statistics and the distribution governing
them using the following method borrowed from the meta-
analytic field (Mosteller and Bush, 1954; Rosenthal, 1978, 1991;
Hedges and Olkin, 1985). Here we defined the correlation for
ith subject as ri. First, we calculated the Fisher transformation
of each correlation coefficient: Zi = 0.5 ln (1+ ri/1− ri). When
the sample size is ni, the weighted sum is ζ =

∑
i
wiZi,

where wi = (ni − 3) /
∑
j

(
nj − 3

)
. Thus, the merged correlation

becomes rmerged =
(
e2ζ
− 1

)
/
(
e2ζ
+ 1

)
. It is known that the

standard error of Zi is 1/
√
ni − 3 (Snedecor and Cochran,

1989). Therefore, the standard error of ζ becomes SEζ =

1/
√∑

j

(
nj − 3

)
, considering the results of error analyses (Taylor,

1997). We can test the null hypothesis as ζ = 0 (i.e., rmerged =

0) by calculating the deviation of ζ/SEζ from standard normal
distribution. For comparison between ζ1 and ζ2, we utilized
the fact that (ζ1 − ζ2) /

√
SE2

ζ1
+ SE2

ζ2
has the standard normal

distribution under the null hypothesis (i.e., ζ1 = ζ2).

RESULTS

In the present study, we investigated the effects of prior
knowledge on the selectivity of knowledge acquisition through
the spontaneous arrangement of neural activity prior to
an experience. To this end, we applied a 2-day sentence
comprehension task. In this task, 10 prior sentences that were

7https://www.r-project.org/

Frontiers in Human Neuroscience | www.frontiersin.org 6 March 2018 | Volume 12 | Article 111

https://www.scipy.org/
http://www.statsmodels.org/
https://www.r-project.org/
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00111 March 19, 2018 Time: 17:23 # 7

Kurashige et al. Preplay-Like Activity for Knowledge Acquisition

presented on day 1 were considered to aid in the understanding
of some of 20 posterior sentences presented on day 2.

Behavioral Results
Originally, there were pre-established associations between prior
and posterior sentences. However, the possibility remained that
subjects would fail to grasp these associations. Therefore, we
compared our associations with those made by the subjects
during the presentation of posterior sentences. If the subjects
thought that no prior sentence corresponded to the posterior
sentence, they chose the “N/A” option from the pull-down menu
of the 10 prior sentences presented on day 1. The proportion
of concordance to our assumptions was not 1 but 0.70 ± 0.12
(mean ± SD, n = 16). Additionally, the number of answers
that were not N/A was not 10, but 11.1 ± 1.5 (mean ± SD,
n = 16). As discussed in Section “Prior and Posterior Sentences,”
we considered the associations made by each subject to be true.

As mentioned previously, one premise of this study was that
the associations between prior and posterior sentences facilitate
understanding. This means that prior sentences alone (before
association with posterior sentences) and the posterior sentences
alone (without any association to prior sentences) were more
difficult to understand compared with the posterior sentences
that were associated with prior sentences. To confirm that this
premise was satisfied, we compared the degrees of subjective
ratings of understanding for three conditions of sentence
presentations (“Prior,” “Posterior w/prior,” and “Posterior w/o
prior”; Figure 1C). We observed the main effect of the conditions
of sentence presentation using one-way repeated measures of
ANOVA, for which the dependent variables were the means
of the reported degrees of understanding averaged within
each condition [F (2, 30) = 69.78, p < 10−11]. Tukey’s post hoc
test showed “Posterior w/prior” > “Posterior w/o prior” (t =
11.67, p < 0.0001) and “Posterior w/prior” > “Prior” (t =
4.22, p < 0.001). This result indicates that prior sentences
did facilitate the understanding of posterior sentences when
an association was present. Additionally, we observed “Prior”
> “Posterior w/o prior” (t = −7.45, p < 0.0001). This result
indicates that the posterior sentences themselves were more
difficult to understand compared with the prior sentences. We
also executed the paired t-test corrected by the Bonferroni
method. Again, the result showed the “Posterior w/prior” >
“Posterior w/o prior” [t (15) = 9.98, pcorrect < 10−6], “Posterior
w/prior” > “Prior” [t (15) = −5.34, pcorrect = 0.00025], and
“Prior” > “Posterior w/o prior” [t (15) = −7.41, p < 10−5].
Those results demonstrate that the posterior sentences associated
with prior sentences were more understandable than those
without prior sentences. In addition, posterior sentences
themselves were difficult to understand compared with prior
sentences, but the associations with prior sentences made the
posterior sentences more understandable than prior sentences
alone. Therefore, our premise was satisfied.

Next, we explored the factors that influenced the
understanding of posterior sentences associated with prior
sentences. Focusing on such associated sentences, we investigated
the contributions to the understanding of posterior sentences
by “the understanding of prior sentences,” “the expected

increment of prior understanding,” “the importance,” and
“the subjective need” (see section “Prior Sentence Rating”
in Materials and Methods). Using repeated measures of
ANCOVA with reported degrees of understanding for the
posterior sentences as the dependent variables, we observed
a main effect of “the understanding of prior sentences”
[F (1, 158) = 4.47, p = 0.036]. The other variables did not
result in significant effects. These findings also demonstrate
that prior knowledge augments the ability to acquire related
information in the present experimental design.

Contributions of the Prototypical Neural
Representations for Sentence
Comprehension
Our main concern in this study was the effect of prototypical
neural representations (or preplay-like activity) observed in
the rsfMRI prior to the posterior sentence presentation on
the successive comprehension of the sentences. To this end,
we applied representational similarity analysis (Kriegeskorte,
2008; Kriegeskorte and Kievit, 2013). To identify the neural
representations for posterior sentences, we acquired stimulus-
induced fMRI while the subjects read each posterior sentence
and imagined its meaning. Some of the posterior sentences were
associated with prior sentences, while others did not have any
association. To measure the intensity of preplay-like activity,
we calculated the correlations between the identified neural
representations and the activity patterns in the Day 2 pre rsfMRI
(light blue in Figure 1A). We defined the mean of the top 15
values of the Fisher-transformed correlations as the intensity of
preplay-like activity for each posterior sentence (Ntop = 15; see
section “Representational Similarity Analysis”) (Figure 1B). We
set the merged area of the hippocampus and entorhinal cortex as
the ROI (see section “Representational Similarity Analysis”).

To test our main hypothesis and investigate the contributions
of prior knowledge, we compared the intensities of preplay-like
activity in the Day 2 pre rsfMRI and the degrees of understanding
for the posterior sentences with and without the association
of prior sentences (Figure 2A and see Supplementary Table
S2 to survey data combinations used in each analysis). We
found a weak but significant correlation between these two
variables only when the associations with prior sentences were
available (rmerged = 0.17, pincorrect = 0.023, pcorrect = 0.046 for
“w/prior” and rmerged = 0.020, puncorrect = 0.42, pcorrect = 0.85
for “w/o prior”), although direct comparison of the correlations
resulted in no significant difference (p = 0.13) (but see section
“Roles of the Entorhinal Cortex”). Next, we separated the
posterior sentences into those with preplay-like activity intensity
above-average or below-average (Figure 2B). We observed that
preplay-like activity brought facilitating effects for understanding
(a higher intensity of preplay-like activity resulted in a higher
understanding) only if associations with prior sentences were
available [t (15) = 2.26, puncorrect = 0.020, pcorrect = 0.039 for
“w/prior” and t (15) = 0.051, puncorrect = 0.48, pcorrect = 0.96
for “w/o prior”]. Additionally, we executed the same
analyses with Ntop = 45 (see section “Representational
Similarity Analysis”) and obtained qualitatively invariant
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FIGURE 1 | Experimental setting and behavioral results. (A) 2-day Experiment. The black rectangles indicate the in-scanner tasks, while the tasks described in the
white rectangles were executed outside of the scanner. The Day 2 pre rsfMRI enclosed with light blue is the main focus of the present study, in which we investigate
preplay-like activity. (B) Definitions of preplay- and replay-like activity. We calculated the Fisher-transformed correlations between the rsfMRI and neural
representations of sentences (upper). Then, we selected the highest 15 values (middle) and averaged them for each sentence (lower). The resultant value was
defined as the intensity of preplay- or replay-like activity for each sentence. (C) Difficulties in understanding the sentences. We compared the understanding ratings
by subjects for the prior sentences (left), the posterior sentences associated with prior sentences (center), and the posterior sentences without any association
(right). Each line corresponds to a subject. The colors are only for visualization purposes.

but moderately strong results (Supplementary Figure
S1). The result of the correlation analysis was as follows:
rmerged = 0.18, pincorrect = 0.017, pcorrect = 0.035 for “w/prior”
and rmerged = 0.0007, puncorrect = 0.50, pcorrect = 0.99 for
“w/o prior.” The result of the comparison between above-
average and below-average preplay-like activity was as follows:
t (15) = 2.72, puncorrect = 0.0079, pcorrect = 0.016 for “w/prior”
and t (15) = −0.14, puncorrect = 0.56, pcorrect = 1 for “w/o
prior.” These results support our main hypothesis, arguing
that the prototypical neural representations have a facilitating
effect on knowledge acquisition when prior knowledge exists. In
contrast, we did not observe any effect in the cases without prior
sentences.

To further investigate the influence of prior knowledge,
we applied a similar analysis to preplay-like activity for prior
sentences extracted from the Day 1 rsfMRI (Figures 3A,B).
In this setting, we did not provide any prior information
about the sentences before their presentation. Consistently, we

observed no correlation between the intensities of preplay-
like activity and the degrees of understanding for prior
sentences (rmerged = 0.020, p = 0.42). We also did not find
a significant difference between the understanding of prior
sentences with above-average preplay-like activity and the
understanding of prior sentences with below-average preplay-like
activity [t (15) = − 0.58, p = 0.72].

Together, our results suggest that preplay-like activity
contributes to knowledge acquisition only if prior knowledge is
available.

No Contribution of the Replay-Like
Activity for Prior Sentences to Posterior
Sentence Comprehension
The results described in the previous section support our
main hypothesis that preplay-like activity facilitates knowledge
acquisition. However, we must also consider the other hypothesis
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FIGURE 2 | Preplay-like activity facilitates the understanding of posterior sentences when prior knowledge is available. (A) Correlations between the intensity of
preplay-like activity (in Day 2 pre rsfMRI) for posterior sentences and the understanding rating for posterior sentences. The posterior sentences were associated with
prior sentences (left; w/prior) or not (right; w/o prior). Each color of dots corresponds to a subject. The notation of the y-axis title “understanding rating (posterior)”
means “value of the understanding rating for posterior sentences.” The notation of the x-axis title “preplay-like activity (posterior, Day 2 pre)” means “intensity of
preplay-like activity in Day 2 pre rsfMRI for posterior sentences.” We used similar notations throughout all figures in this paper. (B) Comparison of the understanding
ratings of posterior sentences possessing above-average and below-average preplay-like activity (in Day 2 pre rsfMRI). The posterior sentences were associated
with prior sentences (left; w/prior) or not (right; w/o prior).

FIGURE 3 | No facilitating effect for the understanding of prior sentences. (A) Correlations between the intensity of preplay-like activity (in Day 1 rsfMRI) for prior
sentences and the understanding rating for prior sentences. (B) Comparison of the understanding ratings of prior sentences possessing above-average and
below-average preplay-like activity (in Day 1 rsfMRI).

claiming that a replay-like activity for prior sentences results
in the facilitation observed above. In this case, in the posterior
sentence fMRI, the subjects might remember the associated
prior sentences. Thus, the activity that we previously showed
that contributed to the understanding of the posterior sentences
might not be “preplay-like” activity for the posterior sentences
but “replay-like” activity for the prior sentences. If this idea is

correct, when using the authentic replay-like activity, we should
be able to observe the same relationship as was seen in the
previous section. In other words, there should be a positive
contribution of the replay-like activity for prior sentences to the
understanding of the associated posterior sentences.

To examine this possibility, we extracted replay-like activity
data for prior sentences from the Day 2 pre rsfMRI and
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tested the effects on understanding of posterior sentences
(Figures 4A,B). We observed no positive correlation between
these factors (rmerged = −0.065, p = 0.77). Additionally, in the
analysis comparing the posterior sentences with above- and
below-average replay-like activity for prior sentences, we found
no difference in the understanding [t (15) = 0.40, p = 0.35].
Therefore, we did not find evidence supporting the counter
hypothesis. However, we observed a positive relationship
between the replay-like activity for prior sentences and the
understanding of prior sentences (Figure 4C). In the analysis
comparing prior sentences with above- and below-average
replay-like activity, the understanding of the former was higher
than that of the latter [t (15) = 2.06, p = 0.029]. Taken together,
there was no contribution of the replay-like activity for prior
sentences to the comprehension of the posterior sentences, but
there was a relationship with the understanding of prior sentences
themselves.

Prior Experience Arranges the
Preformed Activity to Operate as the
Prototypical Neural Representation
We investigated whether the acquisitions of prior sentences
resulted in the de novo formation of organized patterns of
neural activity for prototypical neural representations. If so,
the preplay-like activity for the posterior sentences associated
with prior sentences should be more strongly established than
that of sentences with no association. This effect should be
observed as an increased intensity of preplay-like activity
in the former case compared to the latter. Using a one-
sided test, we examined the prediction by comparing the
mean intensity of preplay-like activity for posterior sentences
associated with prior sentences to that of posterior sentences
not associated with prior sentences (Figure 5A). We found no
significant difference [t (15) = −0.21, p = 0.58]. Additionally,
to further test the effect of prior sentence acquisition, we
investigated the differences in preplay-like activity for the
posterior sentences in the Day 1 rsfMRI and those in the
Day 2 pre rsfMRI (Figure 5B). We found only marginally
significant increases if the posterior sentences associated with the
prior sentences [t (15) =2.08, puncorrect = 0.028, pcorrect = 0.056
for “w/prior”], and no effect if no association was available
[t (15) = 1.71, puncorrect=0.054, pcorrect = 0.11 for “w/o prior”].
These results suggest that the acquisition of prior sentences
does not strongly lead to de novo formation of organized neural
activity for prototypical representations, but merely arranges the
preformed, or pre-existing activity to contribute to assimilation
of the upcoming posterior sentences.

Stabilizations of the Neural
Representations Through Experience
We next asked whether stabilization of representation through
actual experience, which is observed in the rodent brain, occurred
in our experiment. We compared the intensities of preplay-like
and replay-like activities for the posterior sentences (Figure 6).
We extracted the replay-like activity for the Day 2 post rsfMRI
with the same method as that for the preplay-like activity. As

FIGURE 4 | The effects of replay-like activity for prior sentences.
(A) Correlations between the intensity of replay-like activity (in Day 2 pre
rsfMRI) for prior sentences and the understanding rating for posterior
sentences. (B) Comparison of the understanding ratings of posterior
sentences whose associating prior sentences possessed above-average and
below-average replay-like activity (in Day 2 pre rsfMRI). (C) Comparison of the
understanding ratings of the prior sentences possessing above-average and
below-average replay-like activity (in Day 2 pre rsfMRI).

expected, the intensity of replay-like activity was higher that of
the preplay-like activity extracted from the Day 2 pre rsfMRI for
posterior sentences both associated and not associated with prior
sentences [t (15) = 4.51, puncorrect = 0.0002, pcorrect = 0.0004
for “w/prior” and t (15) = 2.47, puncorrect = 0.013, pcorrect =
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FIGURE 5 | Prior knowledge does not result in a newly organized pattern of
neural activity. (A) Comparison of the intensities of preplay-like activity (in Day
2 pre rsfMRI) for posterior sentences with and without associated prior
sentences. (B) Comparisons of the intensities of preplay-like activities for
posterior sentences in Day 1 rsfMRI and Day 2 pre rsfMRI. The upper panel
shows the case in which the associated prior sentences existed. The lower
panel shows the case in which the associated prior sentences did not exist.

0.026 for “w/o prior”]. Additionally, we executed two-way
repeated ANOVA with the TIME (Day 2 pre and Day 2
post rsfMRI) and PRIOR factor (with and without associated
prior sentences). Consistently, we observed a significant main
effect of the TIME [F (1, 621) = 20.56, p < 10−5], suggesting
that the replay-like activity in the Day 2 post rsfMRI
was more stable than the preplay-like activity in the Day
2 pre rsfMRI. We did not observe any main effect of
PRIOR [F (1, 621) = 0.006, p=0.94] or an interaction between
TIME and PRIOR [F (1, 621) =1.25, p = 0.26]. These findings
suggest the stabilization of neural representation through actual
experience.

Roles of the Entorhinal Cortex
Next, we further explored the brain areas contributing to
the effects that we have observed thus far. We separately
analyzed the hippocampus and the entorhinal cortex to
determine which contributed to the facilitating effect of
understanding of posterior sentences by the prototypical
neural representation (Figure 7). We found positive
correlations between preplay-like activity (in the Day 2
pre rsfMRI) and the understanding of posterior sentences
most strongly in the entorhinal cortex. As with the previous
observation, the correlation was present only if the posterior
sentences were associated with prior sentences (entorhinal
cortex: rmerged = 0.24, puncorrect = 0.0029, pcorrect = 0.012
for “w/prior” and rmerged = −0.045, puncorrect = 0.67 for “w/o
prior”; hippocampus: rmerged = 0.11, puncorrect = 0.098 for
“w/prior” and rmerged = −0.048, puncorrect = 0.68 for “w/o
prior”). Moreover, direct comparison of the correlations
between conditions with and without prior sentences
resulted in a significant difference only in the entorhinal
cortex (entorhinal cortex: puncorrect = 0.017, pcorrect = 0.034;
hippocampus: puncorrect = 0.12, pcorrect = 0.23). Therefore, the
entorhinal cortex, but not the hippocampus, plays a role in the
effect observed above.

Whole-Brain Exploration
To probe brain regions that are involved with the facilitation
of understanding of the sentences by the preplay-like activity
beyond the hippocampus and entorhinal cortex, we conducted
the exploratory analysis of the whole brain. Using whole-brain
GLM analysis, we investigated the correlation between the
preplay-like activity of the posterior sentences in the Day 2 pre
rsfMRI and the understanding of the posterior sentences for
each voxel in the brain. As a result, we did not observed any
area showing positive correlation between them regardless of
associations with prior sentences. However, we found the areas
in which the correlations for the posterior sentences associated
with prior sentences are significantly higher compared with
those without associated prior sentences (Figure 8 and Table 1).
These included the medial prefrontal cortex (mPFC) centered
on the paracingulate gyrus, the superior frontal gyrus, and the
juxtapositional lobule cortex.

DISCUSSION

In the present study, we aimed to shed light on the neural
mechanisms underlying selectivity in knowledge acquisition.
Many previous psychological and neuroscience studies have
suggested a rational in the acquisition of knowledge, in which we
actively select information from the environment to upgrade our
current knowledge.

We predominantly focused on the involvement of prototypical
neural representations, or preplay-like activity, in knowledge
acquisition. We used sentence comprehension as an instance
of knowledge acquisition. We completed a 2-day experiment
in which subjects were tasked with understanding prior and
posterior sentences. In this situation, the prior sentences that
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FIGURE 6 | Stabilization of neural representations after the experience. Comparisons of the intensities of preplay- and replay-like activities for posterior sentences in
Day 2 pre rsfMRI and Day 2 post rsfMRI, respectively. The left panel shows the case in which the associated prior sentences existed. The right panel shows the case
in which the associated prior sentences did not exist.

FIGURE 7 | Entorhinal cortical contribution of facilitating understanding by preplay-like activity. Correlation between the intensity of preplay-like activity (in Day 2 pre
rsfMRI) for posterior sentences and the understanding rating for posterior sentences. The posterior sentences were associated with prior sentences (left; w/prior) or
not (right; w/o prior). The entorhinal cortex (upper; Ent) and the hippocampus (lower; Hip) are compared. Each color of dots corresponds to a subject.

were learned by the subjects were considered to be prior
knowledge that contributed to the upcoming experience, which
was acquisition of posterior sentences (upcoming knowledge
acquisition). To investigate the relationship between acquisition
of the posterior sentences and the neural activity in during
the rest period before acquisition, we obtained a resting-state
as well as a stimulus-induced fMRI. First, we showed that
each posterior sentence was difficult to understand alone, but
that association with prior sentence increased understanding

of it. This demonstrates an effect of prior knowledge on
facilitating sentence comprehension during our experimental
procedure. Next, we investigated an effect of prototypical neural
representations to the comprehension of posterior sentences with
or without associations to prior sentences. Our results suggest
that prototypical neural representations (preplay-like activity)
leads to selectivity in knowledge acquisition by facilitating the
acquisition of items according to the intensity of their respective
prototypical neural representations only if the posterior sentences
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FIGURE 8 | Exploratory analysis of the whole brain. Comparison of the
“w/prior” and “w/o prior” posterior sentences. In both cases, the correlations
between the preplay-like activity (in Day 2 pre rsfMRI) for the posterior
sentences and the understanding rating for the posterior sentences were
calculated for each voxel. Then, these correlations were compared. The
significant voxels (p < 0.05) are shown under the FWE- and
Bonferroni-corrections for the number of voxels and the three conditions
(rw/prior > 0, rw/o prior > 0, rw/prior > rw/o prior), respectively.

TABLE 1 | Significant clusters of the exploratory analysis of the whole brain.

MNI coordinates

Region x y z Number of voxels p-value (corrected)

SFG 0 26 59 141 0.003

PCG 3 44 29 23 0.006

JLC 6 5 56 9 0.039

SFG, superior frontal gyrus; PCG, paracingulate gyrus; JLC, juxtapositional lobule
cortex.

were associated with the prior sentences. Even though the
subjects did not know the concrete posterior sentences when
prototypical neural representations appeared, the prototypical
neural representations represented these sentences. Therefore,
prototypical neural representations are proactive and can serve
as a substitute for an as-yet-unknown experience. This means
that prototypical neural representation is useful for predicting the
future and decreasing uncertainty. Moreover, our results suggest
that the brain spontaneously pre-selects what should be learned.
An existence of prior knowledge is vital for this mechanism
to operate since the facilitating effect by the prototypical
neural representation was observed only if prior knowledge was
available. Most likely, the brain represents the pre-selected item as
a prototypical neural representation based on prior knowledge.
Probably, this is selectively acquired through upcoming actual
experience.

In the present study, we did not find evidence to suggest that
prior knowledge resulted in newly formed organized patterns
of neural activity. Rather, our observations suggest that prior
knowledge influences the arrangement of preformed patterns and
enable them to become a prototypical neural representation as
the basis for an upcoming knowledge acquisition. Theoretical
studies suggest that sufficiently complex neural networks include
rich patterns of activity, which enables the networks to realize
arbitrary computation (Maass et al., 2002; Jaeger and Haas, 2004;
Sussillo and Abbott, 2009; Hoerzer et al., 2014; Rajan et al., 2016;

Thalmeier et al., 2016). Therefore, it is reasonable to postulate
that the brain has intrinsically sufficient neural patterns that
are arranged according to prior knowledge for future neural
representations.

We also showed that prototypical neural representation is
stabilized and becomes more established through an actual
experience. This result is similar to the phenomenon observed
in the rodent brain (Grosmark and Buzsaki, 2016). However,
this may be simply caused by the temporal proximity of
the measurement of the stimulus-induced fMRI for posterior
sentences and the Day 2 post rsfMRI for replay-like activity.
Further studies are required to clarify which interpretation is
more feasible.

We found the entorhinal cortex, rather than the hippocampus,
to be the primary contributor of the effects that we have
mentioned. In rodent studies, the involvement of the entorhinal
cortex has been investigated with respect to replay, but not
preplay. Thus, our study provides novel evidence of the areas
involved in preplay activity. The time elapsed since the initial
learning experience may be a possible factor influencing the
involvement of specific areas of the brain, as the progress of
learning and consolidation may shift the processing center from
the hippocampus to the entorhinal cortex (Takehara-Nishiuchi
et al., 2012).

In addition, the exploratory analysis of the whole brain
suggested that several brain areas contribute the facilitating effect
of the prototypical neural representation on understanding of the
posterior sentences when prior sentences are available. Especially,
the involvement of the mPFC is noteworthy since several
previous studies suggest that mPFC plays a role in memory recall
and consolidation when congruent prior knowledge exists (van
Kesteren et al., 2010b, 2013, 2014; Tse et al., 2011). Therefore, this
result may suggest that similar neural mechanism underlies the
facilitation of the understanding of the sentences observed in the
present study.

However, it is worthwhile to note that our findings in the
human brain do not parallel the findings reported in the original
preplay paper (Dragoi and Tonegawa, 2011). First, in the present
study, we showed that the prototypical neural representation
contributes to upcoming knowledge acquisition, but we did not
examine how frequently such prototypical neural representations
exist. On the other hand, in the original preplay paper, the
authors suggested that preplay activity exists significantly more
than random patterns. Second, we demonstrated the role of
prior knowledge on prototypical neural representation, while
the original preplay paper focused on naïve animals assumed
to have no prior knowledge. Therefore, we do not argue that
the prototypical neural representation observed in the present
study accurately corresponds to preplay activity in the rodent
brain. Further studies are required to clarify the relationship
between prototypical neural representations that we investigated
and preplay activity in the rodent brain.

Possible Mechanisms
Our findings suggest the existence of a two-step mechanism
that results in selectivity of knowledge acquisition through
prototypical neural representations that are arranged based on
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FIGURE 9 | Possible mechanism. (A) Preformed organized neural activity as part of the self-organized nature of the neural circuit. (B) Rough contingent associations
between preformed neural activity and external items. (C) Prior knowledge modulates the intensities of preformed neural activity, which is the arrangement process
for the activities as prototypical neural representations. (D) The encounter of the preformed activity (that is now the prototypical representation) and the concrete
external item. This induces resonance between prior knowledge and the preformed activity, and leads to the assimilation of the item into the current knowledge. This
is reflected in the strengthening of the link between knowledge and neural activity pointing to the particular item. (E) Current knowledge arranges the prototypical
neural representation as a designated position for future knowledge. The experience that fits this prototypical neural representation is easily assimilated.

prior knowledge (Figure 9). We will first brief the possible
mechanism and then explain it in depth.

As the first step, we assume the existence of preformed
organized brain activities that are rich enough to cover the items
that we possibly assimilate into our knowledge (Figure 9A).
These may become prototypical neural representations at a later
stage. At the second step, the preformed brain activity is arranged
to operate as prototypical neural representations with the
intensity determining the understanding or assimilation of the
items they will later represent. This involves sub steps; at the first
sub step, the preformed activity contingently has loose coupling
with an as-yet-unknown external item (Figure 9B). Then, prior
knowledge modulates the preformed activities and strengthens
the ones that correspond to the items to be learned (Figure 9C).
Now, the preformed activity operates as prototypical neural
representations and contributes to the selectivity of knowledge
acquisition. Finally, actual encounters of the prototypical neural
activity and concrete items that are strongly represented by it
result in the strong assimilation of the item into knowledge
(Figure 9D).

Next, we will give an in-depth explanation of each of these
steps. For Figure 9A, the necessity of the preformed brain activity
is based on the results suggesting that experience does not result

in new formation of the pattern that operates as preplay-like
activity. Rather, experience influences the arrangement of the
preformed pattern of neuronal activity (Figure 5). In order to
cover the multitude of possibilities that we assimilate into our
knowledge on the basis of prototypical neural representations,
the preformed activities should be highly diverse. We propose
that two non-exclusive sources, non-random external stimuli
and internally generated neural dynamics, could lead to such
a development of pattern activity. The former is evident from
the close comparisons between spontaneous brain activity and
activity evoked with naturalistic stimuli. Indeed, in the ferret
visual cortex, the statistics for spontaneous activity become
similar to the ones for activity evoked by naturalistic stimuli
(Berkes et al., 2011). This means that neural plasticity driven
by the non-random naturalistic stimuli endows the brain with
organized activity, and does so with such high diversity that
it allows for coverage of the diversity in natural stimuli.
Additionally, in the human visual cortex, one can also find such
similarities (Wilf et al., 2017).

For the latter source, it is possible for the brain to form
organized activity through activity-dependent plasticity that
is recursively driven by internally generated neural dynamics
(Rubinov et al., 2009, 2011; Miner and Triesch, 2016). One
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intriguing theoretical study showed that the recurrent neural
networks with Hebbian synaptic plasticity and homeostatic
intrinsic plasticity automatically grow into a dynamic regime
called the “edge of chaos” under biologically plausible conditions
(Naudé et al., 2013). The networks that make up the “edge
of chaos” are known to possess the preferred characteristics
for information processing (Bertschinger and Natschläger, 2004;
Legenstein and Maass, 2007; Büsing et al., 2010; Boedecker
et al., 2012). A high separation property seems to be especially
beneficial for this step, as it reflects the ability to represent the
effective diversity of the possible states.

Next, the preformed activity must be arranged to operate
as prototypical neural representation. We observed that
assimilation was influenced by the intensity of preplay-like
activity, only if prior knowledge was available (Figures 2A,B).
Thus, the arrangement occurs during and/or after the
construction of prior knowledge.

Here, the tripartite relationship between prior knowledge,
preformed activity, and an external item must be considered
(Figure 9B). The preformed activity roughly or imaginarily
points to the external items, as these items are not yet concrete.
At least at this stage, prior knowledge is not able to modulate the
correspondence between preformed activities and external items,
as the physiological substance of the correspondence is simply
the activation of neural patterns by the specific range of inputs
(Figure 9B).

One may consider that we better assimilate items that
are incidentally pointed out with intense preformed activity.
However, the observation in the case of no prior knowledge
(Figures 2, 3) disproves this idea. The strength of the connection
between prior knowledge and a preformed activity seems to
determine the resulting amount of the assimilation of the item.
We simply assume that coactivation of prior knowledge and the
preformed activity leads to a strong assimilation of such an item
pointed out with the activity, like Hebbian plasticity (Hebb, 1949;
Bliss and Collingridge, 1993). Low activation of prior knowledge
explains the weak assimilation of the items with the unavailability
of prior knowledge, regardless of the intensity of preformed
activities.

Next, we can consider the two scenarios in which prior
knowledge is available. In the first scenario, the items incidentally
pointed out by the intense preformed activity are strongly
assimilated. If true, the strength of assimilation would be ruled
by chance. However, we observed that a strong understanding
of prior sentence set off the strong understanding of associated
posterior sentence, and. therefore, we should reject the first
scenario. In the second scenario, prior knowledge modulates
preformed activities and strengthens the ones corresponding to
items to be learned (Figure 9C). In this scenario, the items
pointed out with the preformed activities strengthened by prior
knowledge are strongly assimilated (Figure 9D). This scenario
successfully explains the positive tripartite relationship between
prior knowledge, preformed activity, and assimilation of an
external item. Thus, through modulation of the preformed
activity, prior knowledge indirectly determines the item that we
should learn from the environment.

Implications for Cognitive Functions
In the present study, we showed the possible neuronal
mechanism underlying selectivity in knowledge acquisition. If
the brain actively selects the information and updates the
knowledge according to the latent policy, knowledge acquisition
is directional. Naturally, this introduces the view where we regard
knowledge acquisition as the optimization process governed
by objective functions. However, to reveal the computational
principles in knowledge acquisition, we must know the objective
functions.

Our results indicate the presence of a pathway between current
and updated knowledge via generation of prototypical neural
representations. Therefore, further investigation of this pathway
may contribute to the identification of objective functions. In
the present study, we could not find any neuronal identifier that
discriminates the prototypical neural representations observed
when prior knowledge is available from the false ones observed
when prior knowledge is not available. As a next step, it is
important to find the identifier.

In our experiment, prior sentences were difficult to
understand alone and required associable posterior sentences
to increase their understanding. This could mean that the prior
sentences had semantic deficits. Therefore, prototypical neural
representations may identify the deficit to be compensated.
From this perspective, the items pointed out with self-generated
prototypical neural representations are considered to be deficits
in knowledge. What is recognized as a “deficit” by our brain is a
vital factor that determines the direction in which the brain will
lead us. We may gain insight into this mechanism by clarifying
the generative process of prototypical neural representations as
the icons for the deficits.

It is important to review our results in relation to “schema.”
A schema is structured information or knowledge for a cluster
of events constructed in our minds, and is a central component
of neuroscience for learning and memory (Ghosh and Gilboa,
2014; Gilboa and Marlatte, 2017). In an early study, “slots,” or
variables to be filled, were defined as the key concept featured in
a schema (Minsky, 1975; Schank and Abelson, 1977; Rumelhart
et al., 1986). There is a similarity between slots and prototypical
neural representations observed in the present study. Since
slots are preset positions in the current knowledge reserved
for upcoming information, they enable the brain to process
information in proactive, imaginary, or counterfactual manners.
This may increase the brain’s readiness for future events. A recent
theoretical study suggested that preplay activity enabled the
neural circuit to do so-called “one-shot” learning (Haga and
Fukai, 2017). Additionally, using prototypical representations
instead of upcoming concrete information may enable us to think
in advance.

The present study presents a view where we regard
knowledge acquisition as a so-called autopoiesis. Autopoiesis
is the process where a system autonomously and continuously
regenerates itself (Maturana and Varela, 1980, 1987). From our
observations, together with the previous research on knowledge
acquisition, current knowledge generates prototypical future
knowledge that probably satisfies some needs (Figure 9E).
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More precisely, current knowledge generates prototypical
information as preplay-like activity that is the rough component
of future knowledge. It serves as a pointer to point to what
one should learn, and is the position reserved in advance for
new information. The actual acquisition of such information
actively reorganizes the existing knowledge. Further in-depth
investigation of such an autopoietic nature will reveal how and
why our knowledge is superior and defective, and will lead the
development of artificial intelligence that can acquire knowledge
autonomously.

Limitations
In the present study, we used sentence comprehension as an
instance of knowledge acquisition. The sentences that were
provided to subjects were more or less philosophical. We
postulate that the objective correctness in the comprehension
of such sentences is decided not only from internal cognitive
ability of knowledge acquisition, but also from external social
norms and/or scientific facts that are out of the scope of this
study. Therefore, we adopted self-ratings of understanding as
the index of knowledge acquisition. As a result, the index
relied on subjectivity of the subjects. Although we acknowledge
that self-ratings of understanding probably correlate closely to
the actual degrees of knowledge acquisition, we could adopt a
more objective index. For instance, a follow-up memory test
after 1 week may be a better method. Investigation using more
objective indexes remains a task for future studies.

Relating to this issue, it is worthwhile to discuss the
validity of use of sentence comprehension as an instance
of knowledge acquisition. In the human, comprehension of
sentences containing new information through reading or
listening is a typical and natural way for knowledge acquisition.
The posterior sentences used in this study were new for
the subjects even if some parts were associated with the
prior sentences. In other words, the subjects acquired new
knowledge through comprehending the sentences. Therefore, the
comprehension is inevitably considered to indicate knowledge
acquisition. Additionally, previous researches suggest close
relationship between language comprehension and knowledge
acquisition (Maguire et al., 1999). Moreover, several studies
suggest the involvement of hippocampal region into the language
comprehension task, which means that language comprehension
needs to form new knowledge or synaptic connections especially
if the sentences are more or less new (MacKay et al., 1998; Awad
et al., 2007; Duff and Brown-Schmidt, 2012). In our experimental
setting, the posterior sentences were highly novel for the subjects.
Therefore, our protocol probably led the subjects to make new
knowledge by involving the hippocampus and the entorhinal
cortex. Thus, our task was validate in the sense that it included
knowledge acquisition as a main constituent.

Since our main concern of this study was relationship between
preplay-like activity and knowledge acquisition, we mainly
focused on the hippocampus and the entorhinal cortex. On the
other hand, we had little concern for language areas. However, as
our task was linguistic, it is expected that these areas play a role
in the task. To investigate the involvement of these areas clearly,
we first need to identify these areas in individual brain because

of large anatomical ambiguities and intersubject variability of the
borders (Juch et al., 2005). To overcome those difficulties, an
experimental protocol including localization scans for language
areas consisting of well-established language tasks are required.
We consider such an experiment as a future issue.

Although we instructed subjects to think of nothing in
particular before each measurement of rsfMRI, we could not
eliminate the possibility that subjects recalled the learned
sentences. Therefore, we may need to discount our findings about
“replay”-like activity. However, our main concern, “preplay”-
like activity, is not affected by this because the subjects did not
know the sentences prototypically represented by the activity
when we acquired the rsfMRI. Additionally, we showed no effect
of replay-like activity for prior sentences on posterior sentence
comprehension. Therefore, this issue does not diminish our main
conclusion.

Finally, we should note the strength of our conclusion.
Through the present study, our findings did not show
exceptionally strong statistical significance, which could be
partially caused by the complicated design of the task and a
relatively small sample size (Button et al., 2013). We observed
moderately strong results from the analysis with Ntop = 45,
and the analysis focused on the entorhinal cortex. However,
we should discount these results because of weak but existing
circularity (Kriegeskorte et al., 2009). The findings reported in
the present study are highly novel. On the other hand, we do
not have enough collateral evidence peripherally. Given these
issues and the controversy about preplay activity mentioned in
the introduction, further studies are required to augment the
conclusion.
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