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Go/no-go tasks are widely used to index cognitive control. This construct has been

linked to white matter microstructure in a circuit connecting the right inferior frontal

gyrus (IFG), subthalamic nucleus (STN), and pre-supplementary motor area. However,

the specificity of this association has not been tested. A general factor of white matter has

been identified that is related to processing speed. Given the strong processing speed

component in successful performance on the go/no-go task, this general factor could

contribute to task performance, but the general factor has often not been accounted for

in past studies of cognitive control. Further, studies on cognitive control have generally

employed small unrepresentative case-control designs. The present study examined

the relationship between go/no-go performance and white matter microstructure in

a large community sample of 378 subjects that included participants with a range

of both clinical and subclinical nonpsychotic psychopathology. We found that white

matter microstructure properties in the right IFG-STN tract significantly predicted task

performance, and remained significant after controlling for dimensional psychopathology.

The general factor of white matter only reached statistical significance when controlling

for dimensional psychopathology. Although the IFG-STN and general factor tracts were

highly correlated, when both were included in the model, only the IFG-STN remained a

significant predictor of performance. Overall, these findings suggest that while a general

factor of white matter can be identified in a young community sample, white matter

microstructure properties in the right IFG-STN tract show a specific relationship to

cognitive control. The findings highlight the importance of examining both specific and

general correlates of cognition, especially in tasks with a speeded component.
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INTRODUCTION

The executive function skill of cognitive control, which entails
the ability to inhibit inappropriate responses in favor of
more appropriate ones, has been consistently implicated in
psychopathology (Aichert et al., 2012; Wright et al., 2014).
Go/no-go paradigms are frequently used to measure this
construct. In a common challenging variation, a series of visual
stimuli (X’s and Y’s) are presented serially, and individuals
must make a button press if the current stimulus is different
from the preceding one (go trial), and withhold their response
if the stimulus is the same as the preceding one (no-go
trial) (Garavan et al., 1999). This variant has become popular
because of its strong engagement of frontal regions, which
reflects the multiple cognitive processes necessary for successful
performance (Simmonds et al., 2008).

Neuroimaging studies on cognitive control have often
implicated a right lateralized functional neural circuit comprised
of the inferior frontal gyrus (IFG), the pre-supplementary motor
area (preSMA), and the subthalamic nucleus (STN) (Chambers
et al., 2009). This circuit is hypothesized to facilitate the
ability to engage in component processes of cognitive control
including response selection (selecting between responses) and
response inhibition (inhibiting a prepotent response). White
matter microstructure plays an important role by determining
the quality of communication between regions in this circuit
(Aron and Poldrack, 2006). Diffusion tensor imaging (DTI)
provides metrics on white matter microstructure, the most
commonly reported of which is fractional anisotropy (FA), which
broadly looks at how restricted water flow is within white
matter, with higher values suggestive of greater restriction, and
thus potentially increased efficiency (Basser and Pierpaoli, 1996;
Pierpaoli et al., 1996). In particular, higher FA values indicate
increased restriction perpendicular to the main axis of the fibers
but decreased restriction parallel to the main axis. FA can be
decomposed into Radial Diffusivity (RD), which is thought to
be more sensitive to properties of myelin, and Axial Diffusivity
(AD), which may be more sensitive to properties of axons (Song
et al., 2002).

Several DTI studies have found that white matter
microstructure properties of tracts connecting the right
IFG, preSMA, and STN are associated with cognitive control
(Liston et al., 2006; Casey et al., 2007; Madsen et al., 2010;
King et al., 2012; Rae et al., 2015). Those studies using the
go/no-go task have highlighted the role of both FA and RD in
this circuit. However, one notable limitation is that these studies
inconsistently test for the anatomical specificity of observed
relationships. This is problematic because a substantial amount
of the variance in white matter microstructure may reflect more
global individual differences that cut across multiple circuits
(Penke et al., 2010). Penke and colleagues found that when using
a principal components analysis (PCA), FA values across 8 white
matter tracts all loaded onto a single factor (2010). Further,
that this general factor was associated with processing speed, a
construct that is central to the go/no-go task given its emphasis
on rapid responses. While this study was in older adults, a
general factor has also been identified in younger adults, though

the evidence is more mixed (Jahanshad et al., 2013; Johnson
et al., 2015; Alloza et al., 2016). Given the potential influence of
this general factor in tasks with speeded components, studies
should determine if findings are specific to a narrow range of
tracts, or related to white matter more broadly. None of the
studies to date looking at the relationship between white matter
microstructure and go/no-go performance have accounted for
this general factor.

It remains unclear the extent to which the relationship
between white matter microstructure and cognitive control is
specific to tracts connecting the right IFG, STN, and preSMA,
vs. linked more globally to the general factor of white matter.
Therefore, it is unknown if the previously identified tract-specific
relationships could be better explained by this general factor.
Such a result would lead to the radically different conclusion that
global rather than local white matter microstructure properties
facilitate cognitive control. In the present study, we examined the
white matter microstructure correlates of go/no-go performance.
The primary hypothesis was that cognitive control ability would
be selectively related to FA in the circuit connecting the right
IFG, STN, and preSMA. The competing hypothesis was that the
relationship between cognitive control and FA in this circuit
would be explained by the general factor of white matter.

The clinical significance of cognitive control deficits derives
in part from their manifestation in psychopathology, especially
in externalizing disorders (Young et al., 2009). Studies on
white matter microstructure and cognitive control have generally
taken a restricted approach to sampling; they often employ
convenience samples of super-normals with no history of
psychopathology, or compare super-normals to individuals with
isolated psychopathology with minimal comorbidity (Kendler,
1990; Cuthbert and Insel, 2013). A significant limitation of
these designs is that the findings may not generalize to the
general population (Insel et al., 2010). In the present study,
we used a large community sample that included individuals
with a range of psychopathology. As such, it allowed us to test
whether previously identified DTI-performance relationships
would generalize to a less restricted sample.

MATERIALS AND METHODS

Participants
Participants came from the second wave of the Tennessee Twin
Study. The first wave of this study was conducted in 2001
(2000+ twin pairs) and was a representative sample of all live
twin births in Tennessee between 1984 and 1995 (Lahey et al.,
2008). The now adult twin pairs in the second wave were
selected with oversampling for internalizing and externalizing
psychopathology risk based on data from clinical interviews
when the individuals were adolescents (ages 12–17 in wave
one). Thus, the wave 2 sample contains a high proportion of
individuals with prevalent forms of psychopathology. Individuals
were pre-screened for participation. Exclusion criteria included
a history of multiple concussions with loss of consciousness or
other head injuries, seizures, neurological diseases other than
headaches, contraindications for MRI scanning, diagnosis of
schizophrenia, or a major developmental disorder. The study
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was approved by Vanderbilt University’s Institutional Review
Board (IRB). Written informed consent was obtained from the
participants.

The present sample included 417 young adults (ages 23–
31) who completed both a DTI scan and the go/no-go task. A
total of 16 subjects were excluded due to poor task performance
(defined as performance worse than 2 standard deviations below
the average hit rate or two standard deviations above the average
false alarm rate) and four subjects were excluded because of a
programming error leading to an aberrant ratio of go to no-go
trials. We excluded outliers because we could not determine if
their poor performance was due to deficits on the task, or to
reasons that would invalidate their performance metrics (e.g.,
using a strategy such as ignoring no-go trials to optimize go
performance or they did not understand the directions). In
addition, 19 participants were excluded for poor DTI data quality
(excessive movement, missing data, etc.).

The final sample consisted of 378 subjects. This included 162
participating twin pairs and 54 individuals without a twin with
valid data. For the twin pairs, there were 82 monozygotic pairs
and 80 dizygotic (39 same-sex pairs and 41 different-sex pairs).

Tasks and Personality Measures
Go/No-go Task
We utilized the XY go/no-go task developed by Garavan et al.
(1999). In this version of the go/no-go task, participants view
a series of Xs and Ys, and must respond if a letter is different
from the previous one, but withhold their response if the letter
is the same. This task was comprised of two 8-min runs, with
a total of 732 go trials and 108 no-go trials (total of 840 trials),
with go trials being far more frequent than no-go trials in order
to make go responses prepotent relative to the less frequent no-
go trials. Each trial lasted 1 s, with the letter duration randomly
selected (between 600 and 900ms) and the fixation cross filling
the remainder of the time. Prior to completing the task in the
scanner, participants were trained on a version of the task that
provided feedback on performance. Participants completed the
task in a scanner, lying down, and using a response box.

Young Adult Diagnostic Interview for Children

(YA-DISC)
The structured Young Adult Diagnostic Interview for Children
(YA-DISC) was administered by a trained interviewer (Shaffer
et al., 2000). This computerized structured clinical interview
is designed for individuals in the samples’ age range and
has been used in longitudinal studies of psychopathology
to assess symptoms from the major diagnostic categories in
the DSM-IV (Hart et al., 1995; Shaffer et al., 1996). The
YA-DISC queried diagnostic criteria for attention deficit and
hyperactivity disorder (ADHD), oppositional defiant disorder
(ODD), conduct disorder (CD), major depressive disorder
(MDD), generalized anxiety disorder (GAD), posttraumatic
stress disorder (PTSD), agoraphobia, panic attacks, obsessive-
compulsive disorder (OCD), social phobia, specific phobia,
manic episodes, and nicotine, alcohol, marijuana, and other drug
use disorders during the last 12 months. Because far few skip
patterns are used in the YA-DISC, it is possible to obtain counts

of symptoms for dimensions of psychopathology. For a follow-
up analysis, we used a confirmatory analysis to generate both an
internalizing and externalizing latent factor score (Lahey et al.,
2017).

DTI Acquisition
Imaging data were acquired on two identical 3T Intera-Achiava
Phillips MRI scanners using a 32-channel head coil. T1-weighted
images were acquired with a 3-D Magnetization Prepared Rapid
Acquisition Gradient Echo (MPRAGE) sequence [TE/TR/TI
= 4.6/9.0/644(shortest) ms; SENSE = 2.0; echo train = 131;
scan time = 4min 32 s; FOV: 256 × 256 × 170mm, 1mm
isotropic resolution]. For diffusion weighted images the scan
length was 5min 2 s. We used a multi-slice Stejskal-Tanner spin
echo sequence with an echo planar imaging readout (TE/TR
= 52/7750ms, SENSE = 2.2, FOV: 240 × 240mm, 2.5mm
isotropic, 50 slices, 2.5mm slice thickness). This was acquired
with one image without diffusion weighting (“b0”) and 32
diffusion-weighted images equally distributed over a hemisphere
(b= 1,000 s/mm2).

Data Analysis
Behavioral Analysis
D-prime served as the primary variable of interest from
the go/no-go task. This was calculated by subtracting a z
transformation of false alarm rate (the proportion of no-go trials
in which the participant incorrectly made a response) from a z
transformation of hit rate (The proportion of go trials in which
an individual correctly made a response) (Wickens, 2002). In
order to complete the z transformation, we used the NORMINV
function from Microsoft Excel version 14.6.7. We also calculated
inverse efficiency, which is the average go trial reaction time
divided by 1minus the false alarm rate (Townsend and Ashby,
1983). For inverse efficiency, we excluded data for 15 subjects
whose scores were 2 standard deviations aberrant from the mean
(n= 363). SPSS 24 was used to calculate a z transformation.

DTI Data Pre-processing
The DTI data was preprocessed using methods detailed by
Lauzon et al. (2013). DTI images were first registered to the
B0 volume using FSL FLIRT (1). The B0 volume was then
masked using BET (1). Eddy current and motion corrections
were performed using FSL. The CAMINO software package
was used to fit the diffusion tensor (Cook et al., 2006). Robust
tensor fitting using RESTORE was implemented (Chang et al.,
2005). Quality control of the data was completed by consulting
a graphical quality assurance report that detailed the amount of
motion, FA bias and standard deviation, and goodness of fit of the
data to the diffusion model (Lauzon et al., 2013). If a participant
was an outlier within the dataset on any of the quality assurance
metrics, that participant was excluded from subsequent analyses.

Functional Magnetic Resonance Imaging of the Brain
Software Library (FSL;www.fmrib.ox.ac.uk/fsl) was used to
compute Tract Based Spatial Statistics (TBSS) and create a
white matter skeleton following the procedures detailed in Smith
et al. (2006). In brief, each subject’s FA image was brought
into standard space using a non-linear transformation to the
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FMRIB58_FA template. These images were then averaged to
create a mean FA image, which was then thinned to create a
skeletonized mean image and thresholded at FA> 0.2. Then each
individual’s FA image was projected onto this mean skeleton,
creating a 4D file that was used for subsequent statistical analyses.
Axial diffusivity (AD) and radial diffusivity (RD) skeletonized
images were created by first applying the non-linear warp which
was used to bring each FA image to the template, and then
applying each subject’s projection vectors onto themean skeleton.

Statistical Approach
We used a tract-based approach to look at the relationship
between task performance and white matter microstructure
across narrow and broad circuits. The first set of tracts of
interest were those implicated in cognitive control. For the tracts
connecting the right IFG and STN and right preSMA and STNwe
used masks generously provided by Rae et al. (2015) which were
generated via probabilistic tractography in a sample of 16 healthy
adults. In addition, we generated a mask of the tract connecting
the right IFG and right preSMA. We approximated the methods
used by Rae and colleagues by using 16 randomly selected
right handed participants (no twin pairs included) who didn’t
meet criteria for any diagnoses. The IFG mask was from FSL’s
Juelich histological atlas (BA44 and BA45) and the preSMA/SMA
mask was from the anatomical automatic labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002; Eickhoff et al., 2005). We ran
probtrackx (FSL) twice with each region as a seed and target,
used an exclusion mask at midline, and set target masks as
both waypoint and termination masks. Each of these images was
thresholded at 98% probability, combined to create a single mask,
and transformed to MNI space. Masks for all subjects were then
added together and only those voxels that were present in at least
50% of the subjects (8/16) were included in the final mask.

The second set of tracts were those identified as loading
heavily onto the general factor of white matter as defined by
Penke and colleagues (genu and splenium of the corpus callosum,
bilateral cingulum, bilateral uncinate fasciculus, and bilateral
arcuate fasciculus) (Penke et al., 2010). We used the JHU white-
matter tractography atlas to generate masks for all tracts except
for the arcuate fasciculus (AF), which is not included in this
atlas (Wakana et al., 2007). For the AF, we used a probabilistic
mask generated by the Natbrainlab (http://www.natbrainlab.co.
uk/atlas-maps). All masks were thresholded to only include
voxels with a probability of >10%.

Mask for the three cognitive control tracts and for the eight
general factor tracts were overlaid on the white matter skeleton
mask generated from the present sample, and only overlapping
voxels were included in the final masks (IFG-STN = 1,289;
preSMA-STN = 753; preSMA-IFG = 1,450; genu = 5,491;
splenium= 4,092; left cingulum= 934; right cingulum= 511; left
uncinate fasciculus = 1,908; right uncinate fasciculus = 907;
left arcuate fasciculus = 4078; right arcuate fasciculus = 3,866).
See Figure 1A for the skeletonized response inhibitionmasks and
Figure 1B for their overlap with the original tract images. See
Figure 2A the skeletonized general factor tracts and Figure 2B

with their overlap with the original tract images.
For the response inhibition tract, average FA, RD, and AD

values across each mask were extracted for each subject. For

the general factor tracts, average FA values were extracted across
each of the eight tracts and then a PCA was run on these values
using SPSS 24. This method was chosen to be consistent with
the methods used in the original general factor of white matter
manuscript by Penke et al. (2010). If a single factor solution
emerged, factor scores were extracted for each subject and used
in subsequent analyses.

To test our hypotheses, we first ran regressions with d-
prime as the outcome variable and FA values or factor scores as
predictors. Separate regressions were run for general factor, IFG-
STN, preSMA-STN, and preSMA-IFG as predictors. We adjusted
the p-value significance threshold to account for multiple
comparisons (0.05/4 = 0.0125). All of the regressions were
conducted in MPlus eight and took stratification and clustering
within twin pairs into account (Muthén andMuthén, 2012). This
included weighting to adjust for both differing probabilities of
selection and nonparticipation. Demographic covariates related
to the phenotypes included sex, age, ethnicity, and the log of
family income during wave one of this study. We also controlled
for scanner. To test the power of our analyses we used the
program G∗Power (Faul et al., 2007).

If we observed a significant relationship with both the
general factor and one of the specific tracts, we performed a
planned analysis to test if relations in tracts of interest would
be substantially accounted for by the general factor of white
matter. For these analyses, d-prime served as the dependent
variable, FA across the significant cognitive control tract(s) as an
independent predictor (e.g., IFG-STN/preSMA-STN/preSMA-
IFG), and factor scores for FA across general factor tracts as a
control variable. For these planned follow-up analyses, we used
a significance threshold of p < 0.05. Given this is a community
sample with a range of psychopathology, we also looked at the
role of psychopathology in relation to significant tracts. For these
analyses, we used the same statistical thresholds as for the initial
analyses.

We also planned a series of analyses to decompose significant
relationships. First of all, we looked at inverse efficiency as a
measure that examines speed-accuracy trade-offs.We also looked
at AD and RD across significant tracts to examine the extent
to which properties of myelin or axon may be implicated in
cognitive control. We further deconstructed cognitive control
performance into response inhibition and selection. For all
planned follow-up analyses we used a significance threshold
of p < 0.05. We also included the same covariates as in the
primary analyses (age, sex, ethnicity, log of family income, and
scanner) and took stratification and clustering within twin pairs
into account and included weighting to adjust for both differing
probabilities of selection and nonparticipation.

RESULTS

Participant Demographics and Behavioral
Results
Table 1 contains demographic information on the full sample,
and Table 2 contains information on the number of individuals
who met criteria for various diagnoses. A total of 193 subjects
did not meet criteria for any diagnoses (51.1%). The average
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FIGURE 1 | (A) Masks of skeletonized response inhibition tracts from left to right: right IFG-STN (red), right preSMA-STN (blue), and right preSMA-IFG (purple)

(B) Masks of the tracts of interest (in blue) overlapped with the skeletonized images (in red). The tracts are as follows from left to right: right IFG-STN, right

preSMA-STN, and right preSMA-IFG.

internalizing score was 0.01 (0.22) and externalizing score was
0.09 (0.93).

The behavioral metrics from the go/no-go task are also
summarized in Table 1. A Komogorov-Smirnov (KS) test for
d-prime was not significant, indicating it met assumptions of
normality (p > 0.10). Hit rate, false alarm rate, and inverse
efficiency were not normally distributed (ps < 0.05), and thus
for subsequent analyses we used the z-transformations of these
scores. While z false alarm rate was normally distributed (p >

0.10) neither z hit rate nor z inverse efficiency were (p < 0.05).

Principal Components Analysis
The PCA on the general factor tracts yielded a clear one factor
solution, with all 8 tracts loading onto this single factor explaining
67.65% of the variance (for the scree plot see Figure 2C and for
factor loadings see Figure 2D). Factor scores were extracted for
each subject, and these scores were used in subsequent analyses
involving general FA.

Primary Analyses
Individual Tracts and the General Factor
FA in the IFG-STN was a significant predictor of d-prime (β =

0.282, p < 0.001). General factor FA was a trend level predictor
(β = 0.218, p = 0.015), but did not reach statistical significance
after correction for multiple comparisons (p < 0.0125). FA in
the preSMA-STN tract and IFG-STN tract were not significant
predictors (p > 0.10). The significant regression models are
presented in Table 3.

SPSS 24 was used to calculate a semi-partial correlation
between FA in the IFG-STN and d-prime as a measure of effect
size (Howell, 2012). This took into account weighting but didn’t
take into account clustering or stratification. The semi-partial
correlation was significant (r = 0.26, p < 0.001) and represents
a small effect size (Cohen, 1988, 1992).

Controlling for the General Factor
Given that FA IFG-STN was a significant predictor and FA
general was a trending predictor, we tested for the specificity of
the IFG-STN relationship. To do this, we ran another regression
analysis predicting d-prime from FA in the IFG-STN tract while
controlling for FA in the general factor tracts (FA IFG-STN
and FA general were correlated at r = 0.67). FA in the IFG-
STN remained a significant predictor of d-prime (β = 0.244,
p = 0.035) and FA general was not a significant predictor (p
> 0.10). The R2-values were virtually identical for the model
with (R2 = 0.114) and without the general factor (R2 = 0.113),
indicating that including FA general didn’t significantly improve
the model. See Table 4 for a summary of the regression model
including both IFG-STN FA and general FA. The semi-partial
correlation between FA in the IFG-STN and d-prime with FA
general included in the model was significant (r= 0.17, p< 0.01),
and represents a small effect size (Cohen, 1988, 1992).

Psychopathology
Given that this is a community sample whichwas oversampled on
risk for psychopathology, we wanted to confirm that presence of
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FIGURE 2 | (A) General factor skeletonized tracts from left to right: bilateral uncinate fasciculus (blue), splenium and genu of the corpus callosum (red), bilateral

cingulum (purple), and bilateral arcuate fasciculus (green) (B) Original thresholded tracts (blue) overlaid with skeletonized masks (red). From left to right: uncinate

fasciculus, corpus callosum, cingulum, and arcuate fasciculus (C) Scree plot from the principal components analysis of FA values from general factor tracts (D) Factor

loadings of each of the eight general factor tracts.

psychopathology wasn’t driving the results. Therefore, we ran the
primary analyses (d-prime predicted by FA IFG-STN, preSMA-
STN, preSMA-IFG, and general) in the subset of individuals who
didn’t meet criteria for any diagnoses (n = 193). These results
were consistent with those found in the full sample. FA in the
IFG-STN remained a significant predictor of d-prime (β = 0.261,
p = 0.001) and FA general was a trend level predictor (β =

0.265, p = 0.014). FA preSMA-STN and FA preSMA-IFG were
not significant predictors (ps > 0.10).

In addition, psychopathology is increasingly conceptualized
using dimensional as opposed to categorical approaches (Lahey
et al., 2012). Therefore, we also ran analyses controlling
for dimensional psychopathology by using externalizing and
internalizing factor scores as covariates. FA in the IFG-STN
remained a significant predictor of d-prime (β = 0.270, p <

0.001). FA general was also a significant predictor (β = 0.221, p
= 0.011). FA preSMA-STN and preSMA-IFG were not significant

predictors (ps > 0.10). The significant models are presented
in Table 3. Given that both FA general and FA IFG-STN were
significant predictors we tested the competing hypothesis by
entering them both in the model along with internalizing and
externalizing factor scores. FA IFG-STN remained a significant
predictor (β = 0.218, p = 0.043) and FA general was not
a significant predictor (β = 0.081, p > 0.10). This model is
presented inTable 4. The R2 for this model was virtually identical
with the general FA (R2 = 0.145) as without it (R2 = 0.142).

Follow-Up Analyses
We ran a series of follow-up analyses in the full sample to
follow-up on the primary findings.

Inverse Efficiency
A limitation of d-prime is that it does not incorporate speed
of processing. We therefore repeated the analyses using inverse
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TABLE 1 | Participant demographics and behavioral performance.

Variable Mean (Standard deviation) Range

Age (Years) 26.00 (1.75) 23, 31

Income* 18.89 (4.94) 1, 24

D-prime 1.48 (0.72) −0.13, 3.57

Z Hit rate 1.72 (0.56) 0.05, 3.00

Z False alarm rate 0.24 (0.45) −0.97, 1.38

Inverse efficiency 989.05 (342.69) 460.31, 2014.06

Variable N Percentage

Sex

Male 179 47.35

Female 199 52.65

Scanner

3TA 199 52.65

3TB 179 47.35

Ethnicity

White 278 73.54

African american 89 2.35

Other 11 2.91

Psychopathology

No diagnosis 193 51.06

One or more diagnosis 185 48.94

*Family income reported in brackets ranging from 0 (no income) to 24 ($100,000 and

over). 18 = $35,000-44,999.

efficiency as the dependent variable, which reflects the speed-
accuracy trade-off between go and no-go trials. None of the FA
measures were significant predictors of inverse efficiency (ps >

0.10).

Hit Rate and False Alarm Rate
We next examined whether FA IFG-STN was related to the
distinct performance variables of hit rate and false alarm rate.
For hit rate, FA IFG-STN was a significant predictor (β = 0.223,
p < 0.001). For false alarm rate, FA IFG-STN was a trend level
predictor (β =−0.156, p= 0.077).

Axial and Radial Diffusivity
We completed follow-up analyses using AD and RD in the right
IFG-STN as predictors of d-prime. RD was a significant predictor
(β = −0.199, p < 0.01, R2 = 0.080). AD was also a significant
predictor (β = 0.162, p< 0.05, R2 = 0.072). Given that these were
both significant, we entered both into a regression as predictors
of d-prime to determine if they both contributed independently
(they were correlated at r = 0.21). Both AD (β = 0.205, p < 0.01)
and RD (β =−0.240, p< 0.01) were significant predictors in this
model (R2 = 0.119).

DISCUSSION

Primary and Competing Hypothesis
We found that FA in the IFG-STN tract was a significant
predictor of d-prime in the complex go/no-go task. This is

TABLE 2 | Participant psychopathology.

Variable N (Percentage)

Alcohol abuse or dependence* 76 (20.11)

Antisocial personality disorder 52 (13.76)

Marijuana abuse or dependence 45 (11.90)

Nicotine dependence 33 (8.73)

Specific phobia 30 (7.94)

Social phobia 28 (7.41)

Major depression 24 (6.34)

Agoraphobia 20 (5.30)

Obsessive compulsive disorder 19 (5.03)

Panic disorder 18 (4.76)

Generalized anxiety disorder 17 (4.50)

Attention deficit and hyperactivity disorder 14 (3.70)

Other drug abuse or dependence 11 (2.91)

Posttraumatic stress disorder 10 (2.65)

*Disorders are not mutually exclusive, and thus individuals may meet criteria for multiple

disorders.

consistent with previous studies on both simple go/no-go tasks
and the stop signal task (SST), another task measuring response
inhibition, and suggests the importance of this tract for a range
of cognitive control tasks (Logan et al., 1997; Liston et al.,
2006; Casey et al., 2007; Madsen et al., 2010; King et al.,
2012). The present study identified a small effect size, whereas
previous studies using case-control and super normal samples
have generally identified an effect in the medium to large
range. Overall, the current results suggest that while this DTI-
performance relationship isn’t driven exclusively by prior sample
characteristics, the effect size may have been inflated in some
cases.

In this study, general FA was not a statistically significant
predictor of d-prime. Given the large sample size, this finding
can be viewed as a strong null result as the power to detect a
medium effect size was high (power = 0.9998). At best, general
FA explained only a negligible amount of the variance in d-prime.
When controlling for FA general, FA in the IFG-STN remained a
significant predictor of d-prime, and adding in FA general did not
improve the R2 of the model. This adds to the existing literature
by confirming our primary hypotheses that FA in the right IFG-
STN is selectively related to cognitive control in a community
sample.

Given that this is a community sample with varying levels of
psychopathology, we conducted several follow-up analyses that
looked at the impact of psychopathology. First, we replicated
our analyses in a subset of the sample that didn’t meet criteria
for any diagnoses. The results were the same as in the full
sample. Psychopathology is increasingly being conceptualized
dimensionally (Lahey et al., 2012). Thus, we also used a
dimensional lens to examine the impact of psychopathology
on the current results by covarying for internalizing and
externalizing psychopathology factor scores. In this analysis, both
IFG-STN and general FA were significant predictors of d-prime.
However, when controlling for general FA and both internalizing
and externalizing psychopathology, IFG-STN FA remained
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TABLE 3 | Significant regression models predicting d-prime.

FA IFG-STN FA IFG-STN controlling for psychopathology FA general controlling for psychopathology

B (SE) β B (SE) β B (SE) β

FA IFG-STN 8.56 (2.11)** 0.28** 8.20 (2.07)** 0.27** – –

FA Generala – – – – 0.16 (0.07)* 0.22*

Internalizing – – −0.16 (0.27) −0.04 −0.10 (0.31) −0.03

Externalizing – – −0.13 (0.09) −0.15 −0.16 (0.10) −0.18

Sex 0.03 (0.12) 0.02 −0.02 (0.12) −0.02 −0.05 (0.11) −0.03

Age 0.04 (0.03) 0.08 0.04 (0.03) 0.09 0.04 (0.03) 0.10

Ethnicity 0.21 (0.13) 0.13 0.19 (0.14) 0.12 0.14 (0.16) 0.09

Incomeb 0.01 (0.09) 0.01 −0.02 (0.08) −0.01 0.00 (0.08) 0.00

Scanner −0.16 (0.11) −0.11 −0.15 (0.11) −0.10 −0.10 (0.12) −0.06

R2 0.11* 0.14* 0.12*

**p < 0.01 *p < 0.0125. Regression coefficients and R2 values in bold are significant.
aThese are factor scores from a PCA of FA values across 8 tracts.
bLog of total household income during wave 1 of study.

TABLE 4 | Regression models predicting d-prime and controlling for FA general.

FA IFG-STN controlling

for FA general

FA IFG-STN controlling for FA

general and psychopathology

B (SE) β B (SE) β

FA IFG-STN 7.40 (3.52)* 0.24* 6.61 (3.28)* 0.22*

FA Generala 0.04 (0.10) 0.06 0.06 (0.09) 0.08

Internalizing – – −0.17 (0.27) −0.05

Externalizing – – −0.13 (0.09) −0.15

Sex 0.04 (0.11) 0.02 −0.01 (0.11) −0.01

Age 0.04 (0.03) 0.09 0.04 (0.03) 0.09

Ethnicity 0.19 (0.15) 0.12 0.16 (0.15) 0.10

Incomeb 0.01 (0.09) 0.01 −0.03 (0.08) −0.02

Scanner −0.16 (0.11) −0.11 −0.14 (0.11) −0.10

R2 0.12* 0.15*

*p < 0.05. Regression coefficients and R2 values in bold are significant.
aThese are factor scores from a PRCA of FA values across 8 tracts.
bLog of total household income during wave 1 of study.

a significant predictor of d-prime. This provides additional
confidence in the specificity of IFG-STN FA for cognitive control
even when taking into account psychopathology symptoms.

It is worth noting that studies identifying a general factor
of white matter have primarily been with older healthy adults
or across a large age range (Penke et al., 2010; Jahanshad
et al., 2013). One study in young adults with schizophrenia
identified a general factor linked to processing speed (Alloza
et al., 2016), although a smaller study in healthy young adults
found inconsistent support for the general factor depending on
the metric analyzed (Johnson et al., 2015). The present study
lends support for the existence of a general factor of white
matter in a young adult community sample. Its emergence in
this study may in part reflect the well-powered nature of the
present study relative to the smaller sample in Johnson et al.
(2015). It may also reflect differences in methodology, and in
particular the way in which the tracts of interest were defined.

The relation of general FA to task performance in the present
study was less clear, as it only reached statistical significance
when controlling for dimensional psychopathology, and failed
to contribute significantly to predicting d-prime when entered
simultaneously with IFG-STN FA. This suggests the functional
consequence of general FA to task performance is modest for
this task, and potentially influenced by other variables related
to psychopathology. It is important to note that the use of a
large sample size as well as a range of covariates may have
played a role in our ability to identify a relationship between
general FA and cognitive control, especially given that this
relationship emerged only when controlling for dimensional
psychopathology. Continued research is needed to determine the
extent to which the general factor of white matter is relevant to
cognitive variables in healthy young adults as well as individuals
with psychopathology.

A core challenge in the study of the brain’s structural features
arises in that there are a mixture of regionally-specific and more
diffusely expressed features. It is thus essential to disentangle
these broad vs. narrow features when examining individual
differences in brain structure. The present findings highlight the
utility of this combined approach to examining broad and narrow
correlates of cognitive control. Further, that it is important
to consider a global factor of white matter when examining
cognitive processes with processing speed components, especially
in samples that aren’t super-normals.

Follow-Up Analyses
We also completed a series of follow-up analyses in order
to deconstruct our findings and provide additional specificity.
Given the link between general FA and processing speed, we also
examined inverse efficiency, which is a measure that captures
speed-accuracy trade-offs on go and no-go trials (Townsend and
Ashby, 1983). None of the FA values were significant predictors
of this behavioral metric. As such, it appears that the relationship
between FA in the IFG-STN and cognitive control is driven more
by signal detection relative to noise rather than processing speed.
However, it is important to note that inverse efficiency isn’t a pure
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measure of processing speed, but rather is capturing processing
speed in the context of inhibition.

We examined additional properties of white matter
microstructure by looking at both AD (which is likely more
sensitive to axonal properties) and RD (which is likely more
sensitive to myelin). Both average AD and RD across the
IFG-STN tract were significant predictors of d-prime, which
might implicate properties of both myelin and axons. We also
entered them both in as predictors, and they remained significant
independent predictors. This suggests that they both contribute
to d-prime. While these metrics are informative, future work
should aim to incorporate more specific metrics on properties of
white matter by using more advanced imaging techniques such
as neurite orientation dispersion and density imaging (NODDI)
(Zhang et al., 2012).

We also further deconstructed the significant d-prime
relationship by examining its component processes. We looked
at FA in the IFG-STN as a predictor for both hit rate (response
selection) and false alarm rate (response inhibition). It was a
significant predictor for hit rate and a trend level predictor for
false alarm rate. This is somewhat surprising, given that previous
studies have identified a relationship between response inhibition
and white matter microstructure properties in this tract (King
et al., 2012; Rae et al., 2015). There are several reasons why the
present findings may not be consistent with those of previous
studies. In this study, we used a complex version of the go/no-
go task that engages multiple executive functions other than
inhibition and selection (e.g., working memory). As such, false
alarm rate in this task may not be as pure a measure of response
inhibition as in simple versions. Also, there may be increased
measurement error for false alarm rate given that there are fewer
no-go than go trials. These factors may have contributed to
observing a null effect for false alarm rate. However, consistent
with prior studies, the present results do suggest that FA in the
IFG-STN facilitates the ability to balance response inhibition and
selection (Casey et al., 2007).

In contrast to prior studies, FA in the preSMA-STN and
preSMA-IFG tracts weren’t significant predictors of cognitive
control. However, the majority of studies identifying these
relationships used the SST task (Madsen et al., 2010; King
et al., 2012). While the SST and GNG both measure cognitive
control, the component processes are not necessarily identical:
the SST probes action cancelation whereas the GNG probes
action restraint (Eagle et al., 2008). Further, a meta-analysis
of fMRI versions of these tasks found that while they recruit
overlapping regions, they also recruit distinct regions (Swick
et al., 2011). Therefore, it may be that the IFG-STN tract is
relevant for both action cancelation and restraint, whereas the
preSMA-STN and preSMA-IFG tracts are more relevant for
action cancelation. In addition, TBSS better captures major
fiber bundles, and thus is less stable in more peripheral
tracts (as those studied here), and especially when they cross
other fiber bundles. It may be the case that the preSMA-
STN and preSMA-IFG tracts are more susceptible to crossing
fibers than the IFG-STN, and thus partially explaining the
null result in this present study (Jeurissen et al., 2013). That
being said, a prior study using a TBSS approach identified a

significant relationship in portions of these tracts (King et al.,
2012).

LIMITATIONS

While this study has a number of strengths including a large
diverse sample, it is important to note a few limitations. One
potential limitation is that we used a complex version of the
go/no-go task. While this version is often employed because of
its high executive function component, it may index multiple
processes (e.g., workingmemory) that are less specific to response
inhibition. This seems particularly likely given that observed
relations were stronger for d-prime and hit rate compared to
false alarm rate. Another limitation is the use of a twin sample,
which required reducing our statistical power to account for
clustering. However, even when accounting for the presence of
twin pairs, the sample size was large, which is in contrast to
previous neuroimaging studies which have traditionally been
underpowered.

There are also a few limitations to note in regards to the
analytic approach to the neuroimaging data. While we corrected
for eddy currents, we didn’t correct for EPI distortions, which
could impact frontal tracts. Future studies should attempt
to circumvent this by using sequences more robust to these
distortions such as acquiring both a bottom-up and top-down
image in k-space for each diffusion gradient (Andersson et al.,
2003). However, that we found effects in the IFG-STN tract
likely indicates that the EPI distortions didn’t substantially
influence the results. Further we utilized TBSS because several
other studies on white matter and cognitive control used this
technique (thereby allowing for more direct comparisons), and
because it allows for examination of the center of tracts and
thus reduces the problem of partial volume effects (Smith et al.,
2006; Madsen et al., 2010; King et al., 2012). However, there
are some limitations to this technique such as that it sometimes
fails to identify the center point of the tract and may introduce
additional confounds by aligning subjects to a common template
before extracting microstructure values rather than extracting
them in native space. Slight inconsistencies between tractography
masks and skeletonized masks may also produce discrepancies.
These discrepancies arise in part because of different alignment
techniques. Future studies should confirm these findings by
extracting values in native space and comparing them with the
present results. In addition, it should be noted that we focused on
properties of microstructure, but macrostructure properties may
also play a role here and should be further investigated. Finally,
there are known limitations to DTI imaging, such as difficulties
modeling crossing fibers, and future studies should use more
advanced techniques (e.g., Q-ball imaging) that better take into
account these limitations to determine if the results still hold
(Tuch et al., 2003; Jeurissen et al., 2013; Jones et al., 2013).
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