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Background: Conduct disorder (CD) is a mental disorder diagnosed in childhood
or adolescence that presents antisocial behaviors, and is associated with structural
alterations in brain. However, whether these structural alterations can distinguish CD
from healthy controls (HCs) remains unknown. Here, we quantified these structural
differences and explored the classification ability of these quantitative features based
on machine learning (ML).

Materials and Methods: High-resolution 3D structural magnetic resonance imaging
(sMRI) was acquired from 60 CD subjects and 60 age-matched HCs. Voxel-based
morphometry (VBM) was used to assess the regional gray matter (GM) volume
difference. The significantly different regional GM volumes were then extracted as
features, and input into three ML classifiers: logistic regression, random forest and
support vector machine (SVM). We trained and tested these ML models for classifying
CD from HCs by using fivefold cross-validation (CV).

Results: Eight brain regions with abnormal GM volumes were detected, which mainly
distributed in the frontal lobe, parietal lobe, anterior cingulate, cerebellum posterior lobe,
lingual gyrus, and insula areas. We found that these ML models achieved comparable
classification performance, with accuracy of 77.9 ∼ 80.4%, specificity of 73.3 ∼ 80.4%,
sensitivity of 75.4 ∼ 87.5%, and area under the receiver operating characteristic curve
(AUC) of 0.76 ∼ 0.80.

Conclusion: Based on sMRI and ML, the regional GM volumes may be used as
potential imaging biomarkers for stable and accurate classification of CD.
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INTRODUCTION

Conduct disorder (CD) is a psychiatric disorder occurred in
childhood and adolescence, defined by repetitive and persistent
pattern of aggressive and antisocial behaviors (American
Psychiatric Association, 2000). It is estimated to affect 51.1
million people globally (Rodriguez, 2013), imposing a heavy
social and economic burden. It is often seen as the precursor to
adulthood antisocial personality disorder (Bonin et al., 2011).

Like other psychiatric disorders, the diagnosis of CD involves
multi-informant such as retrospective review, psychiatric
interview and observation (Buitelaar et al., 2013). As a result,
the inconsistency, which might arise from the subjectivity or
memorial bias, has made the accurate diagnosis of CD difficult,
especially in the early stage (Haubold et al., 2012). Meanwhile,
CD can be underdiagnosed when psychiatric clinicians try to
avoid conferring a diagnosis with a poor prognosis, or may be
misdiagnosed by those psychiatric clinicians without sufficient
experience (Buitelaar et al., 2013).

Recently, supervised machine learning (ML) in neuroimaging
studies of psychiatric disorders has attracted increasing attention
(Haubold et al., 2012; Noordermeer et al., 2016). Supervised ML
learns classification rules from a training set of neuroimaging
data that are labeled by diagnosis, and after the training
process the algorithm is able to classify new testing data that
are not labeled (Kempton and McGuire, 2015). It has been
demonstrated that the neuroimaging data have the potential to
provide biomarkers for early diagnosis and patient stratification
(Kempton and McGuire, 2015). Brain imaging data are acquired
using one or more imaging modalities, including computed
tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), and single photo emission CT
(SPECT) (Haubold et al., 2012). MRI-related imaging techniques
such as structural MRI (sMRI) and functional MRI (fMRI),
are usually used for neuroimaging studies because they are
non-invasive techniques with high resolution and good contrast
(Haubold et al., 2012). sMRI images of brain are ideal for
studying brain structure and detecting physical abnormalities
(Haubold et al., 2012; Arbabshirani et al., 2016). However, the
complexity of brain structures and the massive neuroimaging
data have made the accurate diagnosis based on the image
features challenging (Steele et al., 2015). Pattern recognition and
classification models based on supervised ML has been applied
in neuroimaging studies (Steele et al., 2015). The classification
models possibly made the diagnosis more accurate and faster
(Klöppel et al., 2011). Classification models discriminating
healthy controls (HCs) from patients with psychiatric disorders
have demonstrated promising results, such as in attention deficit
hyperactivity disorder (ADHD) (Bansal et al., 2012; Chang et al.,
2012; Igual et al., 2012; Lim et al., 2013; Peng et al., 2013; Johnston
et al., 2014), autism spectrum disorder (ASD) (Uddin et al.,
2011; Segovia et al., 2014; Gori et al., 2015) and Huntington’s
disease (Rizk-Jackson et al., 2011). These classification models
were mostly based on support vector machine (SVM), logistic
regression and random forest.

So far, there have been no studies to classify CD from HCs.
Previous CD studies of sMRI only conducted group-level analysis

and their results provided limited information for individual
diagnosis (De Brito et al., 2009; Fairchild et al., 2013; Sebastian
et al., 2016). We aimed to test the hypothesis that the combination
of abnormal regional volumes of gray matter (GM) in CD patients
and SVM is capable of discriminating CD from HCs.

MATERIALS AND METHODS

Subjects and MRI Acquisition
Participants
A total of 60 male adolescents with CD aging 14–15 years
were recruited from outpatient clinics affiliated with the
Second Xiangya Hospital of the Central South University
(Changsha, Hunan, China). Diagnosis was established by two
experienced psychiatrists using the Structural Clinical Interview
for DSM-IV-TR Axis I Disorder-Patient Edition (SCID-I/P)
(First et al., 2002). A HCs group was recruited from the students
in local middle schools who volunteered to be interviewed by
the same psychiatrists and to be subjected to SCID-I/P and the
Chinese version of the Wechsler Intelligence Scale for Children
(C-WISC) (Gong and Cai, 1993). Finally, 60 students who
matched for age and gender of CD group were recruited in the
HCs group.

For all participants, exclusion criteria were as follows: history
of ADHD, oppositional defiant disorder (ODD), any psychiatric
or emotional disorder, any pervasive developmental or chronic
neurological disorder, Tourette’s syndrome, post-traumatic stress
disorder, obsessive compulsive disorder, persistent headaches,
head trauma, alcohol or substance abuse in the past year;
contraindications to MRI; or an IQ ≤ 80 on the C-WISC
(Zhang et al., 2014). All subjects were right-handed according to
the Edinburgh Handedness Inventory (Oldfield, 1971). Because
impulsivity and aggression were prominent features of CD, the
Barratt Impulsiveness Scale (BIS) was used to assess these traits
(Yao et al., 2007).

The study was approved by each school’s administration and
the Ethics Committee of the Second Xiangya Hospital of Central
South University (No. CSMC-2009S167). All subjects and their
parents were informed of the study’s purpose and signed the
informed consent.

MRI Acquisition
For each participant, high-resolution structural T1-weighted
images were acquired using a three-dimensional
magnetization-prepared rapid gradient echo (MPRAGE)
sequence on a 3T Philips Achieva scanner (Amsterdam,
Netherlands) at the Second Xiangya Hospital. The acquisition
parameters were: repetition time = 8.5 ms, echo time = 3.7 ms,
180 slices, slice thickness = 1 mm, acquisition matrix = 256× 256,
field of view = 256 mm × 256 mm, flip angle = 8◦, image voxel
size = 1.0 mm × 1.0 mm × 1.0 mm. A standard head coil was
used for radiofrequency transmission and reception.

Feature Extraction, Training and Testing
We used fivefold cross-validation (CV) for the training and
testing (Figure 1; Loop 2). After preprocessing, the images
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FIGURE 1 | Schematic flowchart of the ML classification model. We used two nested loops to build the classification model. In loop 2, we used fivefold CV method.
With fivefold CV, the dataset was randomly split into fivefold, and fourfold were used for training and the remaining onefold for testing. In loop 1, the fourfold training
data were divided into five fold, and we performed fivefold CV for calculating the optimized parameters. Note: CV, cross-validation.

were randomly divided into fivefold: fourfold for training,
which consisted of voxel-based morphometry (VBM) for feature
selection, and model building; onefold for testing, in which
feature calculation (according to the VBM results in training)
and classification with the trained model were performed. We
repeated the whole training and testing procedure five times
to measure the average performance of the SVM model by
using a different fold for testing in each repetition. The detailed
explanation of the procedures was shown below.

Feature Extraction
The original DICOM images were converted to 3D NIFTI
format using MRIcron (University of South Carolina, Columbia,
SC, United States1). Then, the preprocessing of fourfold
training images was conducted with SPM8 (Version 6313,
Wellcome Department of Imaging Neuroscience, London,
United Kingdom2) and VBM8 toolbox3 implemented in Matlab
R2013a (MathWorks, Natick, MA, United States). The first
module of VBM8 toolbox segmented the three-dimensional
T1-weighted images into GM, white matter (WM), and
cerebrospinal fluid (CSF) by applying a registration to
Montreal Neurological Institute (MNI) stereotactic space
and a subsequently non-liner deformation. The non-linear
deformation parameters were calculated via the high dimensional
Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL) algorithm and the predefined templates
in VBM8. The segmented images were modulated by applying
the afore-mentioned non-linear deformation, which ensured
that further statistical comparisons were made on the tissues’
volumes corrected for individual difference in brain size. Finally,
the segmented GM images were smoothed with an 8 mm
full-width-half-maximum Gaussian kernel.

1http://www.mricro.com
2http://www.fil.ion.ucl.ac.uk/spm
3http://dbm.neuro.uni-jena.de/vbm

Comparison of GM volumes between the two groups was
performed in SPM8 using two-sample t-test on the smoothed
images and adding IQ as covariate. The cluster difference was
considered significant if the cluster contained at least 50 adjacent
voxels under an uncorrected p-value threshold of 0.001.

The clusters obtained from the VBM analysis of the training
data were used for calculating the input features in the testing
data. Then MarsBaR 0.44 toolbox4 was employed to generate
cluster-specific binary 3-D masks for these clusters. To extract the
GM volumes in these abnormal regions of testing subjects, firstly
the testing subjects’ NIFTI images were registered and segmented
using the templates which were the same as the training subjects’
templates. Secondly, the GM images of testing subjects were
smoothed. Then, the binary masks were applied to each testing
subject’s smoothed GM images. Finally, we calculated the volume
of each cluster by multiplying the voxel size of smoothed GM
images by the sum of all values of the voxels in this cluster
(Ashburner and Friston, 2000; Good et al., 2001). The regional
GM volumes of each subject were extracted as the representative
features in the following pattern classification.

Training and Testing
For classifying CD from HCs, firstly we built a classification
model using SVM algorithm, a classifier for two-group
classification tasks (Cortes and Vapnik, 1995). The classification
normally consists of two phases: training and testing. During
the training phase, SVM finds the hyperplane with the largest
margin (Cortes and Vapnik, 1995). The margin is the distance
between the separating hyperplane and the training samples that
are closest to the hyperplane. A larger margin corresponds to
better generalization performance. The training examples that lie
at the margin are called support vectors. By applying non-linear
kernel functions, SVM can be extended to detect an optimal
non-linear hyperplane. Once the decision function (hyperplane)

4http://marsbar.sourceforge.net/download.html
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is learned from training phase, it can be used to predict the
classification of a testing sample (Witten et al., 2015).

We used two nested loops in building the SVM classification
model, as shown in Figure 1. In Loop 1, the training data were
further divided into fivefold: fourfold for training, and the left one
for testing. The features were normalized as (Aksoy and Haralick,
2001)

x′ =
x−min(x)

max(x)−min(x)

where x is the the original feature value, x is the feature vector,
and x′ is the normalized feature value.

A grid search method was used to determine the two
parameters C (regularization) and σ (scaling factor of the RBF
kernel) in SVM within a range of 2−8, 2−7, . . ., 28, respectively.
Loop 1 was repeated five times, and we measured the accuracy of
all the classifiers for all combinations of C and σ. The parameters
that produced the highest accuracy across the fivefold were
identified as the optimized combination. The classification of
the testing data in Loop 2 was predicted using the optimized
parameters C and σ. In this work, SVM was performed using
LIBSVM5, and the linear kernel and the kernel with radial basis
function (RBF) was both evaluated.

In SVM with linear kernel, the training result is to find a
hyperplane in the original space of features and separate the
classes as best as possible. The importance of a feature can
be represented by its weight, which is the coefficient in the
training model in LIBSVM. The absolute value of the coefficient
represents the importance of the feature and the direction of
weight represents the predicted class. We could take the dot
product of any testing sample with the weights of training
hyperplane: if the dot product is positive, the testing sample
belongs to the positive class; otherwise the testing sample belongs
to the negative class.

In addition to SVM, we established classification models
by using logistic regression and random forest algorithm
implemented in the scikit-learn Python library to compare the
performance of different classifiers (Pedregosa et al., 2011).
Logistic regression learns a linear decision boundary that
separates the subjects into two classes (Liu et al., 2013). Because
no parameter optimization was done in logistic regression,
logistic regression classification model was built by using only
Loop 2 in Figure 1. Random forest is an ensemble classifier
consisting of many classification trees, and the final prediction
for a testing subject is obtained by combining the predictions
of all classification trees (Breiman, 2001). These two classifiers
have been used widely for neuroimaging studies (Liu et al., 2013;
Chen et al., 2015). We also used two nested loops in building the
random forest classification model, as shown in Figure 1.

The performance of the classification models was evaluated
by using the receiver operating characteristic (ROC) curve. The
ROC curve of each classification method was calculated using
the testing results for all subjects (after fivefold CV, the labels for
all subjects were predicted). The area under ROC curve (AUC)
was calculated and it summarized the classifier performance

5https://www.csie.ntu.edu.tw/~cjlin/libsvm

across all decision thresholds. The accuracy, sensitivity and
specificity were calculated from the ROC curve according to the
decision threshold with the highest accuracy. To evaluate the
difference in classification performance of the different models,
the ROC curves of SVM with RBF kernel, logistic regression,
and random forest were compared with the ROC curve of SVM
with linear kernel, respectively. The comparisons were performed
with MedCalc package (version 12.1.4.0, MedCalc Software bvba,
Ostend, Belgium).

RESULTS

Demographic and Psychological Data
The demographic and clinical characteristics of the two groups
are shown in Table 1. CD and HCs did not differ significantly in
age. CD had lower IQ scores and higher total and subscale scores
for BIS compared to HCs.

Classification Performance by ML
The common clusters with significant group differences in GM
volumes in the five repetitions were summarized in Table 2 and
displayed in Figure 2. The regional GM volumes of these clusters
are also shown in Table 2. Decreases in GM volume of CD
were observed mainly in the cerebellum posterior lobe, inferior
parietal lobule, lingual gyrus and insula. Increases in GM volume
of CD were observed mainly in the medial frontal gyrus, anterior
cingulate, precuneus, superior parietal lobule, superior frontal
gyrus and subthalamic nucleus.

We calculated the features weights in the fivefold CV of SVM
with linear model, as shown in Table 2.

The ROC curve was shown in Figure 3. As shown in Table 3,
with fivefold CV, SVM with linear kernel achieved AUC of 0.78,
accuracy of 80.4%, specificity of 73.3%, and sensitivity of 87.5%.
SVM with RBF kernel achieved AUC of 0.79, accuracy of 79.6%,
specificity of 73.8%, and sensitivity of 85.5%. Logistic regression
achieved AUC of 0.76, accuracy of 79.4%, specificity of 78.8%,
and sensitivity of 80.0%. Random forest achieved AUC of 0.80,
accuracy of 77.9%, specificity of 80.4%, and sensitivity of 75.4%.
The p-values of the three comparisons of ROC curves were 0.633,
0.338, and 0.635, respectively.

TABLE 1 | Demographic and clinical characteristics of the conduct disorder (CD)
group and the healthy controls (HCs) group.

Measure CD HCs t-value p-value

Age in years 15.3 (1.0) 15.5 (0.7) 1.3 0.214

IQ 97.0 (12.3) 105.4 (8.8) 4.2 < 0.001

BIS-attention impulsivity 18.5 (3.2) 18.1 (3.1) −0.7 0.481

BIS-motor impulsivity 26.2 (5.0) 22.4 (3.8) −4.4 < 0.001

BIS-unplanned impulsivity 31.1 (4.6) 28.4 (3.7) −3.4 0.001

BIS-total scores 75.8 (10.9) 69.0 (8.1) −3.7 < 0.001

Data are given as mean (standard deviation). Two sample t-test was performed to
compare the difference between CD and HCs. CD, conduct disorder; HCs, healthy
controls; IQ, Intelligence Quotient; BIS, Barratt Impulsiveness Scale.
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TABLE 2 | Gray matter differences between CD group and HC group by VBM analysis.

Region (hemisphere) Cluster size
(voxels)

MNI coordinates Peak
t-value

Regional volume (Mean ± SD) Feature weight
(Mean ± SD)

X Y Z CD (mm3) HCs (mm3)

CD > HCs

Medial frontal gyrus/anterior cingulate(L) 9392 −2 51 7 5.1 11515.8 ± 1314.4 10317.4 ± 1330.0 0.5 ± 0.1

Precuneus(L) 1666 −44 −75 37 4.3 2093.0 ± 438.4 1761.7 ± 486.6 0.2 ± 0.1

Superior parietal lobule(L) 478 −32 −64 63 3.8 245.8 ± 57.0 205.3 ± 60.3 0.4 ± 1.8

Superior frontal gyrus(R) 318 21 62 −26 3.8 221.1 ± 56.0 187.1 ± 46.6 0.6 ± 1.6

Subthalamic nucleus(R) 375 6 −16 −14 4.3 155.4 ± 32.5 135.3 ± 18.6 2.0 ± 1.8

CD < HCs

Cerebellum posterior lobe(R) 210 15 −39 −51 −3.9 166.3 ± 26.0 184.6 ± 25.7 −2.6 ± 1.7

Inferior parietal lobule/insula(R) 1088 56 −18 22 −4.7 1618.2 ± 275.3 1870.7 ± 388.1 −2.3 ± 0.4

Lingual gyrus(R) 71 5 −94 −18 −3.6 32.0 ± 13.1 41.4 ± 15.6 −1.7 ± 1.6

CD, conduct disorder; HCs, healthy controls; L, left hemisphere; R, right hemisphere; MNI, Montreal Neurological Institute; SD, standard deviation. The volume of each
cluster was calculated by multiplying the voxel size of smoothed GM images by the sum of all the values of the voxels in this cluster. In SVM with linear kernel, the
importance of a feature is represented by its weight, which is the coefficient in the training model. The absolute value of weight represents the importance of the feature
and the direction represents the predicted label.

DISCUSSION

In the current study, we demonstrated that GM volumes can
be used to distinguish CD from HCs by using supervised ML
techniques. The regional GM volumes which were significantly
different across the groups, combined with ML algorithm,
correctly identified CD from HCs with approximately 80.0%
accuracy. The performance of our proposed model was
comparable, even better than previous similar studies. Igual
et al. (2012) defined the new caudate volume relation features
in ADHD classification, but the classification accuracy was only
72.48%. Ecker et al. (2010a) extracted volumetric and geometric
parameters at each GM region of interest (ROI), and classified
ASD patients from HCs with 85% accuracy. They also built
another ASD classification model using GM and WM maps,
and reported an accuracy of 77% (Ecker et al., 2010b). However,
since the two classifiers were both based on small cohorts (20
or 22 subjects in each group only), they might not be reliable
enough in an independent sample. Our current study, with a

larger sample of 120 subjects, has shown stable and relatively high
accuracy.

Effect of Feature Extraction
Efficient feature extraction may greatly improve the performance
of the classification model. In our study, we did not use
the BIS scales or other behavioral information as the features
because our aim was to explore whether the imaging features
are able to classify CD from HCs. Compared with HCs, CD
exhibited GM volume alterations in multiple brain regions, which
were predominantly in the frontal lobe, parietal lobe, anterior
cingulate, cerebellum posterior lobe, lingual gyrus, and insula
areas (Table 2). Impairment of these structures has been reported
in CD (Fairchild et al., 2011; Jiang et al., 2015; Raschle et al., 2015).

In the present study, the highest coefficient in SVM model
with linear kernel was found for the right cerebellum posterior
lobe, which indicated that the volume of right cerebellum
posterior lobe greatly contributed to the classification results.
In addition, the weight of right insula was also large and this

FIGURE 2 | Results of VBM analysis presented at p < 0.001 and an extent threshold of 50 adjacent voxels. CD groups presented some regions with increased gray
matter volume (in red) and some with decreased gray matter volume (in blue). Colors symbolize T scores (see color bar).
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FIGURE 3 | The ROC curves of different classification models. SVM, support
vector machine.

TABLE 3 | Performance of the proposed classification model with different
classifiers.

SVM
(linear)

SVM
(RBF)

Logistic
regression

Random
forest

Accuracy (%) 80.4 79.6 79.4 77.9

Specificity (%) 73.3 73.8 78.8 80.4

Sensitivity (%) 87.5 85.5 80.0 75.4

AUC 0.78 0.79
(p = 0.633)

0.76
(p = 0.338)

0.80
(p = 0.635)

Data are given as mean (standard deviation). SVM, support vector machine; AUC,
area under the receiver operating characteristic (ROC) curve. P-value indicates the
significance in ROC curve comparison with the SVM model with linear kernel.

demonstrated that the volume of right insula played also an
important role in the classification task. The absolute value of
right lingual gyrus weight was also large, compared with the
first four features in the Table 2. The findings about lower
GM volumes of CD in the right insula, the right lingual gyrus,
the right inferior partial lobule and the cerebellum posterior
lobe were consistent with earlier studies (Sterzer et al., 2007;
Dalwani et al., 2011; Fairchild et al., 2011; Rogers and De Brito,
2015). The GM volume of insula was significantly correlated
with empathy scores in CD patients, and negative correlation
existed between CD symptoms and volume of right insula
(Sterzer et al., 2007; Fairchild et al., 2011). Therefore, structural
changes in the insula may contribute to the abnormal emotional
processing and aggressive behavior observed in patients with
CD (Sterzer et al., 2007; Fairchild et al., 2011). Teens with
disorders, compared with HCs, showed significantly less spatial
working-memory activation response in lingual gyrus (Dalwani
et al., 2011). As an essential part of the fronto-cerebellar

attention system, the cerebellum plays a key role in reward-
based learning and behavior regulation (Dalwani et al., 2011;
Arnsten and Rubia, 2012), thus cerebellar deficits may add to risks
of inappropriate behaviors. Meanwhile, structural abnormality
of the postcentral cortex, known as the somatosensory cortex,
and the inferior partial lobule have been reported in relation to
antisocial behavior and CD as well (Hyatt et al., 2012; Aoki et al.,
2013).

Our studies also detected higher GM volumes of CD
patients in the left precuneus, the anterior cingulate, and the
superior frontal gyrus Precuneus is involved in self-referential
and self-centered thinking, and plays an important role in
self-referent information processing (Dalwani et al., 2011).
The precuneus and superior frontal cortex are also parts
of the default mode network (DMN) (Whitfieldgabrieli and
Ford, 2012). Activity of the DMN has been associated with
self-reflection, perspective taking, and moral decision making
(Andrewshanna, 2012). Abnormalities in the DMN may result
in the impairment of above-mentioned functions. The anterior
cingulate cortex (ACC) plays a pivotal role in emotion regulation
and cognitive behavior (Anderson et al., 1999; Dalwani et al.,
2011). Structure changes in the ACC may therefore contribute
to the emotion and behavior regulation deficits observed in
CD.

Taken together, the findings of GM volumes in our study
were supported by the results of previous studies, which might
implicate the etiology of CD. Thus, such abnormalities were
expected to serve as efficient features in identifying CD.

Effect of Classifier Selection
Besides the feature extraction, efficient classification also requires
an appropriate classifier which can learn the decision rules from
the given features. In this study, we employed SVM with linear
kernel, SVM with RBF kernel, logistic regression and random
forest (Arbabshirani et al., 2016).

Compared with logistic regression, the loss function of SVM
do not penalize subjects for which the correct decision is
made with sufficient confidence, and this may be good for
generalization. However, logistic regression loss function does
not become zero even if the subject is classified with sufficiently
confidence, and this may lead to reduced accuracy in logistic
regression classification (Friedman et al., 2000). One study
showed that the choice of random forest parameters created large
variation in the classification performance whereas the choice of
the SVM parameters had only minor effects on the classification
error (Statnikov et al., 2008). This means that, compared with
SVM, random forest generally needed larger number of training
data to work its randomization concept and generalize to the
testing data well. We found that the results of SVM with linear
kernel and SVM with RBF kernel have no significant difference
in our dataset.

Effect of Samples
The classification results may differ among samples. Generally,
the variance of the classification is expected to decrease as the
sample size increases (Brain and Webb, 2000). With a relatively
larger sample size than previous studies (Ecker et al., 2010a,b),
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our classification model tends to be more stable. In addition, all
the subjects in our study are males. As gender difference might
exist in brain structural changes, studying a mix-gender sample
may encounter gender-specific brain differences (Lenroot and
Giedd, 2006). In addition, it was reported that males are easier
to suffer from CD than females (Dalwani et al., 2015). Thus
we recruited males only in our study to make the sample more
homogeneous. Generally, a homogeneous sample could avoid
the confounding effect caused in heterogeneous samples, and
make the classification task easier. However, one should also be
aware that the homogeneous sampling may not be representative
enough, thus the model developed from such sampling dataset
may not be sufficiently applicable in the clinical diagnosis of CD.

Limitations
There were several limitations in this study. Firstly, we only
analyzed structural MRI images, but previous studies suggested
that CD was also associated with brain functional abnormalities
(Sui et al., 2012; Wu et al., 2017). Thus, further studies should
combine multi-modality neuroimaging data to improve CD
classification. Secondly, supervised ML requires predefined labels
by behavioral measurements (Orrù et al., 2012). Although our
proposed classification model can discriminate CD from HCs, it
still cannot be used as an independent diagnostic tool because this
model is hard to classify CD from ADHD, ASD or other mental
disorders. Thus, combining the neuroimaging biomarkers and
the traditional clinical diagnostic information may achieve better
diagnosis for CD.

CONCLUSION

In this study, we detected regional differences of GM
volume between CD and HCs by using VBM, and these
regional GM volumes were shown reliable in establishing
a ML model to discriminate between CD patients and
HCs with high accuracy. Although our classification model
was not meant to be a substitute to the current clinical
diagnosis of CD, it might be an objective and reliable
diagnostic tool that could help reduce the variability in
clinical practice, and thus may help to improve the diagnosis
of CD.
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