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Severe motor impairments can affect the ability to communicate. The ability to see has

a decisive influence on the augmentative and alternative communication (AAC) systems

available to the user. To better understand the initial impressions users have of AAC

systems we asked naïve healthy participants to compare two visual (a visual P300

brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an

auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections

in a five choice task with each system. The visual P300 BCI used face stimuli, the

auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used

a stimulator on the small left finger, middle left finger, right thumb, middle right finger and

small right finger. The eye-tracker required a dwell time of 3 s on the target for selection.

We calculated accuracies and information-transfer rates (ITRs) for each control method

using the selection time that yielded the highest ITR and an accuracy above 70% for

each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection

time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the

tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min).

Performance between eye-tracker and visual BCI correlated strongly, correlation between

tactile and auditory BCI performance was lower. Our data showed no advantage for

either non-visual system in terms of ITR but a lower correlation of performance which

suggests that choosing the system which suits a particular user is of higher importance

for non-visual systems than visual systems.

Keywords: BCI, EEG/ERP, assistive technology, eye-tracking, visual stimulation, auditory stimulation, tactile

stimulation

1. INTRODUCTION

Injuries or neurodegenerative diseases may lead to an interruption of the output of the central
nervous system to the muscles. Ultimately, diseases such as amyotrophic lateral sclerosis (ALS)
or injuries caused e.g., by brain-stem stroke may lead to the locked-in state (LIS), in which the
affected person is conscious but will no longer be able to communicate without assistance (Plum
and Posner, 1972; Storm et al., 2017; Juel et al., 2018). The causes of LIS may be diverse, nonetheless
the requirement for a communication method is a common factor (Pels et al., 2017). A variety of
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augmentative and alternative communication (AAC)
strategies that can restore communication are available
ranging from eye-trackers to speech synthesis (Beukelman et al.,
2013). Additionally, decoding biosignals for communication
and control is possible using electrophysiological signals such
as electromyogram (EMG), or, electroencephalogram (EEG)
recordings for brain-computer interface (BCI) based control
(Lesenfants et al., 2016; Käthner et al., 2017; Kawase et al.,
2017). Also, to provide access to BCI technology for persons
who lost vision, systems that are independent of muscle control
and vision are needed. Such a system can be implemented by
using event-related potentials (ERPs) elicited with non-visual
stimulation to control a BCI (Furdea et al., 2009; Brouwer and
van Erp, 2010).

As a number of different systems are available for persons with
differing degrees of motor impairment, in particular systems that
depend on vision and systems that do not, we wanted to compare
the initial impression naïve users have of such systems. We chose
two vision dependent systems, an eye-tracker and a visual P300
BCI, and two vison independent systems, an auditory and a tactile
P300 BCI. There are other possibilities, such as motor imagery
controlled BCIs (Müller-Putz et al., 2005) but comparing more
systems is not feasible in one session and thus we chose four
systems that could be used for the same five-choice selection task
(eliminating or at least reducing the influence of the task on the
users’ impression).

Both the eye-tracker and the P300 BCI allow the user to
make selections of symbols presented on a computer screen.
Eye-trackers determine the point of gaze using cameras. The
technology for this is available at a lower cost than EEG
amplifiers, can be considered robust and have high acceptance
rates among users (Ware and Mikaelian, 1987; Spataro et al.,
2014). Selections are made by dwelling a the target element for
a particular amount of time. Visual P300 BCIs rely on the fact
that particular ERPs are elicited when the user differentiates
between a rare and a frequent stimulus. This effect can be
utilized to determine the element the user wants to selecting
by presenting all stimuli in random pattern. Whenever the rare
event (in case of the classic visual P300 BCI, the flash) occurs
a P300 is elicited, when the frequent event (a non-attended
element flashes) occurs the P300 ERP component is not elicited
(Farwell and Donchin, 1988). Both visual P300 BCIs and eye-
tracking systems have been successfully evaluated with persons
with ALS and other forms of motor impairment (Nijboer et al.,
2008; Spataro et al., 2014; Okahara et al., 2017; Utsumi et al.,
2018). The degree of robustness both systems reach enable
them to be used for complex tasks such as communication,
accessing the internet and social networks or smart home control
(Ball et al., 2010; Käthner et al., 2017). A previous comparison
between eye-trackers and BCIs used in a web browsing task
have shown the eye-tracker to have a lower workload than the
BCI (Pasqualotto et al., 2015). A single case study by Käthner
et al. (2015) reached similar conclusions when comparing an
eye-tracker to an auditory BCI and an electrooculogram (EOG)
selection task. More recently, a study comparing steady-state
visually evoked potential (SSVEP) BCIs with an eye-tracker
found higher accuracies of the BCI system for a high number of

possible selections on the display at the same time (Suefusa and
Tanaka, 2017). It is worth noting, that the participant in the study
of Käthner et al. (2015), as well as participants in other studies
(Fried-Oken et al., 2006; Spataro et al., 2014), stated that they
used the eye-tracker based AACmethod less frequently than face-
to-face communication with a caregiver (indicating a preference
for face-to-face communication). Face-to-face communication,
eye-tracking and visual P300 BCIs all rely on the user being able
to generate an overt control signal, such as moving the eyes, or
attending to different visual stimuli. Depending on the injury
or condition of the user, the ability to see may be lost. Thus,
there is a requirement to develop methods that can make BCI
communication accessible without relying on vision.

One method that is being developed to provide such a
communication method are non-visual P300 BCIs. The most
commonly used modalities are auditory and tactile stimulation
(Furdea et al., 2009; Brouwer and van Erp, 2010; Onishi et al.,
2017). The principle is the same as for the visual P300 BCIs:
the user focuses on stimuli which occur rarely compared to the
other stimuli and thus elicits a P300. The task becomes more
difficult because the user cannot ignore the other stimuli as
easily but has to do so by focussing attention without the ability
to attenuate the other stimuli. Additionally, visually evoked
potentials (VEPs) contribute to the classification performance
in the case of visual BCIs. Overall, both these effects lead to a
lower communication speed than with visual P300 BCIs and eye-
trackers. In a comparison between visual, tactile and auditory
stimulation in a LIS patient, Kaufmann et al. (2013a) showed
that above chance classification was only possible using tactile
stimulation. Later, Silvoni et al. (2016) showed the presence of
tactile ERPs in a group of 14 ALS patients. Unfortunately, this
is not alway true as in a single case study by Murguialday et al.
(2011) with a non-responsive patient in the complete locked-in
state (CLIS) only auditory but no tactile ERPs could be evoked.
In a sample of five persons with motor impairments Halder
et al. (2016a) were able to show that three of these five persons
can learn to communicate with an auditory P300 BCI. To our
knowledge, this has been shown only with healthy controls using
tactile ERPs (van der Waal et al., 2012).

A reliable AAC method can have a profound impact on the
the quality of life of a person with motor impairments. Thus,
when presenting one of the available methods to a person it is
important to ensure that this person can quickly gain control
over the method and experiences as little frustration as possible.
To make an informed choice on which method to present it
is important to investigate how they compare to one another.
As discussed in the previous paragraphs, the advantages and
disadvantages of the different methods are not evident from
the current literature. So far, we assume two things to be true.
One, with intact vision systems using visual attention shifts will
provide higher accuracy and speed than non-visual systems.
And two, non-visual systems are needed for persons that lose
the ability to see. Which non-visual system a user with intact
vision and which non-visual system a user may prefer has not
been thoroughly investigated. To better understand possible
preferences we decided to investigate the initial impression users
that are naïve to AAC systems and BCIs have when confronted
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with an eye-tracker, a visual, an auditory and a tactile P300 BCI
the first time. We chose an interface that can be used to make one
out of five selections with all four control methods. Five choices
can easily be expanded to enable e.g., from 25 letters for spelling
with the Latin alphabet as shown in Furdea et al. (2009). Thus,
there is a practical application. Due to the number of systems
we evaluated and the limitation of time only using five choices
enabled us to ask the users to perform each possible selection
several times.

2. METHODS

Eleven healthy participants were asked to perform the same one
out of five selection task with four different AAC systems.

2.1. Participants
Eleven healthy controls were recruited (six female, mean age
32.2 years). The study was approved by the institutional ethics
committee at the National Rehabilitation Center for Persons
with Disabilities and all participants provided written informed
consent according to institutional guidelines. All experiments
were carried out in accordance with the approved guidelines.

2.2. Procedure
The interfaces used by the participants are shown in Figure 1 and
could be used to select one of five possible targets (the vowels
a, i, u, e, o). Participants were asked to select the five possible
choices four times (total 20 selections). Thus all input modalities
were configured to be used for identical tasks. Five choices have
been shown to be feasible for auditory and tactile modalities.
For example, five classes are sufficient to select either rows and
columns from the matrix used the auditory speller experiments
with the Latin alphabet or the vowels in the Hiragana syllabary
(Furdea et al., 2009; Halder et al., 2016b). In the tactile domain,
wheelchair control was shown to be possible with four classes
(Kaufmann et al., 2014). Consequently, the same procedure can
be used for communicating or mobility using a visual P300
BCI or an eye-tracker. All participants performed the tasks in
the sequence visual, auditory, tactile P300 BCI and then eye-
tracker (the interfaces are shown in Figure 1). The reasoning
behind this was that the visual P300 BCI would take the shortest
amount of time and be the easiest to understand. Additionally,
over 90% of healthy people are able to control this type of BCI
(Guger et al., 2009). Thus, if the participant is unable to control
the visual P300 BCI it is a good indicator of misunderstanding
the instructions. Considering that eye-trackers were shown to
have a much lower workload and the limited group size, we
concluded it would be acceptable always perform the eye-
tracking task last as opposed to five before the BCI tasks and five
after.

As indicated in Figure 1 (top left) the users were shown the
five vowels of the current run on the top left of the screen and the
current target in parenthesis behind those five vowels. This was
identical for all four tasks.

2.2.1. Visual AACs (Visual P300 BCI and Eye-Tracker)
During the visual P300 BCI tasks the five gray letters on a black
background were “flashed” by overlaying themwith a human face

(Figure 1, top left) which was shown to improve performance
(Kaufmann et al., 2011). The participants were asked to focus on
the target letter only and count the number of appearances of the
face. The faces appeared for 62.5 ms with intervals of 125 ms.
Each of the five letter was overlaid with the face 10 times (this is
the number of stimulus presentations per target). Between letters
the system paused for 3 s. In total, a selection with this system
required between 3.9 s (one stimulus presentation per target) and
12.4 s (10 stimulus presentations per target).

The eye-tracker (Figure 1, bottom right) was first calibrated
using the software provided with the Tobii EyeX eye-tracking
system. Feedback during the eye-tracker task was provided in the
form of a small gray circle which would follow gaze along the x-
axis of the screen and remain fixed on the y-axis of the screen. The
circle turned green if the user remained fixated in the area of the
rectangle around the target. The target was then selected after 3 s
which was indicated by an affirmative sound upon which the user
was instructed to move to next target. If the system did not detect
the user or the circle moved around continuously no selection
was made until the user was detected or fixated a particular point
again. Thus, the eye-tracker was the only system configured to
use an asynchronous approach. The reasoning behind this was
that it is very easy to implement based on the detection of the
eyes and not using it would constitute and unfair advantage of
the BCI systems.

2.2.2. Non-visual AACs (Auditory and Tactile P300

BCI)
The auditory P300 BCI (Figure 1, top right) was based on the
design presented in Halder et al. (2016b) but used only the five
choice selecting task for the vowels. Thus, the participants put
on headphones and heard the Japanese Hiragana syllables ka, ki,
ku, ke, and ko in a random sequence. Stimuli were presented
using Etymotic ER4 MicroPro (Etymotic Research, Inc., USA)
earphones. The participants were asked to adjust the volume to
their preference. As in Halder et al. (2016b), the five syllables were
presented from five different virtual directions (see Figure 1,
top right) by adapting the interaural time difference (ITD) and
interaural level difference (ILD). The participants were asked to
focus on the target direction and sound and count the number of
appearances (which was set to 10). The time from the beginning
of one stimulus to the beginning of the next was 375 ms (stimulus
durations varied slightly, but the onset asynchrony was constant).
The interval between selections was set to 3 s. In total, a selection
with the auditory P300 BCI required between 4.9 s (one stimulus
presentation per target) and 21.8 s (10 stimulus presentations per
target).

In the tactile P300 BCI (Figure 1, bottom left) task the vowels
corresponded to stimulators attached to the left little (a), left
middle (i), right thumb (u), right middle (e) and right little
finger (o) of the participants (see Figure 1, bottom left). These
were again activated in a random sequence and the participant
was asked to count the vibrations on the finger corresponding
to the target. Each stimulator was activated 10 times with a
duration of 250 ms and an interval of 250 ms. Shorter intervals
made discriminating the stimuli difficult, therefore we chose to
use a different setting than with the auditory BCI. The tactile
stimulator was custommade and it was not possible to load more
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FIGURE 1 | Visual P300 BCI interface using Einstein faces as stimuli (top left). The interface of the auditory P300 BCI using five stimuli originating from different

directions (top right). The stimuli are the five Hiragana syllables ka, ki, ku, ke, and ko. The locations tactile stimulators were attached to and the corresponding vowels

that could be selected with the tactile P300 BCI (bottom left; the hand outline image is a public domain work). The interface used for selection with the eye tracker

(bottom right). The green dot visible behind the “I” showed the user the current gaze position. Selection was based on dwell time (minimum 3 s).

than the stimulation sequence for one letter sequence. Thus,
the system was paused for loading another stimulus sequence
between selections and this time could vary. Since this is a
technical detail not inherent to tactile P300 BCIs we chose to use
the same 3 s as pause between selections as with the other systems
for purposes of calculating the information transfer rate (ITR).
Then, the total selection time with the tactile BCI varied from 5.5
s (one repetition) to 28 s (10 repetitions).

All measurements were performed at the National
Rehabilitation Center for Persons with Disabilities. Participants
were seated approximately 1m away from a 24 inch computer
screen in a shielded room.

The first 10 selections of the visual and auditory P300
BCI measurements were used to calibrate an stepwise linear
discriminant analysis (SWLDA) classifier for online feedback.
The participants could see their selections on the computer
screen on the line below the target letters. Online feedback for
the tactile BCI could not be provided at the time for technical
reasons. The eye-tracker was calibrated before the measurement
and feedback was provided for all selections.

2.3. Questionnaire
After completing the tasks the participants were asked the
following questions about their experience.

1. How difficult/easy was it for you to control the eye
tracker/visual/auditory/tactile P300 BCI on a scale from 0 to
10 (0= very difficult, 10= very easy)?

2. How tiring was it for you to control the eye
tracker/visual/auditory/tactile P300 BCI on a scale from
0 to 10 (0= not tiring, 10= very tiring)?

3. How long do you think you would be able to use the
eye tracker/visual/auditory/tactile P300 BCI before needing a
break (in hours/minutes)?

4. How satisfied with your own performance are you with the
eye-tracker/visual/auditory/tactile P300 BCI on a scale from 0
to 10 (0= not satisfied at all, 10= very satisfied)?

5. How satisfied with the system are you (eye-
tracker/visual/auditory/tactile P300 BCI) on a scale from
0 to 10 (0= not satisfied at all, 10= very satisfied)?

2.4. Data Acquisition
Electroencephalogram (EEG) data were recorded with a g.Tec
g.USBamp (g.Tec GmbH, Austria) with a 0.1–30 Hz bandpass
and 50 Hz notch filter with a sampling rate of 256 Hz. Twelve
active electrodes (g.Ladybird) were positioned in an electrode cap
(g.Gamma) at AF7, FPz, AF8, F3, Fz, F4, C3, Cz, C4, P3, Pz,
and P4. The remaining set of four channels could not be used
for EEG recordings because the tactile stimulator sent trigger
signals to channel 16 and required an independent reference.
Data recording, stimulus presentation and signal processing for
all four tasks (eye-tracker, visual, auditory and tactile P300 BCI)
were implemented using the BCI2000 software package (Schalk
et al., 2007) on a Hewlett-Packard EliteBook 840 (HP Inc., USA)
with a dual-core CPU (2.5 GHz), 8 GB RAM and a 64-bit
Windows 7.

2.5. Data Analysis
Online classification of the auditory and the visual P300 BCI
data were performed using SWLDA (Krusienski et al., 2008).
The classifier was trained with a p-value threshold of p < 0.1
for adding features (forward step) and p > 0.15 for removing
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features (backward step). Amaximum of 60 features was selected.
The 1000 ms window used for online classification was smoothed
with a 20 sample moving average filter and subsampled to every
20th sample. The classifier was applied to single trials and the
outputs summed. The symbol with the highest score was selected
after 10 repeitions.

Additional offline classification was performed for the
auditory, tactile and visual P300 BCI data using shrinkage linear
discriminant analysis (SLDA) as suggested in Blankertz et al.
(2011). We performed a leave-one-run-out crossvalidation with
n− 1 runs as training data and one run as test data. During each
training step gamma coefficients were determined empirically on
the training data by using the value that yielded the best accuracy
in the range from 0.01 to 0.1 (in 0.01 increments) and from 0.2 to
0.5 (in 0.1 increments). Offline accuracy was calculated for one to
10 stimulus repetitions and 100 to 2,000 ms windows (in 100 ms
steps).

For each accuracy the ITR was calculated using the method
suggested in Wolpaw et al. (2002). Information transfer per
minute was calculated using the selection times described in
section 2.2. For each BCI system accuracy was recalculated offline
using between one and 10 stimulus repetitions. Based on the
ITR the optimal number of stimulus repetitions (highest ITR
with an accuracy ≥ 70%) was selected across the average of all
participants. Selection times for the eye-tracker were calculated
based on the average times needed per selection during the online
measurement.

The amplitudes and latencies of the maximal peak of a late
positive component in a window from 199 to 1,000 ms (samples
51 to 256) on channels Fz and Cz after stimulus presentation
was analyzed for the three BCI systems using EEGLAB (Delorme
and Makeig, 2004) and self written scripts under MATLAB.
Squared Pearson’s correlation coefficients (r2 values) were used
to visualize the data.

2.6. Statistical Analysis
We performed matched sample t-tests to compare visual P300
BCI performance with eye-tracker performance and auditory
P300 BCI with tactile P300 BCI performance. Comparisons were
restricted to these two pairs because we assume a person with
intact vision will choose one of the former and a person without
vision one of the latter. A threshold for marginal significance we
assume p < 0.05, and for high significance p < 0.01. For the
the aforementioned comparison, we used a Bonferrroni corrected
(two comparisons, accuracy and ITR) threshold p-value of
0.025 for marginally significant and 0.005 for highly significant
results.

The physiological data were compared on a pairwise basis
across all three EEG based measures resulting in a total
number of twelve comparisons (two electrodes, two measures
(amplitude/latency) and three BCIs). We used a Bonferrroni
corrected threshold p-value of 0.004 for marginally significant
and 0.0008 for highly significant results.

As the comparisons of the questionnaire results were again
limited to either visual or non-visual systems, we performed pair-
wise t-tests and used a Bonferrroni corrected (five comparisons,
five questions) threshold p-value of 0.01 formarginally significant
and 0.002 for highly significant results.

3. RESULTS

3.1. Accuracy and Information Transfer
Rate
3.1.1. Visual AACs (Visual P300 BCI and Eye-Tracker)
Online accuracy for the visual P300 BCI was 96% (one participant
had less than 100%) and for the eye-tracker 100%. Using the
visual P300 BCI with the optimal selection time of two repetitions
(4.8 s), determined as shown in Figure 2, the participants selected
the targets with an accuracy of 88% (SD 13, range 60–100). This
procedure cannot be applied to the eye-tracker and the accuracy
was 100% online. Thus, the average time per selection was used
to calculate the ITR of the eye-tracker. Interestingly, this time
(5.1 s) was only 6% higher than the time needed for two stimulus
repetitions (4.8 s) with the visual P300 BCI. Since the variance of
the selection times of the BCI systems was very low (e.g., seven
participants have the same selection time for the visual P300 BCI
since the selection time changes in the discrete steps of time per
stimulus repetition) t-tests were not performed. The accuracy of
the eye-tracking system was 100% for all participants. Since this
implies zero variance a t-test between the eye-tracking accuracy
and the visual P300 BCI accuracy was not calculated. Using the
same selection times and accuracies, the ITR of the visual P300
BCI was 20.9 bits/min (SD 7.8, range 6.9–28.9) and for the eye-
tracker 28.2 bits/min (SD 5.1, range 19.3–35.1). A t-test showed
a significant difference between visual P300 BCI and eye-tracker
ITR [t(10) = −5.1, p < 0.005]. The accuracy and ITR results are
also shown in Figures 3, 4. Correlation between eye-tracker and
visual P300 BCI ITR was high (r = 0.8, p < 0.05). The scatter
plot for this comparison is shown in Figure 5 (left).

3.1.2. Non-visual AACs (Auditory and Tactile P300

BCI)
Online accuracy for the auditory P300 BCI 58% and for the tactile
P300 BCI online performance was not evaluated for technical
reasons. Optimal classification rates with regard to ITR were
70% (SD 27, range 25–100) with nine repetitions (19.9 s) for the
auditory P300 BCI and of 71% (SD 19, range 40–95) with six
repetitions (18 s) for the tactile P300 BCI. Thus, the selection time
needed for the auditory P300 BCI was 10% higher than for the
tactile P300 BCI. A t-test between auditory and tactile P300 BCI
accuracy showed no significant differences [t(10) = −0.2, p =

0.8]. Using the same selection times and accuracies, the ITR of
the auditory P300 BCI was 3.3 bits/min (SD 2.7, range 0–7) and
of the tactile P300 BCI 3.4 bits/min (SD 2, range 0.5–6.5). A t-test
showed no difference between auditory and tactile P300 BCI ITR
[t(10) = 0.0, p = 0.98]. The accuracy and ITR results are shown
in Figures 3, 4. Correlation between between tactile and auditory
P300 BCI ITR was moderate (r = 0.5, p < 0.1). The scatter plot
for this comparison is shown in Figure 5 (right).

3.2. Questionnaires
The subjective ratings given by the participants included
estimated time of use (in minutes; Figure 6), ease of use,
tiredness, satisfaction with own performance and satisfaction
with the system (all rated on a visual-analogue scale (VAS) from
0 to 10; in Figure 6). After multiple comparison correction none
of the differences were significant.
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FIGURE 2 | Dependency of selection accuracy (blue line) and information-transfer rate (ITR; orange line) on the number of stimulus repetitions (the more stimulus

repetitions the longer a selection needs) for each brain-computer interface (BCI) system (visual on the left, auditory in the center, tactile on the right). The dashed

vertical line on the left graph indicates the selection time needed on average when the participants used the eye-tracker (approximately 2 stimulus repetitions or 5 s).

FIGURE 3 | Accuracies at selecting one of five choices for each system and participant. In all figures the bars were grouped according to whether they depend on

vision or not [visual P300 BCI (V) with eye-tracker (E) and auditory (A) with tactile (T) P300 BCI]. The average across all participants is shown on the bottom right. Error

bars over the plot of the average show the standard error. The accuracy of the eye-tracker system had no variance, thus a t-test could no reliably be computed. The

accuracies of the non-visual BCIs was not significantly different.

3.2.1. Visual AACs (Visual P300 BCI and Eye-Tracker)
Time of use in minutes between the visual P300 BCI (mean
21.8, SD 17.6, range 2–60) and eye-tracker (mean 10.5, SD
11.3, range 1–40): t(10) = 1.9, p = 0.08. Ease of use between
visual P300 BCI (mean 7.2, SD 2.8, range 1.8–10) and eye-
tracker (mean 7.6, SD 1.9, range 3.9–10): t(10) = 0.5, p =

0.6. Tiredness after using the system between visual P300 BCI
(mean 3.2, SD 2.5, range 0–6) and eye-tracker (mean 5.3, SD
3.7, range 0–10): t(10) = −2.1, p = 0.07. The satisfaction with
own performance rating between visual P300 BCI (mean 8.0,
SD 2.5, range 1.3–10) and eye tracker (mean 6.7, SD 3.3, range

0.2–10): t(10) = 2.2, p = 0.05. Finally, the satisfaction with
the system between visual P300 BCI (mean 8.6, SD 1.8, range
4.1–10) and the eye-tracker (mean 6.8, SD 2.7, range 1.6–10):
t(10) = 2.8, p = 0.02.

3.2.2. Non-visual AACs (Auditory and Tactile P300

BCI)
Time of use in minutes between the auditory P300 BCI (mean
15.7, SD 8.7, range 2–30) and tactile P300 BCI (mean 21, SD
20.8, range 3–60): t(10) = −2.1, p = 0.07. Ease of use between
auditory P300 BCI (mean 3.5, SD 3.5, range 0–8.8) and tactile
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FIGURE 4 | Information transfer rates in bits/min for each system and participant. In all figures the bars were grouped according to whether they depend on vision or

not [visual P300 BCI (V) with eye-tracker (E) and auditory (A) with tactile (T) P300 BCI]. The average across all participants is shown on the bottom right. Error bars

over the plot of the average show the standard error. The star indicates a highly significant (p < 0.005) difference according to a paired t-test for matched samples

corrected for multiple comparisons.

FIGURE 5 | Pearson’s correlations of the visual P300 brain-computer interface (BCI) information-transfer rate (ITR) and eye-tracker ITR (left) and auditory P300 BCI

ITR and tactile P300 BCI ITR. R and p-values are indicated in the figure. The red lines are least-square fits on the data.

P300 BCI (mean 5.1, SD 2.3, range 1.2–9): t(10) = −1.9, p = 0.09.
Tiredness after using the system between the auditory P300 BCI
(mean 6.1, SD 3.3, range 0–9.2) and tactile P300 BCI (mean 4.0,
SD 2.7, range 0–7.4): t(10) = 2.6, p = 0.03. The satisfaction with
own performance rating between the auditory P300 BCI (mean
3.7, SD 2.9, range 0.2–9.6) and the tactile P300 BCI (mean 5.7, SD
3.2, range 0.8–10): t(10) = 2.2, p = 0.06. Finally, the satisfaction
with the system between auditory P300 BCI (mean 6.6, SD 2.8,
range 1–10) and tactile P300 BCI (mean 6.9, SD 3.2, range 1–10):
t(10) = −0.6, p = 0.6.

3.3. Physiological Data
Figure 7 the ERPs from channel Cz for all systems and
participants individually and as an average. The visual ERPs
have a lower latency than both the auditory and tactile
ERPs. Topographically, the auditory ERPs have a more frontal
orientation than the tactile ERPs with the amplitudes and
latencies being similar. Amplitude and latency values of a late
positive component are listed in detail in Table 1. As shown in
Figure 8 only the latency differences between the visual and the
non-visual ERPs [visual vs. tactile on Fz: t(10) = −5.3, p <
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FIGURE 6 | Maximum time of use the participants felt they could use the system without experiencing fatigue (top left). Visual analog scale (VAS) ratings for ease of

use (top right), tiredness (bottom left), satisfaction with own performance (bottom center) and performance of the system (bottom right). After correction for

multiple comparisons, no significant differences were found. In all figures the bars were grouped according to vision dependence [visual P300 BCI (V) with eye-tracker

(E) and auditory (A) with tactile P300 BCI (T)]. Error bars show the standard error.

0.0008; visual vs. auditory on Fz: t(10) = −10.2, p < 0.0008; visual
vs. tactile on Cz: t(10) = −7.1, p < 0.0008; visual vs. auditory on
Cz: t(10) = −9.5, p < 0.0008] were highly significant.

3.4. Influence of Classification Time
Window
Figures 7, 8 showed that there was a considerable differences
in latencies between visual and non-visual P300 peak latencies.
Performing the cross-validation that was applied in section 3.1
with ERP window lengths between 100 and 2,000 ms and using
the accuracy obtained at 1,000 ms as a reference showed that
longer windows lead to an average improvement of classification
performance of 13% with a window of 1600 ms for the
tactile P300 BCI and of 7% with a window of 1,400 ms for
the auditory P300 BCI. With smaller classification windows
the accuracies decrease for all three BCIs (see Figure 9). A
t-test showed a moderate difference between the 1,000 and
1,400 ms for the auditory P300 BCI [t(10) = −2, p <

0.1] and a difference between the 1,000 ms and 1,600 ms
window for the tactile P300 BCI [t(10) = −3.8, p <

0.05]. The ITRs (calculated for each participant individually
and then averaged) increased to 4.3 bits/min (ITR increased
by 30%) at 7 repetitions and an accuracy of 73% for the
auditory P300 BCI and to 4.6 bits/min (ITR increased by
35%) at 4 repetitions and an accuracy of 72% for the tactile
P300 BCI.

4. DISCUSSION

We investigated four different AAC systems: visual, auditory
and tactile P300 BCIs and an eye-tracker. We compared the
performance on the basis of accuracy and ITR, differences in
the ERPs on the basis of amplitude and latency and finally the
subjective initial impression of the users on the basis of a short
questionnaire.

4.1. Performance
Using an adapted input system with word completion
experienced users can write up to 25 words per minute using
an eye-tracker (Ward and MacKay, 2002). Inexperienced users
in the first 10 minutes of usage wrote between 5 and 10 words
per minute. Considering the system used word completion it is
not certain how many selections were needed to write five words
but it is a minimum of five. In our study users (which were also
inexperienced and in the first 10 minutes of using an eye-tracker)
needed 5 s to make one selection with the eye-tracker enabling
them to make 12 selections per minute. Even though it is not
possible to make an exact comparison we consider this to be of
a similar order of magnitude and thus representative of what
can be achieved using an eye-tracking system. Nonetheless, there
are possibilities to optimize the parameters used to determine
gaze and thus selection accuracy and speed which we did not do
(Mack et al., 2017).
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FIGURE 7 | Time course of the event-related potentials on Cz for each of the 11 participants and the average across all (bottom right). Responses are shown in blue

for visual stimuli, red for auditory stimuli and yellow for tactile stimuli. The responses for ignored stimuli are shown with dashed lines.

TABLE 1 | Amplitude and latency values of the maximal peak of a late positive component between in a window from 199 to 1,000 ms (samples 51 to 256 sampled at

256 Hz).

Visual P300 BCI Auditory P300 BCI Tactile P300 BCI

Mean SD Range Mean SD Range Mean SD Range

Fz (amplitude) 5.5 µV 1.6 3.7–7.7 8.1 µV 5 2.4–15.2 7.3 µV 2.1 3.8–10.7

Fz (latency) 341 ms 120 219–488 732 ms 141 477–887 778 ms 303 199–1,000

Cz (amplitude) 5.9 µV 1.9 2.8–9.3 6.4 µV 3.1 1.8–12.2 6.8 µV 2.7 2.2–12.8

Cz (latency) 348 ms 113 227–492 737 ms 140 484–871 792 ms 222 199–996

Online the visual P300 BCI was the only system, besides
the eye-tracker, with which most of the users (10 of 11)
selected 100% of the symbols correctly. Offline 7 out of 11

participants selected over 90% of the symbols correctly. The
ITR was 20.9 bits/min (eye-tracker 28.2 bits/min). Compared to
highly optimized visual BCI systems this is not the maximum:
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FIGURE 8 | Amplitudes (right) and latencies (left) of a late positive component shown for each brain-computer interface system and channels Fz and Cz. Significant

differences according to a paired t-test for matched samples are indicated by the black lines. A large star highly significant difference (corrected p-values of 0.0008).

Error bars show the standard error.

FIGURE 9 | Recalculated classification rates for time windows between 100 and 2,000 ms. The classification rates were calculated as a factor in relation to the

accuracy with a window of 1,000 ms.

over 100 bits/min were demonstrated in Spüler et al. (2012),
Kaufmann and Kübler (2014), and Townsend and Platsko (2016).
Nonetheless, the use of face stimuli and a regularized linear
discriminant analysis (LDA) employs are optimizations to the
visual P300 BCI paradigm (Blankertz et al., 2011; Kaufmann
et al., 2013b). Optimizing the selection time online, which
we performed offline, is performed by the eye-tracking system

(no selections were made before the criteria were met) and
could be integrated into the P300 BCI (Schreuder et al., 2013).
Additionally, the visual P300 BCI system would benefit from
an asynchronous mode of operation as is integrated into the
eye-tracking system (Pinegger et al., 2015).

In our study the ITR of the non-visual BCIs was lower
(auditory: 3.3 bits/min; tactile 3.4 bits/min) than with the visual
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systems. This was an expected result that was also shown in many
previous studies (for a review see Riccio et al., 2012). It was shown
that training can increase the performance of both auditory
and tactile systems (Baykara et al., 2016; Herweg et al., 2016),
whereas no effect of session was found in visual P300 BCI studies
(Nijboer et al., 2008). Additionally, in out study the ITR of the
non-visual systems was increased by 30% by choosing a longer
classification window length. An effect of classification window
length was also described in Kaufmann et al. (2013a), showing a
dependency of increasing or decreasing accuracy on stimulus and
inter-stimulus-interval duration. Nonetheless, even if a person
uses either the auditory or the tactile system for a longer period
of time the ITR will not increase to the level of the visual systems.
There are two main reasons for this difference in speed. One,
presenting an auditory or tactile stimulus takes a longer amount
of time (stimulus onset asynchrony of the visual P300 BCI was
187.5 ms compared to 375 ms of the auditory and 500 ms of the
tactile P300 BCI). And two, ignoring the non-target stimuli is
harder with non-visual systems because each stimulus has to be
attended to determine if it is the target stimulus. In the visual case,
non-targets can be attenuated using gaze. Additionally, fixating
a visual stimulus with gaze increases the VEPs this stimulus
elicits in comparison to non-fixated stimuli. This is an additional
feature that can be used by classifier. Thus, if the user fixates
a central position on the screen, and not individual stimuli,
performance decreases (Brunner et al., 2010).

A surprising result was that after determining the selection
time that yields the highest ITR and an accuracy above 70% for
the visual P300 BCI we found that the time needed for an average
selection with the eye-tracker was only 6% higher (4.8 s with
the BCI compared to 5.1 s with the eye-tracker). Furthermore,
the ITR was highly correlated (r = 0.8). Thus, our results
indicate that both the visual BCI and the eye-tracker require
visual search and thus the aptitude users exhibited for these tasks
was correlated. Essentially both tasks could be called top-down
volitional attentional selection processes (Itti and Koch, 2000).
Using optogenetic activation in mice, Zhang et al. (2014) showed
that visual selective attention task performance increases with the
activity in the cingulate cortex. On a behavioral level, Najemnik
and Geisler (2005) showed that visual search depends on an
efficient strategy to determine fixation locations. It is possible
that performance of both the visual BCI and the eye-tracker task
was governed by the users ability to maintaining visual attention
and using an optimal search strategy for the fixation locations
(the targets). Since the performance between auditory and tactile
BCI was not strongly correlated it may be beneficial to combine
tactile and auditory stimulation in one BCI paradigm (Rutkowski
and Mori, 2015). A recent study also showed performance gains
when combining eye-tracker with visual P300 BCI compared
to either visual P300 BCI or eye-tracker only (Kalika et al.,
2017).

Pasqualotto et al. (2015) showed approximately 48% increase
in ITR from visual P300 BCI to eye-tracker whereas we found an
increase of of 34%. Considering the task and sample difference we
think this is fairly similar. A remarkable difference between the
two studies is how the participants rated the use of visual P300
BCI and eye-tracker subjectively. In Pasqualotto et al. (2015)

rated the usability of the eye-tracker as higher and the workload
lower whereas in the current study users were more satisfied
with the P300 BCI and also felt it was less tiring. There may
be two possible reasons for this. One, the eye-tracking task was
always performed last in our study which may have led to an
increase of tiredness. The sequence of task does not universally
determine this though, because the auditory BCI was performed
before the tactile BCI and rated as more tiring. The second
reason may be the optimized stopping method used by the eye-
tracker, i.e., the users were asked to move to the next symbol
as quickly as possible after hearing the affirmative sound. In
case of the visual P300 BCI the users attended the symbols
for a fixed amount of time. Consequently, using an optimized
stopping method may be too demanding for first time users. A
dependency of the performance difference between visual BCIs
and eye-tracker performance on target size was shown by Suefusa
and Tanaka (2017). The authors showed that in an SSVEP BCI
paradigm the BCI’s ITR surpassed that of an eye-tracker for
smaller target sizes and suggest that the interface should be
chosen depending on the size of the targets that can be selected
by the user.

From a practical point of view the BCI systems need the EEG
cap, whereas the eye-tracker does not depend on a lengthy setup
time. Nonetheless, the eye-tracker may need to be recalibrated
frequently due to changing conditions. Regular recalibration of
the BCI system may be an advantage during the training phase
(Baykara et al., 2016).

4.2. Physiological Data
Latencies between the visual (about 300 ms) and the non-
visual BCIs (about 700 ms) were different for both Fz and
Cz. This is not an unexpected result and was shown before in
BCI studies (Furdea et al., 2009; Klobassa et al., 2009; Halder
et al., 2013) as well as non-BCI studies (Kotchoubey and Lang,
2003). As mentioned before, training not only increases ITR
but also decreases latency of the auditory P300 (Baykara et al.,
2016). Only an increase in amplitude but not a decrease in
latency was reported in Herweg et al. (2016) for tactile P300
BCIs, but since the latency was not discussed it is currently
unclear whether P300 peak latency will decrease with training
in a tactile P300 BCI task. In Baykara et al. (2016) the latency
decreased by about 50 ms, and in Halder et al. (2016b) by
about 60ms. In a study with end-users a decrease in latency was
found for one out of five participants whereas three out of five
showed increases in amplitude of the late positive component
(Halder et al., 2016a). Compared to other studies using auditory
stimulation, the latencies we found were high. For example in
Baykara et al. (2016) the latencies were at about 500 ms where
we measured latencies of the peak amplitude at around 700
ms. This may be due to the stimulus material as Baykara et al.
(2016) used the sounds from Simon et al. (2014) where the
peak latencies were measured at 350 ms. In our previous study
using the same Hiragana syllables as in this study, latencies were
also around 700 ms (Halder et al., 2016b). Thus, in case of
the auditory P300 BCI the high latencies were not unexpected.
Visual inspection of the tactile ERPs in Herweg et al. (2016)
shows latencies at about 500 ms, which is also what was reported
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in Kaufmann et al. (2014). In the aforementioned study, the
authors used an on-time of 220 ms and an off-time of 400 ms.
We used an on-time and off-time of 250 ms. Assuming a peak
with a latency of 500 ms in our sample, the onset of the next
stimulus after a target stimulus after 500 ms may attenuate this
peak because the negative early negative potentials elicited by
the tactile stimulation were quite strong (around −4 µV, see
Figure 7). The conclusion may be that either stimulus onset
asynchronies below 500 ms (as suggested in Brouwer and van
Erp, 2010) or above 500 ms (as used in Kaufmann et al., 2014)
may lead to better results than the 500 ms used in the current
study.

4.3. Questionnaire
Our sample size of 10 participants suggests that the results of
the questionnaire should be interpreted with caution. Our users
felt the ease of use of the two visual systems to be equal wheres
the tactile BCI was rated to be slightly easier to use than the
auditory BCI. Furthermore, the auditory BCI was found to be
more tiring than the tactile BCI. Interestingly, the users felt
the eye-tracker is more tiring than the visual BCI. This may
be due to the fact that the eye-tracker was always performed
last but also to the fact that the users felt pressured by the
asynchronous design. The design forced the user to perform the
task as fast as they could and not at the speed of the system
which put more pressure on the users. This is supported by
the third questionnaire in which the users were asked how
satisfied with their own performance. Most users reported to
be more satisfied with their own performance with the visual
BCI than with the eye-tracker. This may be due to the fact
that the users felt they could have been faster with the eye-
tracker. Also, the users were more satisfied with their own
performance with the tactile BCI than with the auditory BCI.
Concerning the satisfaction with the system, again the users
were more satisfied with the visual BCI than with the eye-
tracker. Auditory and tactile were rated to be equal. In summary,
these data indicated a slight preference of the users for the
visual BCI and the tactile BCI compared to their respective
counterparts. The results may be influenced by the eye-tracker
always having been performed last and the eye-tracker being
asynchronous (which we initially thought to be an advantage for
the eye-tracker). Concerning the usability of the tactile system,
one user stated after the measurement that it was uncomfortable
that you could not move your fingers for an extended period of
time.

As mentioned before these results should be interpreted
with caution as none of the statistical tests were significant
after multiple comparison corrections. As a consistent trend
though the users seem to be less satisfied with the eye-tracker
than with the visual P300 BCI. This may be because the
asynchronous behavior of the eye-tracker was not perceived as
an advantage by the current sample of participants. This indicates
that such a feature should be introduced only after the users have
familiarized themselves with the system (Lotte et al., 2013). As
a consequence, the initial impression of the users we presented
the visual systems to was that the visual BCI could be used for a

longer time and be less tiring. Additionally the users felt that their
own performance and the BCI system itself was better. Again
this may be due to the difference in behavior and also sequence
effects. Even though performance of both non-visual systems was
identical, the users found the tactile BCI to be usable longer
and easier, less tiring and thought their own performance was
better.

5. CONCLUSIONS

In summary, our participants achieved the highest accuracy
and ITR with the eye-tracker, followed by the visual P300
BCI. All participants were able to select 100% of the choices
correctly using the eye-tracker, 10 out of 11 with the
visual P300 BCI. As could be expected based on previous
work performance of the auditory and tactile BCIs was
lower. Performance of eye-tracker and visual P300 BCI was
highly correlated whereas performance of the auditory and
tactile BCI was only slightly correlated. This leads us to
conclude that choosing the most suitable non-visual BCI has
a larger impact than choosing the eye-tracker or visual P300
BCI.Whereas most users had slightly higher ITRs with the
eye-tracker, the number of users with higher auditory BCI
performance was six (correspondently five had higher tactile BCI
performance).

We think one of the most astounding results of the current
study was the strong correspondence between the two vision
dependent systems (the ideal selection time differed only by 5%)
and the vision independent systems (ideal selection time differed
by 10%) whereas the difference between the two categories was
substantial (∼400%). This indicates that both systems of each
category may be considered for the same tasks and the user
preference and individual abilities should be the decisive factor.

Both visual P300 BCI and eye-tracker can provide very high
communication speeds in this task with a sample of healthy
participants. Tactile BCI and auditory BCI showed on average
identical ITR. We will investigate further with end-users with
motor impairments in which scenarios the use of eye-trackers
and in which the use of BCIs offers the greatest advantage.

AUTHOR CONTRIBUTIONS

SH planned experiment, collected data, performed analysis
and wrote manuscript. KT planned experiment, collected data
and wrote manuscript. KK planned experiment and wrote
manuscript.

ACKNOWLEDGMENTS

The first author has received funding as International Research
Fellow of the Japan Society for the Promotion of Science
and the Alexander von Humboldt Stiftung Germany. This
study was partly supported by a MHLW/AMED grant(BMI),
a MEXT/AMED-SRPBS grant, and MEXT/JSPS grants
(15H03126,15H05880, 16K13113, and 16H05583).

Frontiers in Human Neuroscience | www.frontiersin.org 12 June 2018 | Volume 12 | Article 228

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Halder et al. Comparison of Five-Choice Assistive Technologies

REFERENCES

Ball, L. J., Nordness, A. S., Fager, S. K., Kersch, K., Mohr, B., Pattee, G. L., et al.

(2010). Eye gaze access of AAC technology for people with amyotrophic lateral

sclerosis. J. Med. Speech Lang. Pathol. 18:11.

Baykara, E., Ruf, C. A., Fioravanti, C., Käthner, I., Simon, N., Kleih,

S. C., et al. (2016). Effects of training and motivation on auditory P300

brain-computer interface performance. Clin. Neurophysiol. 127, 379–387.

doi: 10.1016/j.clinph.2015.04.054

Beukelman, D. R., Mirenda, P., and Beukelman, D. R. (2013). Augmentative and

Alternative Communication: Supporting Children and Adults With Complex

Communication Needs. Baltimore: Paul H. Brookes Pub.

Blankertz, B., Lemm, S., Treder, M., Haufe, S., and Müller, K.-R. (2011). Single-

trial analysis and classification of ERP components–a tutorial. Neuroimage 56,

814–825. doi: 10.1016/j.neuroimage.2010.06.048

Brouwer, A.-M., and van Erp, J. B. F. (2010). A tactile P300 brain-computer

interface. Front. Neurosci. 4:19. doi: 10.3389/fnins.2010.00019

Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., and Schalk, G.

(2010). Does the ’P300’ speller depend on eye gaze? J. Neural. Eng. 7:056013.

doi: 10.1088/1741-2560/7/5/056013

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J.

Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Farwell, L., and Donchin, E. (1988). Talking off the top of your head: toward a

mental prosthesis utilizing event-related brain potentials. Electroencephalogr.

Clin. Neurophysiol. 70, 510–523. doi: 10.1016/0013-4694(88)90149-6

Fried-Oken, M., Fox, L., Rau, M. T., Tullman, J., Baker, G., Hindal, M., et al.

(2006). Purposes of aac device use for persons with als as reported by caregivers.

Augment Altern Commun. 22, 209–221. doi: 10.1080/07434610600650276

Furdea, A., Halder, S., Krusienski, D. J., Bross, D., Nijboer, F.,

Birbaumer, N., et al. (2009). An auditory oddball (P300) spelling

system for brain-computer interfaces. Psychophysiology 46, 617–625.

doi: 10.1111/j.1469-8986.2008.00783.x

Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., et al.

(2009). How many people are able to control a P300-based brain-computer

interface (BCI)? Neurosci. Lett. 462, 94–98. doi: 10.1016/j.neulet.2009.06.045

Halder, S., Hammer, E. M., Kleih, S. C., Bogdan, M., Rosenstiel, W., Birbaumer, N.,

et al. (2013). Prediction of auditory and visual P300 brain-computer interface

aptitude. PLoS ONE 8:e53513. doi: 10.1371/journal.pone.0053513

Halder, S., Käthner, I., and Kübler, A. (2016a). Training leads to increased auditory

brain-computer interface performance of end-users with motor impairments.

Clin. Neurophysiol. 127, 1288–1296. doi: 10.1016/j.clinph.2015.08.007

Halder, S., Takano, K., Ora, H., Onishi, A., Utsumi, K., and Kansaku, K.

(2016b). An evaluation of training with an auditory P300 brain-computer

interface for the Japanese Hiragana syllabary. Front. Neurosci. 10:446.

doi: 10.3389/fnins.2016.00446

Herweg, A., Gutzeit, J., Kleih, S., and Kübler, A. (2016). Wheelchair control

by elderly participants in a virtual environment with a brain-computer

interface (BCI) and tactile stimulation. Biol. Psychol. 121(Pt A), 117–124.

doi: 10.1016/j.biopsycho.2016.10.006

Itti, L., and Koch, C. (2000). A saliency-based search mechanism for

overt and covert shifts of visual attention. Vision Res. 40, 1489–1506.

doi: 10.1016/S0042-6989(99)00163-7

Juel, B. E., Romundstad, L. G., Kolstad, F., Storm, J. F., and Larsson, P. G.

(2018). Distinguishing anesthetized from awake state in patients: A new

approach using one second segments of raw EEG. Front. Hum. Neurosci. 12:40.

doi: 10.3389/fnhum.2018.00040

Kalika, D., Collins, L., Caves, K., and Throckmorton, C. (2017). Fusion of P300

and eye-tracker data for spelling using BCI2000. J. Neural. Eng. 14:056010.

doi: 10.1088/1741-2552/aa776b

Käthner, I., Halder, S., Hintermüller, C., Espinosa, A., Guger, C., Miralles, F., et

al. (2017). A multifunctional brain-computer interface intended for home use:

an evaluation with healthy participants and potential end users with dry and

gel-based electrodes. Front. Neurosci. 11:286. doi: 10.3389/fnins.2017.00286

Käthner, I., Kübler, A., and Halder, S. (2015). Comparison of eye tracking,

electrooculography and an auditory brain-computer interface for binary

communication: a case study with a participant in the locked-in state. J.

Neuroeng. Rehabil. 12:76. doi: 10.1186/s12984-015-0071-z

Kaufmann, T., Herweg, A., and Kübler, A. (2014). Toward brain-computer

interface based wheelchair control utilizing tactually-evoked event-related

potentials. J. Neuroeng. Rehabil. 11:7. doi: 10.1186/1743-0003-11-7

Kaufmann, T., Holz, E.M., and Kübler, A. (2013a). Comparison of tactile, auditory,

and visual modality for brain-computer interface use: a case study with a patient

in the locked-in state. Front. Neurosci. 7:129. doi: 10.3389/fnins.2013.00129

Kaufmann, T., and Kübler, A. (2014). Beyond maximum speed–a

novel two-stimulus paradigm for brain-computer interfaces based

on event-related potentials (P300-BCI). J. Neural. Eng. 11:056004.

doi: 10.1088/1741-2560/11/5/056004

Kaufmann, T., Schulz, S., Grünzinger, C., and Kübler, A. (2011). Flashing

characters with famous faces improves ERP-based brain–computer interface

performance. J. Neural Eng. 8:056016. doi: 10.1088/1741-2560/8/5/056016

Kaufmann, T., Schulz, S. M., Köblitz, A., Renner, G., Wessig, C., and Kübler, A.

(2013b). Face stimuli effectively prevent brain-computer interface inefficiency

in patients with neurodegenerative disease. Clin. Neurophysiol. 124, 893–900.

doi: 10.1016/j.clinph.2012.11.006

Kawase, T., Sakurada, T., Koike, Y., and Kansaku, K. (2017). A hybrid BMI-based

exoskeleton for paresis: EMG control for assisting arm movements. J. Neural

Eng. 14:016015. doi: 10.1088/1741-2552/aa525f

Klobassa, D. S., Vaughan, T. M., Brunner, P., Schwartz, N. E., Wolpaw,

J. R., Neuper, C., et al. (2009). Toward a high-throughput auditory

P300-based brain-computer interface. Clin. Neurophysiol. 120, 1252–1261.

doi: 10.1016/j.clinph.2009.04.019

Kotchoubey, B., and Lang, S. (2003). Parallel processing of physical and

lexical auditory information in humans. Neurosci. Res. 45, 369–374.

doi: 10.1016/S0168-0102(02)00250-X

Krusienski, D. J., Sellers, E. W., McFarland, D. J., Vaughan, T. M., and Wolpaw,

J. R. (2008). Toward enhanced P300 speller performance. J. Neurosci. Methods

167, 15–21. doi: 10.1016/j.jneumeth.2007.07.017

Lesenfants, D., Habbal, D., Chatelle, C., Schnakers, C., Laureys, S., and

Noirhomme, Q. (2016). Electromyographic decoding of response to

command in disorders of consciousness. Neurology 87, 2099–2107.

doi: 10.1212/WNL.0000000000003333

Lotte, F., Larrue, F., and Mühl, C. (2013). Flaws in current human

training protocols for spontaneous brain-computer interfaces: lessons

learned from instructional design. Front. Hum. Neurosci. 7:568.

doi: 10.3389/fnhum.2013.00568

Mack, D. J., Belfanti, S., and Schwarz, U. (2017). The effect of sampling rate and

lowpass filters on saccades - a modeling approach. Behav. Res. Methods 49,

2146–2162. doi: 10.3758/s13428-016-0848-4

Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Rupp, R. (2005). EEG-based

neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382,

169–174. doi: 10.1016/j.neulet.2005.03.021

Murguialday, A. R., Hill, J., Bensch, M., Martens, S., Halder, S., Nijboer,

F., et al. (2011). Transition from the locked in to the completely

locked-in state: a physiological analysis. Clin. Neurophysiol. 122, 925–933.

doi: 10.1016/j.clinph.2010.08.019

Najemnik, J., and Geisler, W. S. (2005). Optimal eye movement strategies in visual

search. Nature 434, 387–391. doi: 10.1038/nature03390

Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea,

A., et al. (2008). A P300-based brain-computer interface for people

with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119, 1909–1916.

doi: 10.1016/j.clinph.2008.03.034

Okahara, Y., Takano, K., Komori, T., Nagao, M., Iwadate, Y., and Kansaku,

K. (2017). Operation of a P300-based brain-computer interface by

patients with spinocerebellar ataxia. Clin. Neurophysiol. Pract. 2, 147–153.

doi: 10.1016/j.cnp.2017.06.004

Onishi, A., Takano, K., Kawase, T., Ora, H., and Kansaku, K. (2017). Affective

stimuli for an auditory P300 brain-computer interface. Front. Neurosci. 11:522.

doi: 10.3389/fnins.2017.00522

Pasqualotto, E., Matuz, T., Federici, S., Ruf, C. A., Bartl, M., Olivetti Belardinelli,

M., et al. (2015). Usability and workload of access technology for

people with severe motor impairment: a comparison of brain-computer

interfacing and eye tracking. Neurorehabil. Neural Repair 29, 950–957.

doi: 10.1177/1545968315575611

Pels, E., Aarnoutse, E. J., Ramsey, N. F., and Vansteensel, M. J. (2017).

Estimated prevalence of the target population for brain-computer interface

Frontiers in Human Neuroscience | www.frontiersin.org 13 June 2018 | Volume 12 | Article 228

https://doi.org/10.1016/j.clinph.2015.04.054
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.3389/fnins.2010.00019
https://doi.org/10.1088/1741-2560/7/5/056013
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1080/07434610600650276
https://doi.org/10.1111/j.1469-8986.2008.00783.x
https://doi.org/10.1016/j.neulet.2009.06.045
https://doi.org/10.1371/journal.pone.0053513
https://doi.org/10.1016/j.clinph.2015.08.007
https://doi.org/10.3389/fnins.2016.00446
https://doi.org/10.1016/j.biopsycho.2016.10.006
https://doi.org/10.1016/S0042-6989(99)00163-7
https://doi.org/10.3389/fnhum.2018.00040
https://doi.org/10.1088/1741-2552/aa776b
https://doi.org/10.3389/fnins.2017.00286
https://doi.org/10.1186/s12984-015-0071-z
https://doi.org/10.1186/1743-0003-11-7
https://doi.org/10.3389/fnins.2013.00129
https://doi.org/10.1088/1741-2560/11/5/056004
https://doi.org/10.1088/1741-2560/8/5/056016
https://doi.org/10.1016/j.clinph.2012.11.006
https://doi.org/10.1088/1741-2552/aa525f
https://doi.org/10.1016/j.clinph.2009.04.019
https://doi.org/10.1016/S0168-0102(02)00250-X
https://doi.org/10.1016/j.jneumeth.2007.07.017
https://doi.org/10.1212/WNL.0000000000003333
https://doi.org/10.3389/fnhum.2013.00568
https://doi.org/10.3758/s13428-016-0848-4
https://doi.org/10.1016/j.neulet.2005.03.021
https://doi.org/10.1016/j.clinph.2010.08.019
https://doi.org/10.1038/nature03390
https://doi.org/10.1016/j.clinph.2008.03.034
https://doi.org/10.1016/j.cnp.2017.06.004
https://doi.org/10.3389/fnins.2017.00522
https://doi.org/10.1177/1545968315575611
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Halder et al. Comparison of Five-Choice Assistive Technologies

neurotechnology in the Netherlands.Neurorehabil. Neural Repair. 31, 677–685.

doi: 10.1177/1545968317714577

Pinegger, A., Faller, J., Halder, S., Wriessnegger, S. C., and Müller-Putz,

G. R. (2015). Control or non-control state: that is the question! an

asynchronous visual P300-based BCI approach. J. Neural. Eng. 12:014001.

doi: 10.1088/1741-2560/12/1/014001

Plum, F., and Posner, J. B. (1972). The diagnosis of stupor and coma. Contemp.

Neurol. Ser. 10, 1–286.

Riccio, A., Mattia, D., Simione, L., Olivetti, M., and Cincotti, F. (2012). Eye-

gaze independent EEG-based brain-computer interfaces for communication.

J. Neural. Eng. 9:045001. doi: 10.1088/1741-2560/9/4/045001

Rutkowski, T. M., and Mori, H. (2015). Tactile and bone-conduction auditory

brain computer interface for vision and hearing impaired users. J. Neurosci.

Methods 244, 45–51. doi: 10.1016/j.jneumeth.2014.04.010

Schalk, G., Kubánek, J., Miller, K. J., Anderson, N. R., Leuthardt, E. C.,

Ojemann, J. G., et al. (2007). Decoding two-dimensional movement trajectories

using electrocorticographic signals in humans. J. Neural. Eng. 4, 264–275.

doi: 10.1088/1741-2560/4/3/012

Schreuder, M., Höhne, J., Blankertz, B., Haufe, S., Dickhaus, T., and

Tangermann, M. (2013). Optimizing event-related potential based brain–

computer interfaces: a systematic evaluation of dynamic stopping methods. J.

Neural Eng. 10:036025. doi: 10.1088/1741-2560/10/3/036025

Silvoni, S., Konicar, L., Prats-Sedano, M. A., Garcia-Cossio, E., Genna, C., Volpato,

C., et al. (2016). Tactile event-related potentials in amyotrophic lateral sclerosis

(ALS): implications for brain-computer interface. Clin. Neurophysiol. 127,

936–945. doi: 10.1016/j.clinph.2015.06.029

Simon, N., Käthner, I., Ruf, C. A., Pasqualotto, E., Kübler, A., and Halder, S. (2014).

An auditory multiclass brain-computer interface with natural stimuli: usability

evaluation with healthy participants and a motor impaired end user. Front.

Hum. Neurosci. 8:1039. doi: 10.3389/fnhum.2014.01039

Spataro, R., Ciriacono, M., Manno, C., and La Bella, V. (2014). The eye-tracking

computer device for communication in amyotrophic lateral sclerosis. Acta

Neurol. Scand 130, 40–45. doi: 10.1111/ane.12214

Spüler, M., Rosenstiel, W., and Bogdan, M. (2012). Online adaptation of a c-

VEP brain-computer interface (BCI) based on error-related potentials and

unsupervised learning. PLoS ONE 7:e51077. doi: 10.1371/journal.pone.0051077

Storm, J. F., Boly, M., Casali, A. G., Massimini, M., Olcese, U., Pennartz,

C. M. A., et al. (2017). Consciousness regained: disentangling mechanisms,

brain systems, and behavioral responses. J. Neurosci. 37, 10882–10893.

doi: 10.1523/JNEUROSCI.1838-17.2017

Suefusa, K., and Tanaka, T. (2017). A comparison study of visually stimulated

brain-computer and eye-tracking interfaces. J. Neural Eng. 14:036009.

doi: 10.1088/1741-2552/aa6086

Townsend, G., and Platsko, V. (2016). Pushing the P300-based brain-

computer interface beyond 100 bpm: extending performance guided

constraints into the temporal domain. J. Neural Eng. 13:026024.

doi: 10.1088/1741-2560/13/2/026024

Utsumi, K., Takano, K., Okahara, Y., Komori, T., Onodera, O., and

Kansaku, K. (2018). Operation of a P300-based brain-computer interface

in patients with duchenne muscular dystrophy. Sci. Rep. 8:1753.

doi: 10.1038/s41598-018-20125-6

van der Waal, M., Severens, M., Geuze, J., and Desain, P. (2012). Introducing the

tactile speller: an ERP-based brain-computer interface for communication. J.

Neural. Eng. 9:045002. doi: 10.1088/1741-2560/9/4/045002

Ward, D. J., and MacKay, D. J. C. (2002). Artificial intelligence: fast hands-free

writing by gaze direction. Nature 418, 838. doi: 10.1038/418838a

Ware, C., and Mikaelian, H. (1987). “An evaluation of an eye tracker as a device

for computer input2,” in Proceedings of the SIGCHI/GI Conference on Human

Factors in Computing Systems and Graphics Interface, GI + CHI 1987, eds

J. M. Caroll and P. P. Tanner (New York, NY: Association for Computing

Machinery), 183–188.

Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., and Vaughan,

T. (2002). Brain-computer interfaces for communication and control. Clin.

Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Zhang, S., Xu, M., Kamigaki, T., Hoang Do, J. P., Chang, W.-C., Jenvay,

S., et al. (2014). Selective attention. long-range and local circuits for

top-down modulation of visual cortex processing. Science 345, 660–665.

doi: 10.1126/science.1254126

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Halder, Takano and Kansaku. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 14 June 2018 | Volume 12 | Article 228

https://doi.org/10.1177/1545968317714577
https://doi.org/10.1088/1741-2560/12/1/014001
https://doi.org/10.1088/1741-2560/9/4/045001
https://doi.org/10.1016/j.jneumeth.2014.04.010
https://doi.org/10.1088/1741-2560/4/3/012
https://doi.org/10.1088/1741-2560/10/3/036025
https://doi.org/10.1016/j.clinph.2015.06.029
https://doi.org/10.3389/fnhum.2014.01039
https://doi.org/10.1111/ane.12214
https://doi.org/10.1371/journal.pone.0051077
https://doi.org/10.1523/JNEUROSCI.1838-17.2017
https://doi.org/10.1088/1741-2552/aa6086
https://doi.org/10.1088/1741-2560/13/2/026024
https://doi.org/10.1038/s41598-018-20125-6
https://doi.org/10.1088/1741-2560/9/4/045002
https://doi.org/10.1038/418838a
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1126/science.1254126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Comparison of Four Control Methods for a Five-Choice Assistive Technology
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Procedure
	2.2.1. Visual AACs (Visual P300 BCI and Eye-Tracker)
	2.2.2. Non-visual AACs (Auditory and Tactile P300 BCI)

	2.3. Questionnaire
	2.4. Data Acquisition
	2.5. Data Analysis
	2.6. Statistical Analysis

	3. Results
	3.1. Accuracy and Information Transfer Rate
	3.1.1. Visual AACs (Visual P300 BCI and Eye-Tracker)
	3.1.2. Non-visual AACs (Auditory and Tactile P300 BCI)

	3.2. Questionnaires
	3.2.1. Visual AACs (Visual P300 BCI and Eye-Tracker)
	3.2.2. Non-visual AACs (Auditory and Tactile P300 BCI)

	3.3. Physiological Data
	3.4. Influence of Classification Time Window

	4. Discussion
	4.1. Performance
	4.2. Physiological Data
	4.3. Questionnaire

	5. Conclusions
	Author Contributions
	Acknowledgments
	References


