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In recent years, research on decoding brain activity based on functional

magnetic resonance imaging (fMRI) has made eye-catching achievements. However,

constraint-free natural image reconstruction from brain activity remains a challenge, as

specifying brain activity for all possible images is impractical. The problem was often

simplified by using semantic prior information or just reconstructing simple images,

including digitals and letters. Without semantic prior information, we present a novel

method to reconstruct natural images from the fMRI signals of human visual cortex

based on the computation model of convolutional neural network (CNN). First, we

extracted the unit output of viewed natural images in each layer of a pre-trained CNN

as CNN features. Second, we transformed image reconstruction from fMRI signals into

the problem of CNN feature visualization by training a sparse linear regression to map

from the fMRI patterns to CNN features. By iteratively optimization to find the matched

image, whose CNN unit features become most similar to those predicted from the

brain activity, we finally achieved the promising results for the challenging constraint-free

natural image reconstruction. The semantic prior information of the stimuli was not

used when training decoding model, and any category of images (not constraint by

the training set) could be reconstructed theoretically. We found that the reconstructed

images resembled the natural stimuli, especially in position and shape. The experimental

results suggest that hierarchical visual features may be an effective tool to express the

human visual processing.

Keywords: image reconstruction, functional magnetic resonance imaging, convolutional neural network, visual

representation, brain decoding

INTRODUCTION

Functional magnetic resonance imaging (fMRI) has become an effective tool for decoding
brain activity, especially in visual decoding. A large number of studies have implemented the
classification of stimulus categories (Mitchell et al., 2008; Huth et al., 2012), memories (Postle,
2015), imagination (Reddy et al., 2010), and even dreams (Horikawa et al., 2013) by multi-voxel
pattern analysis (MVPA) (Zafar et al., 2015). More precisely, encoding model has been built to
identify stimulus (Kay et al., 2008). Very few studies focused on visual image reconstruction.
The goal of reconstruction is to produce a literal picture of the stimulus image. Visual image
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reconstruction is a more challenging problem because it
needs much more decoded information than classification or
identification, especially for natural images containing infinitely
variable complex information.

To simplify the problem of stimulus image reconstruction,
most studies focused on the reconstruction of simple images.
Thirion et al. (2006) first implemented image reconstruction
based on fMRI. They estimated the response model of each
voxel in the retinotopic mapping experiment and reconstructed
the simple images composed of quickly rotating Gabor filters in
the passive viewing experiment and imagery experiment for the
same subject. Miyawaki et al. (2008) realized the reconstruction
of simple letters and graphics (10 × 10 resolution) by solving
the linear mapping model from the voxels of visual cortex to
each pixel of image. Schoenmakers et al. (2013) introduced the
idea of sparse learning and the forward linear Gauss model to
reconstruct the handwritten English letter “BRAINS” from the
fMRI signals of the visual cortex. They further improved the
results of letter reconstruction by introducing the Gauss hybrid
model (Schoenmakers et al., 2014a,b). Yargholi and Hossein-
Zadeh (2015, 2016) used the Gauss Network to reconstruct six
and nine digital handwritten numerals, but it is more like a
problem of classification in essence. Naselaris et al. (2009) first
implemented the reconstruction of natural images using a priori
information and a combination of structural coding and semantic
coding models. However, it is essentially an image recognition
problem in a limited natural image library. On this basis, they
realized the reconstruction of video via image reconstruction
frame by frame (Nishimoto et al., 2011).

At the same time, deep neural network (DNN) has become
the focus of scholars in recent years due to its strong
capability of feature representation. Deep learning has achieved
a breakthrough in image detection/classification (Krizhevsky
et al., 2012; Denton et al., 2015), speech recognition (Deng
et al., 2013) and natural language processing (Blunsom et al.,
2014; Le and Mikolov, 2014). More and more research have
applied DNN to fMRI visual decoding (Yamins and DiCarlo,
2016). Agrawal et al. (2014) first encoded fMRI signals using the
features extracted from images by convolutional neural network
(CNN). Güçlü et al. used a DNN tuned for object categorization
to probe neural responses to naturalistic stimuli. The result
showed an explicit gradient for feature complexity existed from
early visual areas toward the ventral (Güçlü and van Gerven,
2015a) and dorsal (Güçlü and van Gerven, 2015b) streams
of the human brain. Cichy et al. (2016) compared temporal
(magnetoencephalography,MEG) and spatial (fMRI) brain visual
representations with representations in the DNN tuned to the
statistics of real-world visual recognition. The results showed that
the DNN captured the visual perception process of the human
brain in both time and space in the ventral and dorsal visual
pathways of the human brain. Horikawa and Kamitani (2017a)
proposed a generic decoding model based on hierarchical visual
features generated by DNN. They found that hierarchical visual
features could be predicted from fMRI patterns and used them to
identify seen/imagined object categories from a set of computed
features for numerous object images. Furthermore, they found
that the features decoded from the dream fMRI data had a

strong positive correlation with the intermediate and advanced
DNN layer features of the dreamed objects (Horikawa and
Kamitani, 2017b). Du et al. (2017) achieved better performance in
simple images reconstruction through deep generation networks,
but this method still has some problems with natural image
reconstruction. Using the convolution kernels of the first layer
of CNN, Wen et al. (2017) implemented the reconstruction of
dynamic video frame by frame. However, the results still had a
gap with natural images, although the position information was
restored well. In a word, all these studies suggested that DNN
could help in providing more detailed interpretation of human
brain visual information. Constraint-free natural images may be
reconstructed well due to the efficient feature representation of
DNN.

Recently, Mahendran and Vedaldi (2015, 2016) proposed a
method about the input image generation for each CNN layer
feature. Inspired by the research, this paper presents a novel
visual image reconstruction method for natural images based
on fMRI (Figure 1). By training the decoders that predict the
CNN features of natural stimuli from fMRI activity patterns,
we transformed image reconstruction from fMRI signals into
the problem of CNN feature visualization. Then, iteratively
optimization was performed to find the matched image whose
CNN unit features became most similar to those predicted from
the brain activity. Finally, the matched image was taken as the
reconstruction result from the brain activity. By analyzing the
experimental results, we verified the effectiveness of the method
and the homology between human and computer visions.

MATERIALS AND METHODS

Experimental Data
The data used in this paper were the same as Kay et al. (2008),
downloaded from an online data sharing database (http://crcns.
org/data-sets/vc/vim-1). The data consisted of the blood-oxygen
level dependent (BOLD) activities of two human subjects (S1 and
S2) acquired using a 4T INOVA MR scanner (Varian, Inc., Palo
Alto, CA, USA). EPI (echo-planar imaging) scan was performed
to acquire functional images covering occipital cortex (repetition
time (TR), 1,000ms; echo time (TE), 28ms; flip angle, 20◦; field
of view (FOV), 128 × 128 mm2; slice thickness, 2.25mm; slice
gap, 0.25mm; matrix size, 64× 64; spatial resolution, 2× 2× 2.5
mm3).

The dataset is divided into two sets: training set and validation
set. In the training phase, the subjects viewed 1,750 grayscale
natural images (20◦ × 20◦) randomly selected from a database.
Images were flashed at 200ms intervals for 1 s followed by 3 s
of gray background in successive 4 s trials during which subjects
were fixated on a central white square (0.2◦ × 0.2◦). During the
validation phase, the subjects viewed 120 novel natural images
presented in the same way as the training phase. Training images
were presented 2 times each, and test images were presented 13
times each. Training and validation data were acquired in the
same scan sessions.

First, functional images weremanually co-registered to correct
differences in head positioning across different sessions. Then,
automated motion correction and slice timing were applied to
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FIGURE 1 | Main process of visual image reconstruction. When the subject was seeing natural stimuli, fMRI responses were acquired through a MRI scanner. Then,

the CNN features of natural stimuli were predicted by the decoder trained on the training set. The predicted CNN features were visualized by iteratively optimization to

find the matched image whose CNN unit features became most similar to those predicted from the brain activity. Finally, the matched image was taken as the

reconstruction result from the brain activity.

the data acquired within the same session by SPM (http://www.
fil.ion.ucl.ac.uk/spm) software.

Extracting Hierarchical Visual Features
Based on CNN
We used a deep CNN (Caffe–Alex [caffe]) (Jia et al., 2014),
which closely reproduced the network by Krizhevsky et al. (2012)
to extract hierarchical visual features from the stimuli. Table 1
details the structure of the Caffe–Alex model. It is composed of
the following computational building blocks: linear convolution,
rectified linear unit (ReLU) gating, spatial max-pooling, and
group normalization. This CNN was trained to achieve the
best performance of object recognition in Large Scale Visual
Recognition Challenge 2012.

This model can be concisely divided into eight layers: the first
five are convolutional layers (consist of 96, 256, 384, 384, and
256 kernels), and the last three layers are fully connected for
object classification (consist of 4,096, 4,096, and 1,000 artificial
neurons). Each convolutional layer consists of some or all of the
following four stages: linear convolution, ReLU gating, spatial
max-pooling, and group normalization. Layers 6 and 7 are fully
connected networks, and layer 8 uses a softmax function to
output a vector of probabilities by which the input image is
classified into individual categories.

For each image inputted to the CNN, the output of each
layer was extracted to form the image hierarchy features. The
dimensions of each layer features are shown in Table 1. We
used the matconvnet toolbox (Vedaldi and Lenc, 2015) for
implementing CNNs.

Decoding fMRI Signals to CNN Features
Using the training images, we estimated multivariate regression
models to predict the feature maps of CNN layers based on
distributed cortical fMRI signals. For each layer, a linear model
was defined to map the distributed fMRI signals to the output
features of artificial neurons in the CNN. For a specific feature of
a particular CNN layer, it is expressed as Equation (1):

y = Xw, (1)

where, y stands for the CNN features of training images, which
is an m-by-1 matrix, where m is the number of training images.
X stands for the observed fMRI signals within the visual cortex,
which is an m-by-(n+1) matrix, where m is the number of
training images, and n is the number of voxels. The last column
of X is a constant vector with all elements equal to 1. w is the
unknown weighting vector to solve. It is an (n+1)-by-1 matrix.

As the number of training samples m is far less than the
number of voxels in visual field n, the problem is actually the
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TABLE 1 | Structure of Caffe–Alex model.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Name conv1 relu1 mpool1 norm1 conv2 relu2 mpool2 norm2 conv3 relu3 conv4 relu4 conv5 relu5 mpool5 fc6 relu6 fc7 relu7 fc8

Type cnv relu mpool nrm cnv relu mpool nrm cnv relu cnv relu cnv relu mpool cnv relu cnv relu cnv

Channels 96 96 96 96 256 256 256 256 384 384 384 384 256 256 256 4,096 4,096 4,096 4,096 1,000

solution of ill-posed equation, and no unique solution can be
found. In addition, several theoretical studies suggest that a
sparse coding scheme is used to represent natural images in
primary visual cortex (Vinje and Gallant, 2000; Cox and Savoy,
2003). It means that only a small number of active neurons are
for a special stimulus. By contrast, only a small number of visual
stimuli can make a neuron active. As a proxy of neural activities,
expecting that the responses of neurons can also reflect the sparse
property is reasonable. Thus, w should be sparse to be more in
line with visual characteristics.

Based on the above assumption, the major problem of
constructing is how to solve a sparse representation problem.
Traditional sparse recovery is formulated as a general NP-Hard
problem as follows:

min
w

‖w‖0 subject toXw = y (2)

Two approximate solutions could be used to solve the problem.
One is transforming the NP-Hard L0 optimization problem into
the L1 optimization problem. Donoho et al. showed that for some
measurement matrixX, this NP-Hard problem is equivalent to its
relaxation (Donoho and Stark, 1989):

min
w

‖w‖1 subject toXw = y. (3)

L1-minimizationmethod provides uniform guarantees for sparse
recovery. If the measurement matrix satisfies the restricted

isometry property (RIP) condition, it works correctly for all
sparse signals. In this paper, we used YAll1 (Yang and Zhang,
2011) to solve the L1 optimization problem.

An alternate approach for sparse recovery problem is greedy
algorithm. Greedy algorithms are quite fast by computing the
support of the sparse signal iteratively, although it lacks the
strong guarantees which L1-minimization provides. Considering
that decoding model must be estimated for each CNN feature,
the approximation method should be fast enough and simple to
decrease the time cost. Therefore, we focused more on greedy
algorithms to investigate the sparseness of decoding model. In
this paper, we selected regularized orthogonal matching pursuit
(ROMP) (Needell and Vershynin, 2009, 2010) to solve the
decoding model. Finally, we compared both YAll1 and ROMP
and selected ROMP as the solution for the decoding model.

Reconstructing Image From CNN Features
In a recent study, Mahendran et al. proposed a method to
reconstruct original images from CNN features by gradient
descent optimization (Mahendran and Vedaldi, 2015) to better
understand deep image representations. This paper used the
method to reconstruct the image from the decoded CNN
features. We provided representation function 8 : R

H×W×C →

R
D (represents the process of the extracting CNN features of

a layer) and decoded the CNN features of one layer 80 =

8(x0). The image reconstruction aims at finding the image

FIGURE 2 | Prediction accuracy of the pool1, pool2, conv3, conv4, and conv5 layer features decoded from the fMRI data of S1. CNN feature prediction accuracy are

defined as the Pearson’s correlation coefficient (r) between their actual and predicted feature values on the validation set. The average prediction accuracy of ROMP

was significantly higher than that of YALL1 on t-statistics at a significance level of 10−5.
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x ∈ R
H×W×C that minimizes the following objective:

x∗ = argmin
x∈RH×W×C

ℓ(8(x),80)+ λℜ(x), (4)

where the loss ℓ compares the image representation 8(x) to the
target one 80, and ℜ : R

H×W×C → R stands for regularized
constraint item. We used the Euclidean distance as the loss
function and the regularized constraint item constants of two
regularizers. To encourage images to stay within a target interval
instead of diverging and to consist of piece-wise constant patches,

the first one is simply the norm ℜα(x) = ‖x‖α

α
(α = 6 is used

in the experiments andx is the vectorized and meansubtracted
image) and the second richer regularizer is the total variation
(TV). In addition, extended gradient descent used momentum
(Krizhevsky et al., 2012) to solve (4) more effectively.

Quantification of Model Performance
To quantify how well the voxel responses predicted CNN
features, we defined CNN feature prediction accuracy as the
Pearson’s correlation coefficient (r) between their actual and

FIGURE 3 | Prediction accuracy of all layers of CNN. (A,B) Show the prediction accuracy of all layers based on fMRI signals of S1 and S2, respectively. All the

prediction accuracy levels are significantly higher than chance (p < 0.01, T-test). The prediction accuracy levels of pool1, conv2, conv3, conv4, conv5, fc6, fc7, and

fc8 layers are all significantly higher than those of conv1, relu1, relu2, relu3, relu4, relu5, relu6, and relu7 layers for both subjects (p < 0.001, T-test).
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predicted feature values on the validation set. To achieve better
image reconstruction performance, all the decoded features of
one layer for image reconstruction should be similar to the
features extracted from the actual natural image as far as possible.
For a layer of CNN features, the mean r was used to express its
prediction accuracy.

To solve (2) more precisely and achieve better image
reconstruction, we compared ROMP and YALL1 with prediction
accuracy. Moreover, we compared the prediction accuracy of
different layers of CNN to find a most suitable layer to decode
fMRI signals into and reconstruct the original image from.
Finally, considering the prediction accuracy of each CNN layer

and the characteristics of the image reconstruction method (with
the same prediction accuracy, more low-level features, and better
reconstruction performance), we selected pool1 layer as the
image representation 8 (see section Reconstructing Image From
CNN Features for more details) to reconstruct the original image
from the voxel response.

Given the sparsity of the decoding model, the decoding
process included voxel selection. During the decoding of fMRI
signals into the features of each layer, we selected the 300 most
frequently utilized voxels as significant voxels and defined the
contribution of each visual area (V1, V2, V3, and V4) as the
proportions of each visual area in the significant voxels. By

FIGURE 4 | Visual area assignments of significant voxels. (A,B) Show the result of S1 an S2, respectively. The total numbers of voxels in V1, V2, V3, and V4 are

1294/1399, 2083/1890, 1790/1772, and 484/556 (S1/S2). For each subject, 300 voxels with the highest frequency selected for decoding each layer feature served

as significant voxels.
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analyzing the segmentation of significant voxels, the hierarchical
structure similarity between CNN and the visual cortex can be
also verified.

Both objective and subjective assessment methods were
used to assess the accuracy of the reconstructions. For the
objective assessment, we calculated the weighted complex wavelet
structural similarity metric (CWSSIM) to assess the accuracy of
the reconstructions (Brooks et al., 2008). The metric used the

coefficients of a complex wavelet decomposition of two images to
compute a single number that described the degree of structural
similarity between the two images. For the subjective assessment,
we performed a behavioral experiment, in which a group of
13 raters (4 females and 9 males, aged from 22 to 38) were
presented with one original image from the validation set and
had to choose a similar one between the real and one randomly
chosen different reconstruction taken from the same validation

FIGURE 5 | Performance of image reconstruction. The numbers below the reconstructed image represent the accuracy of the reconstructions assessed by CWSSIM.
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set. Each reconstruction was assessed by each rater once and 3120
comparisons in total were presented.

RESULTS

Comparative Analysis of ROMP and YALL1
for Decoding Model
ROMP and YALL1 were used to solve the decodedmodel, and the
prediction accuracy of several typical layer features decoded from
the fMRI data of S1 is shown in Figure 2. The average prediction
accuracy of ROMP in pool1, pool2, conv3, conv4, and conv5
reached 0.266, 0.183, 0.283, 0.263, and 0.239 respectively, which
were significantly higher than that of YALL1 on t-statistics at a
significance level of 10−5. This findingmight indicate that ROMP
better reflected the sparsity of visual perception. Furthermore,
ROMP was much faster than YALL1, which was particularly
important for tens of thousands of CNN features. In conclusion,
we finally selected ROMP as our decoding model solution.

Prediction Accuracy of Different Layers of
CNN
We calculated the prediction accuracy of all layers of CNN based
on both the fRMI data of S1 and S2. As shown in Figure 3,
higher prediction accuracy was obtained in pool1, conv2, conv3,
conv4, conv5, fc6, fc7, and fc8 layers, whereas the prediction
accuracy in conv1, relu1, relu2, relu3, relu4, relu5, relu6, and
relu7 layers was low possibly because the ReLU function reduced
the predictability of the linear decoding model. Intuitively,
image reconstruction performed better when it utilized the
features of the layer with higher prediction accuracy as image
representations. However, under the same prediction accuracy,
the reconstruction method used in this paper had better accuracy
rate in the lower layer because the more distortion was generated
during back propagating the higher layer features. Thus, we
finally selected pool1 layer as the image representation 8 (see
section Reconstructing Image From CNN Features for more
details) to reconstruct the original image from the voxel response.

Contribution of Each Visual Area When
Decoding fMRI Signals Into Each Layer
Feature
The visual area assignments of the significant voxels across all
CNN layers are shown in Figure 4. The results showed that
the assignments of the significant voxels in V1 and V2 had a
decreasing trend (Mann–Kendall test, p < 0.05) with the CNN
layer, whereas the assignments of the significant voxels in V3 and
V4 had an increasing trend (Mann–Kendall test, p < 0.05) for
both subjects. That is, most significant voxels assigned to shallow
convolutional layers were located in early visual areas, whereas
most significant voxels assigned to deep convolutional layers
were located in downstream visual areas. As we know, CNN
is hierarchically organized with feature complexity. Thus, these
findings provided quantitative evidence again for the thesis that
the visual ventral stream was hierarchically organized (Markov
et al., 2014), with downstream areas processing increasingly
complex features of the retinal input.

Performance of Image Reconstruction
Image reconstruction was implemented on the validation set
based on the pool1 features decoded from the voxel responses
using the decoding model trained in the training set. Part of
the original images of the validation set and the corresponding
reconstructed images are shown in Figure 5. Most reconstructed
images were found to clearly capture the position, shape, and
even the texture information of the object in the original image
in the case that the stimuli were grayscale. Moreover, we found
thatmost of reconstructed images reproduced foreground objects
well but were less sensitive to perceptually less salient objects
or backgrounds. To some extent, this finding showed that the
visual perception of the brain measured by fMRI was selective
during image understanding, which might be the main reason
why reconstruction images tended to regenerate those image
parts relevant to visual perception. In addition, accuracy of the
reconstructions was assessed by CWSSIM and human judgment
(Figure 6). The average accuracy of the reconstructions for S1
and S2 reached 0.3921 (80.1% by human judgment) and 0.3938
(70.4% by human judgment), respectively. In addition, both S1
and S2 were significantly more accurate than chance (p < 10−5

,

T-test). As a way that computers can judge, the accuracy of the

FIGURE 6 | Accuracy of reconstructions. (A) Accuracy of reconstructions

assessed by objective method (CWSSIM). (B) Accuracy of reconstructions

assessed by subjective method. Raters were presented with an original image

and had to choose its reconstruction out of two. The red line indicates chance

performance. Error bars show the standard deviation of the mean accuracy.
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reconstructions assessed by CWSSIMmay be not consistent with
the judgment of humans.

DISCUSSION

Same as most studies, the linear model was selected in this
paper to decode fMRI signals to CNN features. A more complex
model inspired by visual mechanism may be able to improve the
decoding effect, including theGabor wavelet pyramidmodel (Kay
et al., 2008) to predict the responses of voxels in early visual areas.
We compared the ROMP and YALL1 to select a better one to
solve the decoding model and found that sparsity was a good
feature for solving algorithms. However, we just compared two
typical algorithms in two classes of sparse optimization methods.
Thus, better algorithms need to be explored to improve the
decoding accuracy.

The existing studies mostly only analyzed the relationship
between the response of visual voxels and the hierarchical
features of the five convolutional layers of CNN and three fully
connected layers. In this paper, the decoding accuracy of all
layers in CNN was analyzed (Figure 3) and some interesting
phenomena that have not been discovered before were found.
For example, the prediction accuracy of convolutional and fully
connected layers were relatively higher (except for conv1), which
might be the reason why most studies only analyzed them. We
found that the prediction accuracy of conv1 layer was low but that
of the next layer pool1 was higher. The reason might be that the
fMRI signals were more like pool1, which reflected the responses
of a group of nerve cells rather than a single nerve cell, thus it was
constrained to decode fMRI signals into the lowest level but most
sophisticated features in the first layer of CNN. Moreover, all the
layer features of ReLU had relatively low prediction accuracy. As
we know, ReLU function is originally an approximate simulation
of the activation model of brain neurons for faster and better
training of a deeper network model. This phenomenon may lead
to the characteristics of the relu layer deviating from the visual
perception process of the human brain (measured by fMRI).
These findings based on fMRImay be useful for the improvement
of CNN.

Recently, several research found the similarity between CNN
and the visual pathway through visual encoding (Agrawal
et al., 2014; Yamins et al., 2014; Güçlü and van Gerven,
2015a,b; Khaligh-Razavi et al., 2016) or decoding (Horikawa
and Kamitani, 2017a,b; Wen et al., 2017). These findings were
verified more carefully in this paper through the analysis of the
contribution of each visual area during the decoding of fMRI
signals to all the layer features of CNN (Figure 4). From another
point of view, these cases may be because CNN is closer to the
human brain in image understanding, thus it can achieve various
essential improvements in image target recognition and detection
and other functions.

In the final process of image reconstruction, we obtained
better reconstruction performance by inverting pool1 layer
feature decoded from fMRI signals, although the prediction
accuracy of pool1 was not the highest. We tried to reconstruct

images based on the high-level layer with higher accuracy (such
as that of conv3) but did not work well probably due to the
ultimate goal of the CNN to identify the target in images. Thus,
the higher layer features contained more semantic information
and less low-level features of images. This case led to larger
distortion in the reconstructed images by inverting higher layer
features even when the features were extracted directly from
the original image (Mahendran and Vedaldi, 2015, 2016). In
the case of similar prediction accuracy, better reconstruction
could be implemented based on the pool1 layer but could also
lead to the recovered information that are almost low-level
information, such as location, edge, texture, and so on. To achieve
better image reconstruction performance, a fusion method based
on CNN multi-layer features rather than single-layer features
is encouraged. In this way, the details of the image can be
recovered better by using the low-level layers of CNN, whereas
the semantics of the image can be guaranteed by the high-level
features.

CONCLUSION

This paper presents a novel method for reconstructing
constraint-free natural images from fMRI signals based on
CNN. Different from direct reconstruction from fMRI signals,
we transferred the understanding of brain activity into the
understanding of feature representation in CNN by training a
mapping from fMRI signals to hierarchical features extracted
from CNN. Thus, image reconstruction from fMRI signals
became the problem of CNN feature visualization. By iteratively
optimizing to find the matched image, we finally achieved the
promising results for the challenging constraint-free natural
image reconstruction. Furthermore, the homology of human
and machine visions was validated based on the experimental
results. As the semantic prior information of the stimuli were
not used when training decoding model, any category of images
(not constraint by the training set) could be reconstructed
theoretically based on the CNN pre-trained on the massive
samples of ImageNet. To achieve better image reconstruction
performance on colorful images or videos, CNN multi-layer
features representing different levels of image features should be
taken into account.
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