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Decades of research have established the importance of the hippocampus for episodic
and spatial memory. In spatial navigation tasks, the role of the hippocampus has
been classically juxtaposed with the role of the dorsal striatum, the latter of which
has been characterized as a system important for implementing stimulus-response
and action-outcome associations. In many neuroimaging paradigms, this has been
explored through contrasting way finding and route-following behavior. The distinction
between the contributions of the hippocampus and striatum to spatial navigation has
been supported by extensive literature. Convergent research has also underscored the
fact that these different memory systems can interact in dynamic ways and contribute to
a broad range of navigational scenarios. For example, although familiar routes may often
be navigable based on stimulus-response associations, hippocampal episodic memory
mechanisms can also contribute to egocentric route-oriented memory, enabling recall
of context-dependent sequences of landmarks or the actions to be made at decision
points. Additionally, the literature has stressed the importance of subdividing the striatum
into functional gradients—with more ventral and medial components being important for
the behavioral expression of hippocampal-dependent spatial memories. More research
is needed to reveal how networks involving these regions process and respond to
dynamic changes in memory and control demands over the course of navigational
events. In this Perspective article, we suggest that a critical direction for navigation
research is to further characterize how hippocampal and striatal subdivisions interact in
different navigational contexts.
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INTRODUCTION

In our daily lives, we are continually faced with decisions about where to go next and how
to get there. Making these decisions can rely on a map-like representation of the overall
spatial environment which we occupy, as well as retrieval of memories for routes that connect
different locations. Flexible selection between learned routes to our destinations often involves
disambiguating memory traces for similar, or even physically overlapping, locations. Alternative
routes can introduce computational demands on declarative memory and response selection
circuitry, which can vary depending on how ambiguous the current context is and how
well-learned the behaviors are. As we navigate branches between overlapping routes (Figure 1) or
attempt to retrieve different memories of the same location, we may need to rely on neural systems
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FIGURE 1 | Schematic of striatal anatomy and hippocampal-dorsal striatal
contributions to navigational route flexibility. Inset box: coronal view of the
striatum and some relevant connections. The striatum receives dopaminergic
input from ventral tegmental area (VTA) and the substantia nigra (SN). Primate
dorsomedial striatum (DMS) is characterized by partially-overlapping reciprocal
connectivity with ventral striatum (VS) and ventromedial prefrontal cortex (PFC)
(vmPFC), orbitofrontal cortex (OFC), dorsal anterior cingulate cortex (dACC)
and dorsal prefrontal areas (DPFC). Striatum-PFC connectivity is a continuum
that changes as we move dorsal and lateral from “limbic” and “associative”
striatum (DMS) towards the “sensorimotor” striatum (DLS). DMS function can
interface with hippocampal function via hippocampal inputs to VS and to
shared prefrontal targets (particularly vmPFC and OFC). Upper figure:
conceptual example of the balance between model-free and model-based
navigation. Model-free navigation (e.g., green “habitual” route) may be
governed by DLS. When goals change (e.g., blue alternative route), mnemonic
input from the hippocampus to VS and PFC enables contextual traces
(e.g., goal states and event memory cues) to guide model-based action
selection and updating via DMS-frontrostriatal loops. In this example, the
navigator might disengage from an overlearned route home (green route),
suppressing a “straight” action in favor of a goal-directed left-turn into the park
(blue route). Gray text boxes on PFC indicate subdivisions on the lateral
surface.

that: (a) enable behavioral flexibility and cognitive control; and
(b) enable context-dependent retrieval of episodes. The striatum
and hippocampus, respectively, are parts of these systems,
and are functionally linked via the prefrontal cortex (PFC).
This Perspective article, highlights research indicating that the
functions of these structures may interact to enable the types of
flexible navigational decisions we often make in our daily lives.

Our perspective article is focused on two overlapping
literatures, which we briefly survey below and then elaborate on

in separate sections. Building on the famous discovery of ‘‘place
cells’’ and on landmark case studies involving patient H.M.,
research has established the importance of the hippocampus
for both spatial and episodic memory (Scoville and Milner,
1957; O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel,
1978; O’Keefe et al., 1998; Eichenbaum et al., 2007; Squire
et al., 2007; Harand et al., 2012; Corkin, 2013; Squire and
Dede, 2015). Critically, space is a core component within
the definition of episodic memory (Tulving, 1972). Findings
in rodents and humans: (a) demonstrate context-dependent
coding of space in the hippocampus; and (b) indicate that
the hippocampus is important for disambiguation and episodic
retrieval of overlapping navigational memories (Wood et al.,
2000; Ferbinteanu and Shapiro, 2003; Lee et al., 2006; Smith and
Mizumori, 2006; Brown et al., 2010, 2012; Brown and Stern, 2014;
Brown et al., 2014; Chanales et al., 2017).

Navigational route disambiguation provides an important
example of the link between navigation and episodic memory
mechanisms (Hasselmo and Eichenbaum, 2005), because
seminal fMRI studies have emphasized preferential engagement
of the hippocampus for map-based over egocentric landmark
or route-based navigation (Hartley et al., 2003; Iaria et al., 2003;
Doeller et al., 2008; Marchette et al., 2011). Such work has been
critical for establishing functional links between the human
hippocampus and ‘‘map-like’’ representations of environments
that could be supported by place cells observed in rodents
and recently humans (O’Keefe and Nadel, 1978; Thompson
and Best, 1989; O’Keefe et al., 1998; Eichenbaum et al., 1999;
Eichenbaum, 2000; Ekstrom et al., 2003). However, retrieval
of navigational routes can be framed as retrieval of sequential,
spatio-temporal events that may draw upon episodic memory
mechanisms (particularly when overlap between routes increases
contextual-dependency of behavior).

Indeed, the rodent literature demonstrates that place cells
fire in sequences and along routes, potentially helping link
specific sequences of turns and landmarks to eventual rewards
and goals (Johnson and Redish, 2007; Wikenheiser and Redish,
2015). Therefore, particularly in cases when stimulus-response
associations may be inadequate for overcoming multiple possible
actions for a location, hippocampal-dependent memory for
sequences can enable accurate goal-directed behavior. Paralleling
data from neural recordings in rodents (Wikenheiser and Redish,
2015), we have recently demonstrated evidence in humans for the
hippocampus supporting such a retrieval mechanism in a highly
familiar environment (Brown et al., 2016). These data illustrate
the broader point, which we revisit in the next section, that in
some circumstances the medial temporal lobe (MTL) declarative
memory system may cooperate with components of the striatum
to retrieve memories (Scimeca and Badre, 2012) and navigate
decision points along routes (Johnson et al., 2007).

Our Perspective article also focuses on the role of the dorsal
striatum in navigation. As noted above, a classic distinction has
been made between the functioning of the dorsal striatum and
the hippocampus (Packard and McGaugh, 1996; Hartley et al.,
2003; Iaria et al., 2003; Doeller et al., 2008; Marchette et al.,
2011). Importantly, it is well-known that the dorsal striatum
is not a functionally-uniform region. It can be subdivided into
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functional gradients, with more ventral and medial components
being important for the behavioral acquisition and expression
of hippocampal-dependent memories and alternate behaviors in
maze environments (Devan and White, 1999; Ragozzino, 2002;
DeCoteau et al., 2007; Thorn et al., 2010). Indeed, recent research
in both humans and rodents has emphasized that although
one function of the striatum is the formation and execution
of inflexible stimulus-response associations (‘‘habits’’; Yin and
Knowlton, 2006), frontostriatal loops may also enable us to
flexibly update prepotent navigational responses and leverage
mnemonic signals from the hippocampus to drive context-
dependent spatial decision-making and responding (Brown et al.,
2012; Brown and Stern, 2014; Ferbinteanu, 2016; Figure 1).

The distinct hippocampal and dorsal striatal systems may
dynamically interact to enable us to fluidly transition between
more rigid and flexible navigational behaviors, and to translate
declarative memory into guidance of ongoing actions. The
literature suggests these interactions between dorsal striatum
and hippocampal regions may be mediated by PFC and ventral
striatum (VS).

HIPPOCAMPAL MECHANISMS FOR
SPATIAL MAPPING AND ROUTE
LEARNING

As noted above, much imaging research has focused on the
role of the hippocampus in retrieving ‘‘map-like’’ declarative
knowledge of spatial environments. Such hippocampal-
dependent knowledge is putatively built upon underlying
spatial mapping mechanisms in the MTL (place and grid cells,
Buzsáki and Moser, 2013) and the broader network supporting
allocentric reference frames in navigation (Ekstrom et al., 2014).
In some conceptual frameworks, hippocampal function has been
explicitly linked with path integration (Wolbers et al., 2007;
Sherrill et al., 2013; Chrastil et al., 2015). By contrast, egocentric
landmark or route-oriented navigation has been attributed
to striatal-dependent motor associations for environmental
cues (Hartley et al., 2003; Iaria et al., 2003; Doeller et al., 2008;
Marchette et al., 2011).

In a recent critical review of the literature, Ekstrom
et al. (2014) argued that the study of the cognitive basis of
allocentric memory has been complicated by the fact that
many imaging studies may involve a blending of allocentric
and egocentric representations in some form. Consequently,
they argue that attributing signals to one reference frame or
the other may be challenging (for broader discussion, see also
Wolbers and Wiener, 2014). Indeed, the same hippocampal
cell can encode place information when an animal engages
in place-based strategies, and sequential state information
during route-based navigation (Cabral et al., 2014). Ekstrom
et al. (2014) argue that allocentric memory need not emerge
from a singular type of representation in one region (such
as the hippocampus), but could arise from a convergence
of partially-overlapping computations in a broad network
of areas that have been attributed to either allocentric and
egocentric reference frames in various experiments. Here,

we emphasize complementary evidence linking hippocampal
function to route-based navigation. The rodent hippocampus
has been explicitly linked to egocentric route navigation by
demonstrating that mice lacking CA1 NMDA receptors were
impaired in acquisition of both egocentric and allocentric
memory for navigation (Rondi-Reig et al., 2006). This group has
recently extended this to humans, with evidence the hippocampal
association with route-based navigation may be left lateralized
(Iglói et al., 2010).

One bridge between allocentric and egocentric navigational
memory is to consider hippocampal representations of location
as a mechanism underlying the ability to associate stimuli and
experiences across space and time (Eichenbaum and Cohen,
2014). In the real-world, episodicmemories encompass the ‘‘who,
what, when and where’’ of an experience and, thus, require
the ability to embed non-spatial information (e.g., faces and
objects) in memory for environments (e.g., Burgess et al., 2001;
reviewed in Burgess et al., 2002; Bird and Burgess, 2008). The
early discovery of ‘‘place cells’’ in the hippocampus (O’Keefe and
Dostrovsky, 1971; O’Keefe, 1976) lent critical neurobiological
support to the concept of a ‘‘cognitive map’’ (Tolman, 1948;
O’Keefe and Nadel, 1978). Since then this spatial mapping
framework has been extended by evidence that place cell activity
during route navigation exhibits hallmarks of episodic memory:
the ability to fire in sequences, and in a context-dependent
manner (Wood et al., 2000; Ferbinteanu and Shapiro, 2003; Lee
et al., 2006; Smith and Mizumori, 2006; Johnson and Redish,
2007; Wikenheiser and Redish, 2015; Ólafsdóttir et al., 2015).
Although relatively sparse, complementary work in humans
has shown that hippocampal gray matter volume and function
similarly support context-dependent route navigation (Brown
et al., 2010, 2012, 2014; Brown and Stern, 2014; Chanales et al.,
2017). The role of the human hippocampus in route-based
navigation (Iglói et al., 2010) includes specific computations
relevant to goal-directed decision-making, such as encoding path
length of routes to goals (Howard et al., 2014).

Indeed, it is important to note that access to a spatial
representation does not necessarily lead to a map-based
strategy, as in the case of place-recognition triggered response
strategies (Trullier et al., 1997). It is also important to consider
how sequential firing for navigational routes could facilitate
mechanisms of memory formation, retrieval, and even planning.
Sequential firing potentially helps link specific turns and
landmarks to memories for specific events and to eventual
rewards and goals, and continued experience with routes
may ultimately give rise to more ‘‘semanticized’’ map-level
representations (Buzsáki, 2005; Buzsáki and Moser, 2013).
During rest periods, sequential place cell firing could reflect
the hippocampus ‘‘practicing’’ encoded route memories in
service of consolidation—enabling long-term spatial memory
(Wilson and McNaughton, 1994; McKenzie and Eichenbaum,
2011). Indeed, replay following new spatial learning predicts
subsequent memory performance (Dupret et al., 2010) and
post-encoding disruption of hippocampal sharp-wave ripples
impairs subsequent spatial memory (Girardeau et al., 2009).
Likewise, triggering place cell activity during sleep influences
waking spatial behavior (De Lavilléon et al., 2015).
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Similarly, sequential place expression may give rise to
mnemonic signals important for planning routes (Ólafsdóttir
et al., 2018). Specifically, place coding associated with
cognitive mapping can also contribute to order sequencing
of goal-oriented spatio-behavioral events (Howard et al., 2014).
This includes prospective replay of navigational routes in both
rodents and humans (Johnson and Redish, 2007; Foster and
Knierim, 2012; Wikenheiser and Redish, 2015; Brown et al.,
2016), as well as coding of goal and path distances (Sherrill
et al., 2013; Howard et al., 2014; Spiers et al., 2017). Such
evidence from rodent and human spatial navigation literature is
suggestive of mechanistic links between hippocampal memory
and prospective planning and motor selection processes.

These scenarios present interesting opportunities for future
research. For example, overlapping routes present situations
in which the brain may dynamically shift between stimulus-
response and hippocampal-dependent associations as the
navigator traverses more and less automated decision points.
This shift may be associated with engagement of prefrontal
cognitive control and evaluation processes (Brown et al., 2012).
How these dynamics are mediated, and how the brain detects
a need for high control in some states vs. an opportunity
to release cognitive resources in others (e.g., when behavior
can return to a more habitual state), is an area ripe for
additional research (we return to this idea in the next section).
There is also a need for research testing models of how route
navigation can be solved by either: (a) an initial retrieval of the
sequence that is maintained in working memory until critical
decision points (Zilli and Hasselmo, 2008a); or (b) retrieval of
necessary information for critical decisions that are cued at the
decision points themselves (Zilli and Hasselmo, 2008b). What
network dynamics determine when and how route-oriented
navigation is guided by prospective or retrospective hippocampal
processes?

One takeaway from the above literature is that a distinction
between hippocampal and striatal function in navigation may
be better framed according to the computational process, rather
than the type of information (e.g., place-oriented). In particular
some researchers have advocated characterizing navigation
within a reinforcement learning perspective of behavior (for
review and recent fMRI work, see Khamassi and Humphries,
2012; Simon and Daw, 2011), with the contributions of the
hippocampus and different striatal subdivisions attributed to
model-based or model-free mechanisms. As framed by this
line of work, the hippocampus (and components of the
striatum discussed further in the ‘‘Striatal Subdivisions and
the Translation of Memory Into Behavior’’ section) may
contribute to goal-directed, model-based behavior. Independent
of perspective (allocentric or egocentric) or information type
(explicitly spatial or not), this circuitry is theorized to enable
construction and updating of a world/task model.

One important point is that despite its central role in spatial
navigation, the hippocampus is not anatomically positioned
to directly control motor behavior. However, hippocampal
regions have direct connections with PFC and frontostriatal
loops (by proxy) (Alexander et al., 1986; Cavada et al., 2000;
Middleton and Strick, 2002; Haber et al., 2006; Roberts et al.,

2007; Figure 1). Moreover, the hippocampus sends direct
projections to the VS (Thierry et al., 2000), which can provide
an explicit link between hippocampal memory output and
striatal reward signals that strongly influence goal-directed
behavior (Khamassi and Humphries, 2012). These hippocampal-
prefrontal-striatal connections could enable flexible decision-
making and behavioral updating (Brown et al., 2012, 2016; Brown
and Stern, 2014; Ferbinteanu, 2016) based on the goal-directed
output from the hippocampus during planning and navigation.
Models of navigation have proposed that spatially-diffuse firing
of place cells in the subiculum of the hippocampus may
support coding of goals (Burgess and O’Keefe, 1996). Such
signals could reflect interactions with PFC and reward circuitry.
Babayan et al. (2017) showed that the hippocampus, VS and
dorsomedial striatum (DMS) operate as a network in service
of route navigation. In their study, the hippocampus served
as network node involved in learning a sequential egocentric
strategy, and as a network hub when sustaining sequence-
based navigation. Therefore, although hippocampal and striatal
forms of memory may differ in fundamental ways (White and
McDonald, 2002; Graybiel and Grafton, 2015), our ability to
engage in model-based navigation in real-world settings may
draw on subdivisions of both regions.More generally, integration
of MTL and frontostriatal computations may be important for
memory and memory-guided behavior in many scenarios as a
function of their combined relevance to current task demands
(Moses et al., 2010; Ben-Yakov and Dudai, 2011; Ross et al.,
2011; Sadeh et al., 2011). Below, we further outline the potential
complementary roles of dorsal striatal in real-life navigational
contexts.

STRIATAL SUBDIVISIONS AND THE
TRANSLATION OF MEMORY INTO
BEHAVIOR

The striatum is a large, heterogeneous region of the brain that
can broadly be divided into ventral, dorsomedial and dorsolateral
subregions, although this organization may be best viewed as
a gradient of anatomical connections with different prefrontal
divisions and with a different functional emphasis within regions
(Haber and Knutson, 2010). The striatum is a principal interface
in themotor/reward/addiction circuit that receives glutamatergic
inputs from the amygdala, thalamus, hippocampus and cortex;
and dopaminergic inputs from the ventral tegmental area (VTA)
and the substantia nigra (SN; Haber and Knutson, 2010; Yager
et al., 2015). Although the striatum is a component of the
‘‘reward’’ circuit, it also interacts with memory, emotion, and
cognitive planning areas of the MTL and PFC to contribute
flexibility to responses and decisionmaking (Haber andKnutson,
2010; Brown et al., 2012; Scimeca and Badre, 2012; Yager et al.,
2015; Ferbinteanu, 2016).

In spatial navigation research, a classic dichotomy between
hippocampal-dependent and dorsal striatal-dependent
memory emerged with Packard and McGaugh’s (1996)
demonstration that hippocampal function supported a
‘‘navigate-to-place’’ strategy, as opposed to a dorsal striatum-
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dependent response-learning strategy. In this classic experiment,
inactivation of the hippocampus resulted in a blockade of place
learning, whereas inactivation of the caudate (a component of
the dorsal striatum) resulted in a blockade of response learning.
As discussed above, this classic dissociation has found extensive
parallels in human navigation research (Hartley et al., 2003; Iaria
et al., 2003; Doeller et al., 2008; Marchette et al., 2011). Indeed,
gray matter volume in the hippocampus and caudate nucleus
differentially correlate with the predisposition of a person to
rely on spatial knowledge or response-based strategies to solve
navigational problems (Bohbot et al., 2007; Konishi and Bohbot,
2013).

Early work in rodents (Devan and White, 1999) also
prompted attention to functional subdivisions of the striatum.
Devan and White’s (1999) findings indicated that DMS, in
contrast to dorsolateral striatum (DLS), might be important
for promoting flexible, hippocampally-dependent navigation
behavior. They demonstrated that lesions to medial caudate-
putamen resulted in a preference for cue-guided responses,
whereas lesions to the lateral caudate-putamen resulted in a
preference for spatial responses. This finding contributed to the
emergent idea that through parallel pathways, which can interact
via the hippocampal-prefrontal-striatal connectivity described
above (Figure 1), mnemonic signals and decision-making
processes could regulate action selection and ‘‘downstream’’
processing in DLS and motor cortex (Brown et al., 2012).

Adopting a reinforcement-learning perspective of model-
based and model-free navigation may be advantageous over
attributing striatal function to response vs. place strategies
(Simon and Daw, 2011; Khamassi and Humphries, 2012).
Specifically, in conjunction with the hippocampus, the DMSmay
support behavior based on an inner representation of world
or task space and model-based processing, whereas model-free
response learning can underlie ‘‘habits’’ and may be attributable
to the DLS (Daw et al., 2005; Khamassi and Humphries, 2012).
The tightly reward-related VS may play a key role in the
model building process for model-based action. Model-based
control is predictive, based on action-outcome contingencies that
can quickly incorporate changes in goal-relevant information
(reward) throughout a world model. This gives rise to a system
that can support goal-directed changes in behavior and contrasts
with model-free responses emerging from gradually-learned
independent action-state representations (Simon and Daw,
2011; Khamassi and Humphries, 2012). taxonomy of striatal
subdivision mechanisms offers a view of how this system enables
transitions from flexible to relatively automated navigational
behavior, without attributing a specific information type to
simple state-response information (model-free) or predictive
action-outcome based processing (model-based).

One aspect of our view is that the dorsal striatum functions
as a prepotent motor response regulating structure. That is,
the striatum collectively enables habitual motor control, but
increasingly medial and ventral components interface with
dorsolateral, medial and ventral/orbital PFC to help govern
flexible suppression, selection and updating of responses (Yin
and Knowlton, 2004, 2006; Haber et al., 2006; Haber and
Knutson, 2010). Through a pattern of partially-overlapping

reciprocal connections (Figure 1), reward and goal-oriented
processing in PFC and its associated VS and DMS subdivisions
can exert control over behavior that could otherwise be
governed by response associations. Having a ‘‘habit’’ system
is very adaptive, and its utility can be exemplified by
navigational scenarios in which responses based on stimulus-
response associations can free up cognition for, e.g., holding
conversations, monitoring for threats (Schwabe and Wolf,
2013), or planning how to achieve unrelated goals. However,
the functional continuum in the dorsal striatum, grounded
in differential connectivity with prefrontal subdivisions (Yin
and Knowlton, 2006; Haber and Knutson, 2010) gives rise to
an elegant system that can also re-engage with such ongoing
behavior to exert cognitive control over, or update, our motor
response program when it’s adaptive to do so. Studies targeting
how this system can learn and implement stimulus-control state
associations in spatial environments will be of substantial impact
for theories of when and how navigational behaviors are executed
in more or less automated manners. It has been proposed that
this depends on function of the caudate and its interactions with
the hippocampus in humans (Jiang et al., 2015; Chiu et al., 2017).

Although surprisingly under-studied in human navigation,
the view that the caudate is involved in flexible behavior is not
novel. Research has long associated striatal function with set-
shifting, cognitive flexibility, and rule learning (Alexander et al.,
1986; Middleton and Strick, 2000; Seger and Cincotta, 2005;
Graham et al., 2009; Vaghi et al., 2017). One extension of the
human navigation literature addressing this point (e.g., Brown
et al., 2012) is evidence that indirect connectivity between the
hippocampus and caudate may enable these distinct memory
systems to compensate for one another and preserve navigation
ability when one system starts to fail. This has been observed
with hippocampal compensation for route-based navigation in
patients with Huntington’s Disease (Voermans et al., 2004).

In keeping with Khamassi andHumphries’s (2012) theoretical
perspective, the DMS contributes to non-habitual route-based
navigation in part through interactions with hippocampus.
The DMS supports the ability of rodents to learn and
execute alternative behaviors in environments (Ragozzino, 2002;
DeCoteau et al., 2007; Ragozzino et al., 2009; Baker and
Ragozzino, 2014). Specifically, the DMS is a key network node
alongside the VS and hippocampus for egocentric route-based
navigation (Babayan et al., 2017), and DeCoteau et al. (2007)
demonstrated that hippocampal and DMS theta oscillations are
tightly coupled during critical choice periods in T-mazes. Such
functional connectivity data indicate that these two systems
actively interact in service of goal-directed route navigation. This
work has been mirrored in recent fMRI research in humans
(Brown et al., 2010, 2012), and has revealed parallel, dynamic
changes in the hippocampus and DMS that track learning,
suggesting both structures contribute to the ability of humans to
learn new alternative, memory-dependent responses (Brown and
Stern, 2014). Looking forward, an especially open area for future
imaging research is testing whether different learning dynamics
which have been observed in rodent dorsal striatal subdivisions
(Thorn et al., 2010) underlie development of model-based and
model-free navigational behavior in humans. An important
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recent discovery suggests that even a distinction between DMS
and DLS for comparatively flexible and inflexible navigation
may be insufficient (Ferbinteanu, 2016). They found that the
contributions of dorsal striatal subdivisions to memory-guided
behavior are also influenced by training history. DMS was
found to support both response-based and spatial (hippocampal-
dependent) navigational strategies, consistent with a role for this
region in translating mnemonic content into ongoing behavior.
However, they also found that the DLS and hippocampus could
support their respective alternative place- and response-based
navigational strategies if the animal was concurrently trained to
solve the task based on both types of cues. This work suggests
that the entirety of the dorsal striatum can contribute, in some
circumstances (see also Miyoshi et al., 2012), to navigational
behaviors which also draw upon spatial mapping mechanisms.

FUTURE DIRECTIONS

The data reviewed above suggest that a particularly fruitful
direction for navigation research is systematic examination
of: (1) the contributions of different striatal subdivisions
in navigation under different learning conditions; and
(2) how interactions between these subregions with spatial
and non-spatial contextual information from the hippocampus
(putatively mediated via the PFC and VS) drives flexible
decision-making behavior. Prior work juxtaposing reward,
action, and route representations in VS, dorsal striatum and
hippocampus (van der Meer et al., 2010) sets the stage for
examining differences within dorsal striatal subregions in a
similar manner.

Another critical direction for future work converges with
active research into the hierarchical organization of the PFC
(Desrochers and Badre, 2012). Given evidence that dorsal
striatal function may be organized according to its reciprocal
connections with prefrontal subdivisions (Haber et al., 2006;

Haber and Knutson, 2010), future work should target striatal
contributions to navigation through the lens of associated
prefrontal functional subdivisions, with attention to how these
hierarchies may enable us to juggle ‘‘habitual’’ impulses to
landmark cues with contextual guidance from the declarative
memory system. Studies targeting how networks incorporating
the hippocampus and subdivisions along the ventromedial-
dorsolateral extent of the striatum learn, detect and implement
shifts from more model-based to model-free action dynamically
as control demands change (Jiang et al., 2015; Chiu et al.,
2017) will be of substantial impact. Future imaging research
could also more explicitly focus on how ‘‘value’’ is assigned to
locations, particularly from a reinforcement learning perspective
(Simon and Daw, 2011; Khamassi and Humphries, 2012). Such
work could advance our understanding behavioral flexibility in
navigation, and potentially inform interventions that leverage
incentives to improve learning in rehabilitation settings.
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