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Age-related decline in spatial navigation is well-known and the extant literature
emphasizes the important contributions of a hippocampus-dependent spatial navigation
system in mediating this decline. However, navigation is a multifaceted cognitive
domain and some aspects of age-related navigational decline may be mediated
by extrahippocampal brain regions and/or systems. The current review presents an
overview of some key cognitive domains that contribute to the age-related changes
in spatial navigation ability, and elucidates such domains in the context of an increased
engagement of navigationally relevant extrahippocampal brain regions with advancing
age. Specifically, this review focuses on age-related declines in three main areas: (i)
allocentric strategy use and switching between egocentric and allocentric strategies, (ii)
associative learning of landmarks/locations and heading directions, and (iii) executive
functioning and attention. Thus far, there is accumulating neuroimaging evidence
supporting the functional relevance of the striatum for egocentric/response strategy
use in older adults, and of the prefrontal cortex for mediating executive functions
that contribute to successful navigational performance. Notably, the functional role of
the prefrontal cortex was particularly emphasized via the proposed relevance of the
fronto-locus coeruleus noradrenergic system for strategy switching and of the fronto-
hippocampal circuit for landmark-direction associative learning. In view of these putative
prefrontal contributions to navigation-related functions, we recommend future spatial
navigation studies to adopt a systems-oriented approach that investigates age-related
alterations in the interaction between the prefrontal cortex, the hippocampus, and
extrahippocampal regions, as well as an individual differences approach that clarifies
the differential engagement of prefrontal executive processes among older adults.

Keywords: spatial navigation, cognitive aging, associative learning and memory, executive functioning, prefrontal
cortex

INTRODUCTION

Spatial navigation ability is crucial for everyday living, allowing us to be cognizant of
our position and orientation in our environment, as well as helping us to maintain a
sense of direction when navigating to and from various locations (Wolbers and Hegarty,
2010; Chersi and Burgess, 2015). Even though spatial navigation seems effortless at the
behavioral level, it is a multimodal activity that draws upon a multitude of cognitive
and neural resources (Moffat, 2009, 2016; Wolbers and Hegarty, 2010; Wolbers, 2015;
Zhong and Kozhevnikov, 2016; Lester et al., 2017). Numerous behavioral studies of spatial
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navigation in the cognitive aging literature have identified
age-related declines or deficits in navigation strategies (Moffat
and Resnick, 2002; Bohbot et al., 2012; Harris et al., 2012; Wiener
et al., 2013; Harris and Wolbers, 2014; Colombo et al., 2017;
Zhong et al., 2017), associative learning/memory (Head and Isom,
2010; Liu et al., 2011; Wiener et al., 2012, 2013; Zhong and
Moffat, 2016; Allison and Head, 2017; O’Malley et al., 2018), and
working memory (Mahmood et al., 2009; Taillade et al., 2013a,b,
2016; Ariel and Moffat, 2018). Complementary neuroimaging
studies that investigated age-related declines in spatial navigation
performance andmemory have largely linked them to age-related
reduction in the volume or activation of the hippocampus (e.g.,
Driscoll et al., 2003, 2005; Astur et al., 2006; Moffat et al.,
2006, 2007; Antonova et al., 2009; Yuan et al., 2014; Daugherty
et al., 2015, 2016), a region that has long been proposed as the
neural basis of a ‘‘cognitive map’’ (O’Keefe and Dostrovsky, 1971;
O’Keefe and Nadel, 1978).

Notwithstanding the pertinence of the hippocampus for
spatial navigation, the complexities of navigation-related
cognition and behavior cannot be traced to one region alone,
and the functional relevance of extrahippocampal brain regions
should not be minimized (Doeller et al., 2008; Chersi and
Burgess, 2015). Navigationally relevant extrahippocampal
regions encompass the striatum, the prefrontal cortex, the
parietal cortex and the retrosplenial cortex (RSC; see Moffat
et al., 2006, 2007; Moffat, 2009, 2016; Wolbers and Hegarty,
2010; Wolbers, 2015; Lester et al., 2017). Moreover, navigation
depends on the contributions of cognitive domains/brain
systems that are not specifically navigation-related (e.g., working
memory, attention, motor control, etc.) and age differences
in these cognitive domains may contribute to and manifest as
deficits in navigation tasks. With advancing age, spatial learning
and navigational performance start to become more dependent
on extrahippocampal regions instead of the hippocampus
per se (Moffat et al., 2006, 2007; Lester et al., 2017). With a
focus on extrahippocampal regions and processes, the current
review presents an overview of some key cognitive domains
of spatial navigation that are adversely affected by normal
aging and relates them to changes in the functional integrity of
both hippocampal and extrahippocampal regions. To facilitate
organization, we surveyed the literature on aging and navigation
strategies and associative learning before turning to a discussion
of other processes that are generally executive in nature and
largely dependent on the prefrontal cortex. We acknowledge
the inherently complex nature of spatial navigation and do
not intend to suggest that these cognitive processes and the
sections herein are mutually exclusive. Table 1 shows a summary
of the main cognitive aging studies covered by this review
and the cognitive domains and brain systems investigated or
discussed.

NAVIGATION STRATEGIES AND
STRATEGY SWITCHING

A major theme in the discussion of spatial navigation pertains
to navigation strategies, which commonly take the form of

mental imagery techniques that require the primary engagement
of an egocentric (i.e., first-person) or allocentric (i.e., third-
person) frame of reference (see, e.g., Zhong and Kozhevnikov,
2016; He and McNamara, 2018; McCunn and Gifford, 2018; see
also Colombo et al., 2017; for a review). While an egocentric
navigation strategy requires the moving agent to visualize scenes
and gauge self-to-object relationships from a body-centered
viewpoint, an allocentric navigation strategy requires the agent
to visualize scenes and map out object-to-object relationships
from a disembodied or environment-centered viewpoint (Zhong
and Kozhevnikov, 2016; Colombo et al., 2017; see also Klatzky,
1998). Previous neuroimaging work by Iaria and colleagues
(based on samples of young adults) showed double dissociation
between allocentric and egocentric/response strategies, with
activation in the hippocampus corresponding with the former
(Iaria et al., 2003, 2007), and activation in the caudate
nucleus/striatum corresponding with the latter (Iaria et al.,
2003). An alternative egocentric spatial strategy, requiring the
tracking and spatial updating of movements away from a point
of origin during path integration (Loomis et al., 1999; Mahmood
et al., 2009; Wiener et al., 2011; Zhong and Kozhevnikov,
2016), depends on the stability of grid cell firing patterns in
the entorhinal cortex of both humans (Stangl et al., 2018) and
mice (Gil et al., 2018). Following the thematic emphasis on
extrahippocampal functions, this review shall not discuss age
differences in path integration that are contingent on entorhinal
or hippocampal functions (see Mahmood et al., 2009; Wiener
et al., 2011; Harris and Wolbers, 2012; Stangl et al., 2018), but
on age differences in non-spatial egocentric/response strategy
use.

In the cognitive aging literature, the proportion of older adults
preferring an egocentric/response strategy for wayfinding has
been shown to be higher than the proportion of younger adults
preferring the same strategy (Bohbot et al., 2012; Rodgers et al.,
2012; Wiener et al., 2013). For instance, in a virtual Y-maze that
can be solved by either an egocentric/response (i.e., traversing
the same route learned during training irrespective of the
absolute location of the goal) or allocentric (i.e., judging
the absolute location of the goal area relative to the origin
regardless of the learned route) strategy, Rodgers et al.
(2012) found that the great majority of older adults (83%)
preferred the egocentric/response strategy whereas younger
adults’ preferences were relatively evenly divided between
egocentric (46%) and allocentric (54%) strategies. Similar, but
less striking statistics were also reported by Bohbot et al. (2012)
in a study involving a virtual radial-arm maze task. In this
task, egocentric/response strategy use involved counting the
number of arms from the origin to find the goal objects at
the end of different radial arms, whereas allocentric strategy
use involved the use of surrounding cues to judge the
locations of the goal objects. Post-test surveys showed that most
older adults (60.7%) reported preferring an egocentric/response
strategy while younger adults’ preferences were more evenly
divided between egocentric (53.7%) and allocentric (46.3%)
strategies.

Older adults’ lower preference for the allocentric strategy
can be traced to fMRI studies comparing both young and
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TABLE 1 | Main cognitive aging studies that investigated and/or discussed extrahippocampal cognitive domains in spatial navigation.

Extrahippocampal Study Brain region/system Regional activation: Regional activation:
cognitive domain involved or implicated Old > Young Young > Old

Egocentric/response-based Antonova et al. (2009) Striatum/caudate nucleus X (see Konishi et al., 2013;
navigation strategy use Bohbot et al. (2012) Hippocampal-striatal circuitry Schuck et al., 2015)

Harris et al. (2012)
Harris and Wolbers (2014)
Iaria et al. (2003)
Konishi et al. (2013)
Konishi and Bohbot (2013)
Rodgers et al. (2012)
Schuck et al. (2015)
Wiener et al. (2012, 2013)
Zhong et al. (2017)

Switching between allocentric and Harris et al. (2012) Locus coeruleus N.A. N.A.
egocentric/response strategies Harris and Wolbers (2014) Fronto-locus coeruleus

noradrenergic system
Fronto-hippocampal circuitry

Moffat et al. (2006) Retrosplenial cortex X (in BA 29, see
(BA 29/30) Moffat et al., 2006)

Associative learning/memory Allison and Head (2017) Dorsolateral striatum N.A. N.A.
Head and Isom (2010) Fronto-hippocampal circuitry
Liu et al. (2011)
O’Malley et al. (2018)
Wiener et al. (2012, 2013)
Zhong and Moffat (2016)

Executive functioning and attention Ariel and Moffat (2018) Medial prefrontal cortex X (in BA 10,
Dowiasch et al. (2015) (BA 9/10) see Moffat et al., 2006)
Driscoll et al. (2005)
Hartmeyer et al. (2017)
Merriman et al. (2018)
Moffat and Resnick (2002)
Moffat et al. (2006, 2007)
Szturm et al. (2017)
Taillade et al. (2013a,b, 2016)

Note. The listed studies involved both young and older human participants. Studies showing comparatively higher activation in a specific brain region in one age group
over the other are indicated by relevant check marks. “N.A.” denotes “not applicable” for the studies of strategy switching and associative learning without published
neuroimaging findings.

older subjects in navigating virtual environments; these studies
generally showed that older adults have either reduced
(Meulenbroek et al., 2004; Moffat et al., 2006; Konishi et al., 2013)
or absent activation (Antonova et al., 2009) in the hippocampal
formation. Lower allocentric strategy use among the older adults
could also be attributed to smaller hippocampal volumes in
older than younger adults, which in turn may undermine older
adults’ accuracy in spatial learning and navigational performance
(Driscoll et al., 2003; Moffat et al., 2007; Konishi and Bohbot,
2013; Yuan et al., 2014; Daugherty et al., 2015). By contrast,
when searching for previously encoded goal locations in virtual
environments, increased activation in the striatum (mainly the
caudate nucleus) was found among older egocentric/response
strategy users (Konishi et al., 2013), and when older adults were
focused on processing local landmark information as compared
to processing allocentric boundary information (Schuck et al.,
2015). This elevated striatal activity reflected a change in
information processing in the hippocampal-striatal circuitry
with advancing age—with spatial learning and performance
in older adults being more associated with the striatum, as
well as with the prefrontal cortex (Moffat et al., 2006, 2007),
than with the hippocampus (Moffat et al., 2007; Konishi et al.,

2013; Schuck et al., 2015). Consequently, increased engagement
of the striatum, complemented by decreased engagement of
the hippocampus, may offer a credible source of support
for explaining older adults’ ‘‘egocentric bias’’ in strategy
use.

Another approach to understanding why older adults find
it easier to implement egocentric/response strategies was
performed by Harris and colleagues (Harris et al., 2012; Harris
and Wolbers, 2014). In their studies, the researchers applied
a virtual plus maze that allowed flexibility in configuring
goal locations and the paths of travel. Egocentric/response
strategy use involved making repetitive turning responses
regardless of the whereabouts of the goal, whereas allocentric
strategy use involved judging the absolute location of the
goal regardless of the turning responses. Older adults attained
comparable performance as the young when implementing the
egocentric/response strategy but became less accurate when
implementing the allocentric strategy (Harris et al., 2012).
Crucially, the decline in search accuracy, as well as in the number
of trials learning and implementing a specific strategy, were
most prominent after the older adults were instructed to switch
to allocentric strategy use from previous egocentric/response
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strategy use (Harris et al., 2012). This egocentric-to-allocentric
strategy switching deficit further applied to finding shortcuts
when navigating a larger virtual town (Harris et al., 2014). Unlike
the young adults who overwhelmingly reported the consistent
use of shortcuts or switching to shortcuts at some time during
testing, none of the older adults did so. Instead, three-quarters of
the older adults reported using shortcuts inconsistently and the
remaining quarter reported the consistent use of an egocentric
route strategy. A re-administration of the virtual plus maze
with a smaller number of trials showed that older adults’
search accuracy declined significantly (relative to younger adults)
when they were attempting allocentric-to-egocentric strategy
switches, suggesting an impairment in making allocentric-to-
egocentric spatial transformations could also apply to older
adults.

These observed deficits in strategy switching were suggested
to represent an age-related degradation of the axonal circuitry
in the prefrontal cortex (Pfefferbaum et al., 2005; as cited in
Harris and Wolbers, 2014), and/or an age-related dysregulation
of noradrenaline production and function along the anatomical
pathways linking the locus coeruleus to the prefrontal cortex
(Harris et al., 2012; Harris and Wolbers, 2014). Moreover, it
was speculated that an age-related reduction of the functional
connectivity between the prefrontal-noradrenergic network and
the hippocampus may specifically account for the egocentric-
to-allocentric strategy switching deficit (Harris et al., 2012;
Harris and Wolbers, 2014). As for the allocentric-to-egocentric
strategy switching deficit, the researchers did not associate
it with the potential degradation in prefrontal-hippocampal
connectivity but instead associated it with dysfunction within
the noradrenergic system linking the prefrontal cortex and
the locus coeruleus (Harris and Wolbers, 2014). The locus
coeruleus is strongly implicated in strategy switching in view of
its tonic and phasic outputs of noradrenaline to the prefrontal
cortex (Aston-Jones and Cohen, 2005). Specifically, it has
been proposed that tonic locus coeruleus-noradrenergic activity
facilitates disengagement from a current behavior and the
selection of alternative behavior (Aston-Jones and Cohen, 2005),
whereas phasic locus coeruleus-noradrenergic activity promotes
the adoption of behavioral alternative(s) and the organization
of functional neural networks for tackling specific tasks (Aston-
Jones and Cohen, 2005; Bouret and Sara, 2008).

Worthy of extra consideration was that older adults’
difficulties with bidirectional switching between egocentric and
allocentric strategies might be attributed to lower activation in
the RSC (i.e., when encoding spatial information regarding the
relative locations of landmarks, see Moffat et al., 2006, Table 1).
This relates well to proposals of the RSC as being involved
in translating between egocentric and allocentric reference
frames (Maguire, 2001; Byrne et al., 2007; Vann et al., 2009;
Mitchell et al., 2018), and in mediating between different
spatial representations and modes of processing (Mitchell et al.,
2018). Recent studies supported these proposals by showing that
the RSC is crucial for: (a) judging egocentric views of target
objects from rotated viewpoints that require the retrieval of
allocentric spatial information (Sulpizio et al., 2016), and (b) the
implementation of allocentric reference frames for integrating

egocentric heading directions across separate locales (Shine et al.,
2016).

Furthermore, using multi-voxel pattern analysis (MVPA),
Marchette et al. (2014) showed that RSC activity patterns
were similar when participants faced similar directions or
imagined similar locations across four virtual museums that
are geometrically similar but separated perpendicular to
each other in global space. Reaction times were also faster
for homologous/matching directions and locations than for
non-matching directions and locations both within and across
museums. Interestingly, these findings offer an alternative
view of the RSC as being involved in anchoring internal
spatial representations to local topographical features. However,
Marchette et al. (2014) did not assess the extent to which their
participants integrated local spatial representations into a global
schematic map of the environment, and thus there remains the
possibility (as pointed out by the authors) that the so-called
‘‘local’’ spatial representations of some participants could be
environment-centered in nature, encompassing the spatial
relationships between all landmarks imaginable. Interestingly,
Mitchell et al. (2018) did not regard these findings as refuting the
proposed role of the RSC in mediating between spatial reference
frames and suggested that there may be RSC cells that are
separately responsible for local/egocentric and global/allocentric
orientation.

ASSOCIATIVE LEARNING

In addition to the challenges faced by older adults in
implementing allocentric navigation strategies and switching
between strategies, they also experience difficulties with the
association of the correct heading directions (to goal) with
landmarks or locations at which directional changes are
required (Head and Isom, 2010; Liu et al., 2011; Wiener
et al., 2012, 2013; Zhong and Moffat, 2016; Allison and Head,
2017; O’Malley et al., 2018). Specifically, older adults have
been found to be less competent than younger adults at
selecting correct headings or turns at intersections (Wiener
et al., 2012, 2013; Zhong and Moffat, 2016), especially when
approaching intersections from directions that are reversals of
the directions encountered during route learning (Wiener et al.,
2012, 2013). Notably, Wiener et al. (2013) showed that older
adults’ difficulties with finding the correct heading direction
when traveling the route in reverse were associated with older
adults’ implementation of an associative cue strategy (i.e., ‘‘Turn
left/right at’’), and proposed that this strategy engaged the
dorsolateral striatum.

Also noteworthy are the findings by Zhong and Moffat
(2016), which showed that older adults exhibited a landmark-
direction associative memory deficit at intersections, inasmuch
that older adults performed poorer than younger adults at
associating correct/goal-directed heading directions with varying
views of landmarks at intersections but did not perform poorer
than younger adults when tested on the recognition memory
of landmarks alone. The authors speculated that this selective
deficit in ‘‘binding’’ landmark and directional information was
related to senescent changes in the fronto-hippocampal circuitry
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(Li et al., 2001, 2005), as characterized by degraded functional
connectivity between the prefrontal cortex and the hippocampus
in older adults (Grady et al., 2003). Interestingly, this proposed
involvement of the fronto-hippocampal circuitry in forming
landmark-direction associations parallels the relevance of the
same system in making successful egocentric-to-allocentric
strategy switches (Harris et al., 2012; Harris and Wolbers,
2014).

EXECUTIVE FUNCTIONING AND
ATTENTION

The proposed involvement of the prefrontal cortex in both
navigation-related associative learning and strategy switching
necessitates a closer look at its relevance for spatial navigation.
When navigating towards a specific goal location, the prefrontal
cortex mediates many goal-directed processes (Spiers, 2008).
Spontaneously thinking about the goal location and the best
route or path to reach it have been shown to be related
to increased activity in the anterior prefrontal cortex (BA
10), the dorsomedial prefrontal cortex (BA 9; in middle-aged
London Taxi drivers, Spiers and Maguire, 2006, 2007), and
the ventrolateral prefrontal cortex (in a college-aged sample,
Carrieri et al., 2018). On the other hand, the ventromedial
prefrontal cortex has been related to maintaining the intention
to reach the goal in working memory and suppressing
irrelevant information [as suggested by Spiers (2008), based
on evidence from a patient with ventromedial prefrontal
damage documented by Ciaramelli (2008)], and exerting
top-down control in mediating between a hippocampus-
dependent boundary processing strategy and a striatum-
dependent landmark-based strategy (in a college-aged sample,
Doeller et al., 2008).

When comparing young and older adults in learning the
spatial layout of a virtual environment from self-directed
navigation, Moffat et al. (2006) showed that older adults
exhibited higher activations in the medial frontal gyrus (BA
10; see Table 1) and the anterior cingulate gyrus than younger
adults, whereas younger adults exhibited higher activations
than older adults in the hippocampal formation and posterior
extrahippocampal areas such as the RSC, parietal cortex
(i.e., inferior parietal lobule, precuneus) and angular gyrus.
The authors suggested that these findings reflected a potential
age-related compensatory shift in spatial memory performance
toward anterior frontal systems away from medial temporal and
posterior brain systems.

Notably, the authors also considered the possibility that
the higher frontal activations of older adults could simply
reflect age group differences in performance, since the older
adults made slower virtual movements and more errors when
recalling landmark locations. This alternative view relates
well to other findings showing that older adults performed
poorer than younger adults even on the first trial of a
virtual Morris water maze (vMWM) when either group
had no prior knowledge of the hidden platform’s location
(Moffat and Resnick, 2002; Driscoll et al., 2005; Moffat et al.,
2007). This suggests that older adults may possess impaired

executive or strategic functions that are mediated by frontal
areas at the outset of a navigational task (Moffat, 2009).
Maintaining a high integrity of prefrontal gray and white
matter in old age may help to attenuate or offset such
executive declines, as greater volumes of lateral prefrontal
gray matter and white matter have been shown to correlate
positively with accurate vMWM search performance in in the
first trial and onwards (Moffat et al., 2007). These findings
corresponded well with additional findings showing robust
negative associations between perseverative errors from the
Wisconsin Card Sorting Test and vMWM search accuracy,
reinforcing the proposed role of the prefrontal cortex in
mediating successful navigational/search performance (Moffat
et al., 2007).

In addition, recent findings by Ariel and Moffat (2018)
showed that older adults attained lower metacognitive
confidence judgments than younger adults in a cognitive
mapping task, and that these confidence judgments mediated
the relationship between age and allocentric strategy use. As the
prefrontal cortex has been widely implicated as the neural basis
of metacognition (see Fleming and Dolan, 2012), these findings
suggest that the differential engagement of prefrontal processes
in metacognition could partially account for robust age-related
differences in allocentric strategy use.

Furthermore, it is important to acknowledge the effects
of motor control on age-related differences in navigational
performance, particularly in virtual environments. When
navigating virtual environments, older adults have been
observed to move more slowly when completing learning
trials than younger adults (e.g., Driscoll et al., 2005; Moffat
et al., 2006; Taillade et al., 2013a). This has been dealt with
by using movement speed or some motion-related variables
as covariates (e.g., Moffat et al., 2001, 2006; Zhong et al.,
2017). While important, this only partially addresses potential
qualitative effects of motor control on older adults’ navigational
performance. This is because older adults’ slower movements
effectively increase the delay or retention intervals across
learning trials, and sets up dual tasking scenarios (e.g., attending
to stimuli on screen and manipulating the control device
simultaneously) for older adults that may not necessarily
apply to younger adults. More specifically, prefrontal executive
resources have been shown to be vital for older adults in
mediating the dual task demands of visual and motor processing
(Taillade et al., 2013a), as well as in supporting gait (Szturm
et al., 2017). Declines in these functions may thus predispose
older adults to slower movements and poorer cognitive
performance in both virtual (Taillade et al., 2013a,b, 2016;
Szturm et al., 2017) and real-world (Taillade et al., 2016)
environments.

Together with these concerns, age-related executive declines
have also been suggested to adversely affect the allocation
of attentional resources (Hartmeyer et al., 2017; Merriman
et al., 2018). Specifically, older adults were slower than younger
adults in responding to auditory probes at intersections when
simultaneously deciding on the correct heading directions
to take, especially when turning movements were required
(Hartmeyer et al., 2017). Older adults were also distracted by
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crowds of moving pedestrians and demonstrated lower accuracy
in finding the correct heading directions at intersections in
the presence of such crowds (Merriman et al., 2018). This
susceptibility to distraction in the presence of other moving
agents may have been brought about by a corresponding
age-related reduction in goal-tracking eye movements or
saccades (Dowiasch et al., 2015).

Overall, it is important to understand the challenges older
adults experience under dual task and attention-demanding
scenarios because such knowledge will invariably inform future
efforts at investigating how such challenges can be managed or
ameliorated.

SUMMARY AND FUTURE DIRECTIONS

Taken together, this survey of spatial navigation studies in the
cognitive aging literature suggests a shift away from hippocampal
engagement toward increased engagement of extrahippocampal
areas, notably the striatum and the prefrontal cortex, with
advancing age.While extant neuroimaging studies have provided
reliable findings showing that an increased engagement of the
striatum, coupled with reduced engagement of the hippocampus,
could account for older adults’ egocentric/response strategy
use (Konishi et al., 2013; Schuck et al., 2015), the findings
concerning age-related deficits in strategy switching (Harris
et al., 2012; Harris and Wolbers, 2014), and landmark-
direction associative learning (Zhong and Moffat, 2016)
were behavioral in nature and speculative. It thus remains
unknown as to whether dysfunctions in the fronto-hippocampal
and the fronto-locus coeruleus circuits (as implicated in
associative learning and strategy switching) would indeed
be related to age-related declines in navigational ability. It
is also possible that dysfunctions in these circuits would
adversely affect navigational ability regardless of age and
they may be essential for successful navigation. Moreover,
we do not yet know whether the association of landmark
and directional information is distinct from the association
of other types of information (e.g., paired word associates,
name-picture pairs, see Cabeza and Dennis, 2012). It thus

remains possible that the brain systems related to the associations
of these different pieces of information may be dissociable.
Further investigations are definitely needed to clarify all these
possibilities.

In addition, considering the importance of the prefrontal
cortex for strategy switching, associative learning and mediating
executive functions, future spatial navigation studies can take
a system-oriented approach that investigate the interaction
between prefrontal cortex, the hippocampus, the striatum,
and/or other navigationally relevant regions (e.g., the RSC
and precuneus; see, e.g., Brown et al., 2012; Sherrill et al.,
2013; Chrastil et al., 2017) in both young and older adults.
Most likely, this endeavor will present a broader picture
of how age-related changes in prefrontal activity mediates
or coordinates corresponding changes in activities in both
hippocampal and extrahippocampal regions during spatial
navigation.

Finally, it may also be important to clarify the significance
of increased prefrontal activity in older adults during spatial
navigation. Specifically, does higher (pre)frontal activation in
older adults represent an adaptive (or maladaptive) compensation
mechanism among older adults? (cf. Grady et al., 1994; Gutchess
et al., 2005). To address this question, further investigations
can adopt an individual differences approach when assessing
older adults, as some recent studies have demonstrated that
older adults with relatively high cognitive functions (O’Malley
et al., 2018) or intact spatial learning ability (Zhong et al., 2017)
can perform as well as younger adults in virtual navigation
tasks. Consequently, the separate analysis of frontal activation
profiles of older adults with differential levels of navigational
performance or strategy preference shall provide greater insight
into how older adults engage navigationally relevant executive
processes.
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