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Frequently experiencing an item in a specific context leads to the prediction that this item will
occur when we encounter the same context in future. However, this prediction sometimes turns
out to be incorrect, and recent behavioral research suggests that such “prediction errors” improve
encoding of new information (Greve et al., 2017). In their recent article “Neural differentiation of
incorrectly predicted memories,” Kim et al. (2017) address the interesting question of how neural
representations of items change when they are incorrectly predicted and subsequently restudied.
The authors conclude such items undergo representational differentiation, i.e., a decreased overlap
in the representations of an item and its context. We suggest the reverse mechanism of integration,
rather than differentiation, is equally compatible with current evidence. In particular, we consider
how Kim et al.’s results fit with recent suggestions about prediction-error driven learning and
transitive inference.

In their fMRI study, Kim et al. (2017) use pattern similarity analysis across voxels to assess
representational change for incorrectly predicted items at four different phases. The items were
visual scenes, randomly split into three types: A, B, and X. A first “pre-study” phase showed a
random sequence of these scenes in order tomeasure their initial neural representations, here called
“pre-A,” “pre-B,” and “pre-X” (Figure 1a). In a subsequent “study” phase, scene A was shown three
times, always followed by scene B, forming AB pairs (Figure 1b). In a third phase, the “critical
study” phase, half of the trials were followed by two cycles of violations (i.e., A was followed by X
rather than B) and restudy (presentation of B), while the other half was followed by restudy only
(no-violation). In a final “post-study” phase, all B items (post-B) were presented again in random
order to measure their representational change.

Based on prior neural network simulations (Norman et al., 2006), the authors predicted post-
B items to be more dissimilar to pre-A items in the violation compared to no-violation condition.
This prediction is based on the assumption repeated study of AB pairs will strongly co-activate their
representations, leading to the prediction of item B when presented with item A (see Figure 1c).
If predictions are violated when A is followed by X instead of B, the co-activation of A and B
is weakened (i.e., “pruned”) and the representation of B is thought to “differentiate” from the
representation of A (Figure 1d, simple differentiation). This process of neural differentiation is
an appealing computational mechanism that has been used to explain other findings (e.g., Hulbert
and Norman, 2015).

Since post-A representations are confounded by learning history (study frequency and context),
Kim et al. assessed “differentiation” by examining the similarity (correlation of patterns across
voxels) between post-B and pre-A trials. The logic is AB pairs remain intact in the no-violation
condition, so that post-B items bring A items to mind (i.e., “reactivate” A), producing a degree
of similarity between post-B and pre-A representations. For the violation condition, however,
differentiation reduces the similarity between post-B and pre-A representations. Thus post-B and
pre-A patterns should bemore highly correlated in the no-violation than violation condition, which
was indeed reported by Kim et al, and confirmed by simulations in top plot of Figure 1Bi.
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FIGURE 1 | Continued
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FIGURE 1 | (A) Illustration of simulated activation patterns representing scenes and their changes through the different phases in Kim et al.’s experiment. Panel a

pre-study: initial representation of individual scenes. Panel b study: repeated pairing of A and B leads to co-activation of both scene representations. Panel c critical

study: the co-activation of A and B representation remains unchanged in the no-violation (nv) condition. In the violation (v) condition, the prediction of B (vB) given A

leads to moderate re-activation of B representations. The item X causing the prediction error becomes co-activated with A. Panel d post-study: in the no-violation (nv)

condition, B (nvB) co-activates A representations according to both accounts. In the violation (v) condition, however, pruning of B (vB) from A representations is

predicted by the differentiation account (vB, left), with assimilation of some new, unique features predicted by the sophisticated differentiation account (vfB, middle),

while moderate re-activation of (A) and X representations given (B) is expected by the integration account (vB, right). (B) scene representations are simulated across a

30 × 30 voxel space. (For simplicity we assume no overlap between item representations in pre-study, but qualitative results remain unchanged if overlap is

introduced). Boundary conditions under which the differentiation and integration account predict similar or distinct patterns of results are explored by using different

levels of random noise (x-axis) and pruning/re-activation strength (y-axis), implemented using a range of weights (0–1). Each sub-panel (i–iv) shows the simulated

contrast at the top and the resulting pattern correlation “cor” at the bottom, for the differentiation (green box to the left) and Integration (red box to the right) account.

The calculation of correlations is specified in the equation presented in each panel, (code for all these simulations can be found here: https://osf.io/exz5b/). The y-axis

in each plot shows different levels of pruning/reactivation of associated items that are not presented, i.e., pattern A and X when pattern B is presented in the

post-study condition (the degree of pruning in the differentiation model and reactivation in the Integration model are inversely yoked). The x-axis shows different levels

of random noise in the (no)violation and post-study phase (or degree of reactivation in plot iv). Panel i confirms that both the differentiation and integration account

predict that the correlation between “pre-A” and “no-violation B” (nvB) patterns is greater than that between “pre-A” and “violation B” (vB), which was the result

reported by Kim et al. (2017). Panel ii however shows that the integration account, but not a simple differentiation account, predicts that the correlation between

“pre-B” and “no-violation B” (nvB) patterns is greater than between “pre-B” and “violation B” (vB). Panel iii shows the same contrast as Panel ii, but with the addition

of new features in the violated B representations (vfB), according to the more sophisticated differentiation account of Kim et al. Panel iv shows how the similarity

between “pre-X” and “violated B” representations (vfB) is correlated with the similarity between “pre-A” and “vfB,” which is predicted by the integration but not either

type of differentiation account.

However, we suggest the results are equally compatible with
an alternative account: the integration hypothesis, by which
the item creating the prediction error (X) becomes associated
with item A and the predicted item B, forming an integrated
ABX representation (Figure 1d, integration). The additional X
representation can produce the same result Kim et al. found,
namely higher similarity for no-violations (pre-A vs. post-AB)
compared to violations (pre-A vs. post-ABX; bottom plot of
Figure 1Bi). Thus, Kim et al.’s findings are equally consistent with
a process of integration. Indeed, previous studies show violations
of expectations can foster better associative learning between
items eliciting a prediction error (Greve et al., 2017), suggesting
that A and X in the Kim et al. design could become bound
together. Moreover, studies of transitive learning, using a similar
design to Kim et al., show facilitated integration (Zeithamova
et al., 2012; Schlichting et al., 2015).

Although the analysis reported by Kim et al. cannot dissociate
between differentiation and integration, our simulations show
that other contrasts reveal opposing predictions for these two
accounts. For instance, comparing representations of post-
B with pre-B items, instead of pre-A items, predicts higher
similarity for non-violation vs. violation conditions according
to the integration account, but lower similarity according to the
simplistic differentiation account considered so far (Figure 1Bii),
across a range of noise and reactivation/pruning levels1.

However, Kim et al.’s differentiation account is more
sophisticated, and states that “. . . if B is restudied later . . .
activation will spread to other new features (not previously
shared with A) and connections to these features will be

1Noise is introduced by adding uniformly distributed random patterns to item

representation, using a range of weights (0–1) to simulate different levels of

noise. Pruning refers to the weakening of representations for incorrectly predicted

items: for example, the features of A are pruned from B, after A is unexpectedly

paired with X instead of B. Pruning is implemented by subtracting A from AB

representations, again using a range of weights (0–1) for different degrees of

pruning. Similarly, different degrees of reactivation are simulated by adding A to

B representations with a range of weights (0–1). For simplicity pruning (p) and

reactivation (a) are modeled here as inversely related, i.e., a= 1–p.

strengthened.” This more sophisticated differentiation account
has also been used in previous studies, for instance to account
for recall of competing memories (Hulbert and Norman, 2015).
Here, the inclusion of new features following violation of B
(vfB) is illustrated in Figure 1d (sophisticated differentiation),
and simulated in Figure 1Biii. In the simulations, it can be
seen that under low noise levels and high levels of pruning,
this sophisticated differentiation account can predict higher
similarity between post-B and pre-B items for non-violation vs.
violation conditions, making it impossible to dissociate it from
the integration account in their paradigm (since we do not know
levels of noise or pruning/reactivation in reality).

Nevertheless, the type of information assimilated can still
distinguish the two accounts. One straightforward approach
would be to compare pattern similarity between pre-X and post-
B items: Higher similarity is predicted in the violation condition
according to the integration but not differentiation account.
Unfortunately, however, empirical evidence cannot be obtained
by Kim et al. (2017) because they did not present pre-X items
in the no-violation condition. Another approach, which could
be tried on Kim et al.’s data, is to correlate the similarity of
post-B items and pre-A items in the violated condition with the
similarity between post-B items and pre-X items in the violated
condition: according to the integration account, there should be
a positive correlation, because stronger AB associations should
evoke larger prediction errors and hence stronger associations
between X and B. Since X is not part of the post-B representation
according to the differentiation account, no such correlation is
predicted (Figure 1Biv)2.

2Kim et al. did examine the correlation between X and pre-B items, but not post-B

items, as an index of AB prediction. The degree to which B features are re-activated

when A was presented with an unexpected X instead, indicates how strongly B was

predicted by A. This prediction strength was reported to significantly correlate

with decrease in similarity between post-B and pre-A. While this finding was

interpreted to uncover the underlying mechanism of differentiation, i.e., stronger

violations leading to more differentiation of the violated item, such correlation

would equally be predicted by the integration account, i.e., stronger violations

leading to more integration of the violating item. In fact, the latter has been
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In sum, Kim et al. present interesting data that address
important questions about how incorrect predictions change
neural representations. While we do not think the results
reported can yet distinguish a differentiation account from
an integration account, our simulations suggest additional
comparisons that would help in future.
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