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With the rise of increasingly complex artificial intelligence (AI), there is a need to design
new methods to monitor AI in a transparent, human-aware manner. Decades of research
have demonstrated that people, who are not aware of the exact performance levels
of automated algorithms, often experience a mismatch in expectations. Consequently,
they will often provide either too little or too much trust in an algorithm. Detecting such
a mismatch in expectations, or trust calibration, remains a fundamental challenge in
research investigating the use of automation. Due to the context-dependent nature
of trust, universal measures of trust have not been established. Trust is a difficult
construct to investigate because even the act of reflecting on how much a person
trusts a certain agent can change the perception of that agent. We hypothesized that
electroencephalograms (EEGs) would be able to provide such a universal index of trust
without the need of self-report. In this work, EEGs were recorded for 21 participants
(mean age = 22.1; 13 females) while they observed a series of algorithms perform a
modified version of a flanker task. Each algorithm’s degree of credibility and reliability
were manipulated. We hypothesized that neural markers of action monitoring, such
as the observational error-related negativity (oERN) and observational error positivity
(oPe), are potential candidates for monitoring computer algorithm performance. Our
findings demonstrate that (1) it is possible to reliably elicit both the oERN and oPe
while participants monitored these computer algorithms, (2) the oPe, as opposed to
the oERN, significantly distinguished between high and low reliability algorithms, and (3)
the oPe significantly correlated with subjective measures of trust. This work provides the
first evidence for the utility of neural correlates of error monitoring for examining trust in
computer algorithms.

Keywords: error-related negativity (ERN), error processing, error positivity (Pe), automation, event related
potentials (ERP), human error, neuroergonomics, anterior cingulate cortex (ACC)
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INTRODUCTION

“Learn from the mistakes of others. You can’t live long enough to
make them all yourself.”

—Eleanor Roosevelt

With the proliferation of machine learning, complex computer
algorithms, and artificial intelligence (AI), there has also been
an increase in adverse and unexpected consequences in the
use of this technology. For instance, bias for algorithms that
have been based on limited training data has already produced
several high-profile incidents at companies such as Facebook and
Google (Barr, 2015; Economist, 2018). To prevent these kinds
of errors and to ensure mutual trust between man and machine
or algorithm, there is a great need to provide transparency and
understanding with regard to how individuals perceive, respond,
and interact with these new forms of technology (Lyons and
Havig, 2014; Mercado et al., 2016; Chen et al., 2017).

Historically, expectations between machines and humans have
not always been aligned, leading to automation surprises and
major accidents (Parasuraman and Riley, 1997). Humans often
have mis-calibrated trust in automation. That is, they are either
too trusting, which leads to over-reliance and complacency,
or do not trust enough, which leads to skepticism and disuse
of automation (Lee and See, 2004). Calibrated trust is when
perceived trust of automation matches the actual trustworthiness
of automation (Lee and See, 2004). A number of theories that
describe trust in automation have emphasized the relationship
between attentional mechanisms and trust. These theories
propose that the core mechanism of trust is an interaction
between two variables: an initial attentional bias that is updated
with observed data about the system (Yeh and Wickens, 2001;
Dzindolet et al., 2002, 2003; Madhavan and Wiegmann, 2007b;
Rice, 2009; Parasuraman and Manzey, 2010; Hoff and Bashir,
2015). Previous research has established that people usually
ascribe a high degree of authority to automation and, as a
consequence, use automation advice as a heuristic without
necessarily verifying its validity. This phenomenon is known
as automation bias (Mosier et al., 1998; Parasuraman and
Manzey, 2010). Others have proposed that the general schema
for automation is that the agent always performs perfectly
(Dzindolet et al., 2003; Madhavan and Wiegmann, 2005, 2007b)
and behaves invariantly (Dijkstra et al., 1998). Furthermore,
“expert” automated agents are considered more trustworthy
than “novice” automated agents (Madhavan et al., 2006). This
automation bias therefore affects how systems are monitored and
has major consequences when systems fail or do not function
optimally (Parasuraman and Riley, 1997).

The measurement of trust varies widely across disciplines
primarily because of the wide variety of trust definitions (Erchov,
2017). Given the lack of common measures of trust, it may be
fruitful to develop neural measures of trust that are consistent
with a neuroergonomic approach (Parasuraman, 2003, 2011;
Gramann et al., 2017). Previous research has examined neural
correlates of trust between people (Adolphs, 2002; Delgado
et al., 2005; King-Casas et al., 2005; Krueger et al., 2007) and
while it is expected that the overall trust process for people

and automation is similar, it is likely that important and
specific differences will emerge between people and machines
(Madhavan and Wiegmann, 2007b; de Visser et al., 2016). While
contributions toward understanding trust in automated systems
from a neuroscientific viewpoint are still limited, recent reviews
have pointed to the potential of applying known neural correlates
of performance monitoring to the monitoring of machines
(Fedota and Parasuraman, 2010; Drnec et al., 2016; Berberian
et al., 2017; Somon et al., 2017). Consistent with this idea, a recent
study found that false alarm-prone advice activated different
brain regions for a human compared to a machine, including
the precuneus, posterior cingulate cortex, and temporoparietal
junction (Goodyear et al., 2016). Alternatively, miss-prone advice
activated salience and mentalizing brain networks differentially
for a human compared to a machine (Goodyear et al., 2017).
Another study showed that observing errors for humans and
machines results in very similar activation in the medial
prefrontal cortex (Desmet et al., 2014), although other work
showed that this effect can be moderated by human-likeness
of the machine agent (Krach et al., 2008). While these studies
provide initial evidence of the neural differences between humans
and machines, to our knowledge, no study exists that compares
neural correlates of trust between humans and machines using
electroencephalogram (EEG). Trust is a difficult construct to
investigate because even the act of reflecting on how much a
person trusts a certain agent can change the perception of that
agent. In order to eliminate this metacognitive step, we propose
that EEG could provide an index of trust without the need of self-
report. Such a measure will be useful in situations when objective
assessment of trust is necessary or when it is difficult or undesired
to complete a self-report on trust.

A potential candidate for a neural correlate of trust mis-
calibration is the error-related negativity (ERN), a well-studied
event-related potential (ERP) component that is elicited when an
individual commits an error (Falkenstein et al., 1991; Gehring
et al., 1993). The ERN is a negative-going potential generated in
or near the anterior cingulate cortex (ACC) that peaks within
100 ms following an error (Ullsperger et al., 2014b). There
is considerable evidence that the ERN indexes a mismatch
between predicted and actual outcomes (Falkenstein, 2004;
Wessel et al., 2012; Wessel, 2017), and that reduced expectancy
for action outcomes is associated with increased amplitude of
this component (Fischer et al., 2017). A second error-related
component immediately follows the ERN, termed the error
positivity (Pe). It has been suggested that, together with the ERN,
the Pe may form part of a negative–positive complex. Like the
ERN, the Pe is maximal over the frontocentral scalp and there
is evidence that it shares a common neural generator with the
ERN (Ullsperger et al., 2014b). Whereas the ERN is thought to
reflect an automatic, unconscious error detection process, the Pe
is believed to be associated with the orienting of attention to
the error. Thus, the Pe likely serves as a neural index of error
awareness (Ullsperger et al., 2014b; Wessel, 2017).

Quite recently, it has been shown that ERP components
comparable to the ERN and Pe can be elicited during the
observation of an error that was committed by another person
or entity (van Schie et al., 2004; Carp et al., 2009). These
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components, termed the observational error-related negativity
(oERN) and observational error positivity (oPe), have similar
scalp topographies and neural sources as their performance-
related analogs (Koban and Pourtois, 2014). The finding that
well-established neural indices of error processing are elicited
when observing the actions of others suggests that these
indicators may be useful when adopting a neuroergonomic
approach to investigate how humans evaluate the performance
of automation (Fedota and Parasuraman, 2010).

The present study adapted an established research paradigm
(van Schie et al., 2004) to (1) assess whether neural correlates of
error monitoring, specifically the oERN and oPe, can be elicited
while monitoring the errors of automated agents and (2) evaluate
whether these neural markers correlate with the level of trust in
those agents. Given that our experimental design is similar to that
employed by van Schie et al. (2004) – the only exception being the
type and credibility of the agent being observed by participants –
the same theoretical explanation for the oERN and oPe can be
expected to apply to our investigation. Our general hypothesis
was that oERN and oPe signals can index the magnitude of an
individual’s trust in the automated algorithm as a function of
algorithm credibility and reliability.

In this paradigm, a participant monitors the performance of an
automated agent. Historically, the variables credibility (expected
performance) and reliability (actual performance) have been
critical determinants of human performance with automation
(Madhavan et al., 2006; Madhavan and Wiegmann, 2007a,b).
Credibility, in this context, is the belief about how well the
automated agent is expected to perform. In our experiment,
reliability presented the accuracy of the automated agent on
the Flanker task and thus how well the agent was actually
performing. Accordingly, we manipulated both credibility and
reliability in the same experiment. Given that the oERN is
an indication of unconscious error detection and the oPe is
likely an indication of error awareness, we expected similar
results for both ERP components in our experimental paradigm.
Our specific hypothesis was that we predicted an interaction
between credibility and reliability such that the largest oERN and
oPe would be observed in the highly reliable expert condition
and the smallest oERN and oPe would be observed for the
unreliable novice condition, with the other two conditions
eliciting components of intermediate amplitude. This hypothesis
is predicated on the repeated and reliable finding that reduced
expectancy for erroneous action outcomes is associated with
larger error monitoring signals (Wessel et al., 2012; Fischer
et al., 2017). In addition, we hypothesized that oERN and oPe
amplitudes would directly correlate with trust in automated
algorithms.

MATERIALS AND METHODS

Participants
Twenty-one participants between 18 and 35 years of age
(mean = 22.1; 13 females) participated in this study in exchange
for either monetary compensation or course credit at George
Mason University. Two participants were removed from all

analyses due to an insufficient number of trials following EEG
rejection. Therefore, 19 participants (mean age = 22.26; 12
females) were incorporated into the analysis. All participants
were right-handed, had normal or corrected to normal vision,
had no known neurological deficits, and were not taking any
medications that affect the nervous system. All participants
provided written informed consent after having been explained
the experimental procedures. All procedures were approved by
the George Mason University Office of Research Integrity and
Assurance.

Experimental Design
Our study was designed with trial accuracy (correct, error),
credibility (novice, expert), and reliability (60%, 90%) as within-
subject variables to create eight separate conditions. Participants
either performed the Flanker task themselves or observed
an algorithm perform the task. Credibility was manipulated
by having participants read two different stories based on a
previous set of experiments (Madhavan et al., 2006; Madhavan
and Wiegmann, 2007a). The “expert” story (Flanker–Genius
algorithms) described an algorithm that was crafted by the top
programmers in the world (see Appendix A). The “novice” story
(shape-discriminate algorithms) described an algorithm that was
crafted by low grade programmers (see Appendix A). Reliability
was manipulated by varying the response accuracy. In the 60%
condition, on average, 6 responses out of 10 were correct. In
the 90% condition, on average, 9 responses out of 10 were
correct.

Paradigm and Procedure
Prior to the experiment, participants were informed that
they would be evaluating the performance of four computer
algorithms that would complete a modified version of the Eriksen
flanker task (Eriksen and Eriksen, 1974). The participants were
provided with a cover story (see Appendix A) that would lead
them to believe that two of the algorithms were classified as
“experts” at the task (Flanker–Genius algorithms) while the other
two algorithms were classified as “novices” (shape-discriminate
algorithms). Throughout the experiment, participants would
learn that one of the algorithms in each group did not perform
as expected. Regardless of how the algorithms were labeled
(expert or novice), each group consisted of a good performer
(90% credibility algorithm) and a bad performer (60% credibility
algorithm). Therefore, the algorithms are described as “Expert
90%,” “Expert 60%,” “Novice 90%,” and “Novice 60%.”

The experiment consisted of 18 blocks (six performance
blocks; 12 observation blocks) which alternated such that
participants performed one block of the task themselves, followed
by two blocks in which participants observed an algorithm
perform the same task. Each algorithm was observed three times
throughout the experiment. However, each of the algorithms
was presented once before algorithm presentation was repeated.
The order within a single sequence of the four algorithms
was counterbalanced across participants (Figure 1). Prior to
beginning the task, participants briefly practiced both the
performance and observation paradigms and were provided with
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FIGURE 1 | Experiment paradigm describes the order with regard to performance and observation blocks within the experiment. The order of algorithm presentation
within a sequence was counterbalanced. The algorithms were not repeated until all four algorithms within that sequence had been presented.

feedback on whether they responded correctly. During the main
experiment, they did not receive feedback.

Performance blocks consisted of a modified version of the
Erickson flanker task (Eriksen and Eriksen, 1974) in which
participants indicated the direction the central target arrow was
pointing. The probability of a left or right target arrow as well
as the probability of congruent and incongruent stimuli was
equiprobable. Participants were instructed to press the “2” key
(with their left index finger) if the target was pointing the left or
press the “8” key (with their right index finger) if the target was
pointing to the right (Figure 2). Each block consisted of 160 trials,
which were post-experimentally sorted into four bins: Correct
Congruent, Correct Incongruent, Error Congruent, and Error
Incongruent. During each trial, the stimulus was presented for
200 ms. Participants were required to respond prior to a 600 ms
response deadline. Any response that was faster than 150 ms or
slower than 600 ms was excluded from all analyses. The response-
stimulus interval (RSI) was jittered to occur for 800 to 1200 ms
post response. Participants were instructed to weigh the speed
and accuracy of their response equally. After each performance
block, participants rated their ability to properly identify the
direction of the target arrow using a 0 (not at all) to 9 (completely)
Likert scale.

Observation blocks consisted of an automated version of the
task, in which participants observed and rated each of the four
algorithm’s performance on the same flanker task. However,
as with previous work on the oERN (van Schie et al., 2004),
participants were presented with only the central target arrow
of the stimulus array. Participants were told that, behind the
scene, the algorithm was still evaluating both the middle arrow
and the arrows to either side of it. The algorithm’s “choice” was
indicated by the illumination of one of two small circles located
below and to either side of the middle arrow. For example, if the
arrow pointed to the left and the circle to the left of the arrow
illuminated, this indicated that the algorithm made a correct

choice. The presentation of a left or right target arrow as well the
left and right illuminated circle was equiprobable.

In order to ensure that the participants’ attention to the task
was maintained throughout the observation period, participants
were prompted every 8–24 trials to complete a “review” trial.
During this review, participants were presented with an asterisk,
which required them to indicate whether the algorithm’s choice
on the preceding trial was correct or incorrect. Participants were
instructed to press the “2” key if the algorithm was correct
or press the “8” key if the algorithm was incorrect. These
response mappings were counterbalanced across participants
(Figure 3). Observation blocks consisted of 160 trials (with the
addition of eight “review” trials). During each trial, the stimulus
was presented for 200 ms. An arbitrary response time for the
algorithm was set to occur between 500 and 700 ms post stimulus
onset. On review trials, any response that was faster than 150 ms
or slower than 2000 ms was excluded from all analyses. The
RSI was jittered to occur for 800–1200 ms post “response.”
After each observation block, participants rated their trust in the
observed algorithm’s ability to properly identify the direction of
the target arrow using a 0 (not at all) to 9 (completely) Likert
scale.

EEG Data Acquisition and Processing
Electroencephalogram data were recorded through the use of
a Neuroscan SynAmps2 amplifier and SCAN 4.3 acquisition
software package (Compumedics, Charlotte, NC, United States).
More specifically, the data were collected from a 64-channel
Ag/AgCl electrode cap, which was arranged according to the
extended international 10-20 system. The in-cap reference was
located between electrodes Cz and CPz; EEG data were re-
referenced offline to the average of M1 and M2 (left and right
mastoids). Four electrodes were positioned above and below the
left eye and on the outer canthus of each eye in order to monitor
electrooculogram (EOG) activity. All EEG data were sampled at
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FIGURE 2 | Performance blocks describe the experimental paradigm for blocks in which the participant performed the task themselves. Stimuli are enlarged in the
upper right quadrant of the figure for illustrative purposes.

FIGURE 3 | Observation blocks. The experimental paradigm for blocks in which the participant observed an algorithm that performs the task. Stimuli are enlarged in
the upper right quadrant of each dashed rectangle for illustrative purposes.

1000 Hz with a bandpass filter of 0.1–70 Hz. The impedance was
kept below 5 k� for the duration of the experiment.

Processing of EEG data was conducted using the EEGLAB
(Delorme and Makeig, 2004) toolbox for the MATLAB
programming environment (MathWorks, Natick, MA,
United States). Data were detrended to remove large drifts,

low-pass filtered at 30 Hz using a Butterworth filter from
the ERPLAB plugin (Lopez-Calderon and Luck, 2010), and
down-sampled to 500 Hz. On a copy of the original dataset,
the data were separated into a series of consecutive 1000 ms
epochs and run through an automated rejection of noisy EEG
data using a voltage threshold rejection of ±100 µV, as well as
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a spectral threshold rejection using a 50 dB threshold within
the 20–40 Hz band using the pop_rejspec function (to remove
EMG-like activity; Delorme and Makeig, 2004). If the threshold
rejection led to more than 20% of epochs being rejected for a
given channel, that channel was removed from all copies of the
dataset. The data were then run through independent component
analysis (ICA) decomposition (Winkler et al., 2015), in which
the identified ICA component weights in the 1 Hz high-pass
filtered dataset was copied to the 0.1 Hz high-pass dataset.
All further analyses were performed on the 0.1 Hz high-pass
dataset.

After the independent components that corresponded to
blinks and saccades were rejected, both the performance and
observational data were epoched from −200 to 800 ms relative
to all stimulus and response markers and run through a more
strict automated rejection of noisy EEG data using a voltage
threshold rejection of ±75 µV and spectral threshold rejection
using a 50 dB threshold within the 20–40 Hz band using the
pop_rejspec function. Similar to earlier in the processing stream,
if the threshold rejection lead to more than 20% of epochs
being rejected for a given channel, that channel was removed
from all copies of the dataset. Any missing channels were then
interpolated using spherical interpolation and all epochs were
baseline corrected from −200 to 0 ms.

The average number of trials incorporated into the
performance grand-average waveforms was as follows: “Correct-
Congruent” (M = 412.89; SD = 45.74), “Correct-Incongruent”
(M = 302.53; SD = 70.59), “Error-Congruent” (M = 10.16;
SD = 10.29), and “Error-Incongruent” (M = 88.21; SD = 52.75).
However given the scarce number of “Error-Congruent” trials,
the performance data were analyzed by collapsing across
congruency with the average number of trials in each condition
as follows: “Correct” (M = 715.42; SD = 108.40) and “Error”
(M = 98.37; SD = 59.82). Statistical analysis of the performance
ERN, as well as the performance Pe, was conducted using
trial accuracy (correct, incorrect) paired-sample t-tests. Both
components were time-locked to participants’ response during
the flanker task and were analyzed at electrode FCZ using a
predefined time window of 40 ms for the ERN (4–44 ms) and
60 ms for the Pe (150–210 ms), which were centered on the
respective peaks of the grand-average difference (error minus
correct) waveform.

The average number of trials incorporated into the
observation grand-average waveforms was as follows: “Correct-
Expert 90” (M = 387.53; SD = 40.89), “Correct-Expert 60”
(M = 255.53; SD = 28.12), “Correct-Novice 90” (M = 390.74;
SD = 35.13), “Correct-Novice 60” (M = 259.16; SD = 23.1),
“Error-Expert 90” (M = 43.37; SD = 5.04), “Error-Expert 60”
(M = 173.42; SD = 17.12), “Error-Novice 90” (M = 43; SD = 4.45),
and “Error-Novice 60” (M = 173; SD = 15.83). Statistical analysis
of the oERN, as well as the oPe, was conducted using 2 × 2 × 2
(trial accuracy by algorithm credibility by algorithm reliability)
repeated measures ANOVAs. The oERN and oPe, which were
time-locked to the onset of the algorithms’ response during the
automated task (illuminated circles), were analyzed at electrode
FCZ using a predefined time window of 40 ms for the oERN
(202–242 ms) and 60 ms for the oPe (286–346 ms), which were

centered on the respective peaks of the grand-average difference
(error-correct) waveform.

Subjective Trust Measurement
An established self-report scale was adapted to measure trust
during the task (Lee and Moray, 1992). The single response
item was phrased as the following question: “To what extent do
you trust the algorithm’s ability to correctly identify the target?”
Participants had to respond using a 0 (not at all) to 9 (completely)
scale.

Statistical Analyses
Statistical analyses of the performance ERN, as well as the
performance Pe, were conducted using trial accuracy (correct,
incorrect) paired-sample t-tests. Statistical analyses of the oERN,
as well as the oPe, were conducted using 2 × 2 × 2
(trial accuracy by algorithm credibility by algorithm reliability)
repeated measures ANOVAs. A 4 × 5 (algorithm by time-point)
repeated measures ANOVA was conducted on the subjective trust
ratings for the observation blocks only. To test if oERN and
oPe amplitudes were related to trust rating of the automated
algorithms, and whether the relationship can be modulated
by the sequence in which the Flanker task was observed, we
used the lme4 package in R, which allowed for mixed-effects
modeling (Bates et al., 2015). Two linear mixed-effects models
predicted oERN and oPe amplitudes separately and contained
trust ratings as a continuous variable, sequence as a dummy
coded variable (1, 2, or 3), and their interaction as a moderation
effect.

RESULTS

Behavior
An average of 296 trials per participant (8.97% of all trials)
were removed from the analysis because the response was not
made during the allotted response window (i.e., the response
latency was less than 150 ms or greater than 600 ms) or more
than one response was selected per presentation of a stimulus.
Participants were explicitly instructed not to correct for reflexive
motor mistakes, but any trials in which residual corrections still
took place were removed from the analysis. During performance
blocks, the average participant accuracy was 87.08% (congruent
trials: M = 97.55%, SD = 3.19%; incongruent trials: M = 76.62%,
SD = 14.94%). A paired-sample t-test revealed a significant
effect of trial accuracy [t(18) = 11.35, p < 0.001, d = 1.82] in
which incorrect responses (M = 393.44; SE = 5.51) were faster
than correct responses (M = 440.75; SE = 6.27). In addition,
when evaluating only correct responses, a paired-sample t-test
revealed an effect of congruency [t(18) = −15.32, p < 0.001,
d = −2.29], in which responses were faster for congruent
(M = 407.46; SE = 6.83) than incongruent (M = 474.03; SE = 6.44)
trials. These findings replicate the typical behavioral responses
observed for the Eriksen flanker task (Eriksen and Eriksen,
1974).

During observation blocks, accuracy of the algorithm was set
at either 90 or 60% (depending on which algorithm was executing
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TABLE 1 | Performance and observational event-related potentials.

Performance ERP components

ERN Pe

Variable Mean (SE) t(18) p Variable Mean (SE) t(18) P

Accuracy 7.03 <0.001 Accuracy −4.57 <0.001

Correct 3.23 (0.27) Correct −1.31 (1.01)

Incorrect −6.82 (0.91) Incorrect 7.84 (1.77)

Observational ERP components

oERN oPe

Variable Mean (SE) F(1,18) p Variable Mean (SE) F(l,18) P

Accuracy 8.74 0.008 Accuracy (Acc) 18.46 <0.001

Correct 2.03 (0.45) Correct 0.71 (0.35)

Incorrect −0.01 (0.78) Incorrect 4.95 (0.98)

Reliability (Rel) 6.01 0.025

90% 3.24 (0.65)

60% 2.42 (0.47)

Acc ∗ Rel 22.13 <0.001

Correct

90% 0.2 (0.39)

60% 1.23 (0.34)

Incorrect

90% 6.29 (1.23)

60% 3.61 (0.81)

Tabulated values for statistics performed on event-related potentials during their respective analysis windows. Values for means and standard errors are in µV amplitudes.

the task) and the “response time” was set to vary between 500 and
700 ms (M = 609.57; SD = 6.37).

ERP Components
For the performance ERN (Figure 4), a paired-sample t-test
revealed an effect of accuracy [t(18) = 7.03, p < 0.001, d = 2.08]
in which amplitude was larger (more negative) on error trials
(M = −6.82; SE = 0.91) compared to correct trials (M = 3.23;
SE = 1.27; see Table 1). For the performance Pe (Figure 4), a

FIGURE 4 | Performance ERPs. The graph displays the response-locked ERN
and Pe that were generated when participants performed the task. The gray
boxes indicate the analysis window for each component.

paired-sample t-test revealed an effect of accuracy [t(18) = −4.57,
p < 0.001, d = −1.45] in which amplitude was larger (more
positive) on error trials (M = 7.84; SE = 1.77) than on correct
trials (M = −1.31; SE = 1.01; see Table 1). This pattern of results
is consistent with a large extant literature on these components
(Steinhauser and Yeung, 2010). Additionally, the frontocentral
scalp topographies of these components are consistent with prior
reports (Ullsperger et al., 2014b).

For the oERN (Figure 5), a 2 (trial accuracy: correct,
error) × 2 (credibility: novice, expert) × 2 (reliability: 60%, 90%)
repeated-measures ANOVA revealed a main effect of accuracy
[F(1,18) = 8.74, p = 0.008, η2

P = 0.327], in which amplitude was
larger (more negative) on error trials (M = −0.01; SE = 0.78) than
on correct trials (M = 2.03; SE = 0.45; see Table 1). All other effects
failed to reach significance (p> 0.18).

For the oPe, a 2 (trial accuracy: correct, error) × 2 (credibility:
novice, expert) × 2 (reliability: 60, 90%) repeated-measures
ANOVA revealed a main effect of accuracy [F(1,18) = 18.46,
p < 0.001, η2

P = 0.506], in which amplitude on error trials
(M = 4.95; SE = 0.98) was larger (more positive) than on correct
trials (M = 0.71; SE = 0.35; Figure 5). There was also a main
effect of reliability [F(1,18) = 6.01, p = 0.025, η2

P = 0.250], in
which the oPe was larger (more positive) for the 90% performing
algorithms (M = 3.24; SE = 0.65) than the 60% performing
algorithms (M = 2.42; SE = 0.47). Lastly, there was a significant
accuracy by reliability interaction [F(1,18) = 22.13, p < 0.001,
η2

P = 0.551] in which oPe amplitude on error trials was larger
(more positive) than on correct trials for both 90% (p < 0.001,
d = −1.52) and 60% (p = 0.008, d = −0.84) performing algorithms
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FIGURE 5 | Observation ERPs. The graph displays the oERN and oPe, which were time-locked to each algorithm’s “response.” The participants did not perform the
task themselves – they just evaluated the reliability of the algorithm. The gray boxes indicate the analysis window for each component.

(see Table 1). All other effects failed to reach significance
(p> 0.44).

The scalp topographies for the oERN and oPe are very
similar to those of the ERN and Pe, although the Pe has
a more central distribution than the oPe. We also note
that the waveforms of both the performance and observation
ERPs are strikingly similar. Although it is not possible to
infer neural sources based on scalp topographies, the similar
spatial distribution and time course of the performance and
observation ERPs suggests that they likely reflect comparable
neural processes.

Analysis of Algorithm Trust Ratings
Between-block ratings with regard to the participant’s ability
to perform the task themselves (examined post-performance
blocks) as well as between block ratings with regard to the
participant’s trust in the algorithm to perform the task (examined
post-observation blocks) were recorded. Although the ratings
with regard to the performance blocks are not discussed here,
a 4 × 5 (algorithm by time-point) repeated measures ANOVA
on the observation ratings revealed a main effect of algorithm
[F(1,18) = 34.024, p < 0.001, η2

P = 0.654], as well as an
algorithm by time-point interaction [F(1,18) = 8.944, p < 0.001,
η2

P = 0.332].
However, the main effect of time-point failed to reach

significance (p = 0.731). Interestingly, the only difference in

pattern for rating the algorithms over time occurred after the
participants’ first interaction with each algorithm (Figure 6).
This indicates that, although the cover-stories were successful
in establishing the expert and novice algorithm credibility
initially, the participants very quickly reached the end-state with
regard to determining the true objective performance of each
algorithm.

Mixed-Linear Effects Analyses of ERP
Component Magnitude and Trust Ratings
To investigate the relationships between ERP amplitudes
and subjective ratings, we used a linear mixed model to
test if subjective trust ratings were related to oERN and
oPe amplitudes and if the ERP-trust ratings relationships
were modulated as a function of algorithm observation
sequence.

Results of the first model that predicted oPe amplitudes
accounted for 65% of the variance (R2 = 0.65) and revealed
that trust ratings was a significant predictor of oPe [b = 1.01,
β = 0.18, SE = 0.41, t(211.5) = 2.41, p = 0.01], which suggests
that oPe amplitudes increased as trust ratings increased (see
Figure 7). The dummy coded variable of sequence showed a
significant mean difference between the sequence 1 and sequence
2 [MSequence 1 = 5.56 uV, MSequence 2 = 4.37 uV, SE = 0.54,
t(204) = −2.17, p = 0.03], which suggests that the mean
amplitudes were lower overall for sequence 2 compared to

Frontiers in Human Neuroscience | www.frontiersin.org 8 August 2018 | Volume 12 | Article 309

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00309 August 9, 2018 Time: 9:14 # 9

de Visser et al. Neural Measures of Trust in Automation

FIGURE 6 | Algorithm trust ratings. The graph displays the pattern of trust
ratings over the course of the experiment. Error bars indicate the standard
error of the mean (SEM).

sequence 1. However, no significant mean differences between
sequence 1 and 3 were evident [MSequence 1 = 5.56 uV,
MSequence 3 = 4.92 uV, SE = 0.54, t(204) = −1.15, p = 0.24].

The interaction term between trust ratings and sequence 2 was
not significant [b = 0.71, β = 0.13, SE = 0.54, t(204.5) = 1.31,
p = 0.19], showing that the oPe-trust rating relationship did
not differ significantly between sequence 1 and 2. Similarly, the
interaction term between trust ratings and sequence 3 showed
a non-significant difference [b = 0.79, β = 0.14, SE = 0.54,
t(204.6) = 1.45, p = 0.14] suggesting that the oPe-trust rating
relationship in sequence 1 compared to sequence 3 was not
different.

Analysis of the oERN model accounted for 55% of the
variance (R2 = 0.55) and revealed that trust ratings did not
predict oERN amplitudes [b = −0.16, β = −0.03, SE = 0.36,
t(213.0) = −0.45, p = 0.65]. The dummy coded variable
showed no mean differences between sequence 1 and sequence
2 [MSequence 1 = 0.01 uV, MSequence 2 = −0.21 uV, SE = 0.47,
t(204.1) = −0.47, p = 0.63] or between sequence 1 and 3
[MSequence 1 = 0.01 uV, MSequence 3 = 0.3 uV, SE = 0.47,
t(204.1) = 0.62, p = 0.54]. The interaction terms also showed no
modulation of the oERN-trust relationship between sequence 1
and sequence 2 [b = −0.09, β = −0.02, SE = 0.47, t(204.8) = −0.2,
p = 0.83], or sequence 1 and sequence 3 [b = −0.05, β = −0.01,
SE = 0.47, t(204.9) = 0.12, p = 0.9].

DISCUSSION

The primary goal of the present study was to determine
whether neural indices of error monitoring could be observed
while participants monitored the performance of a computer
algorithm. We demonstrate for the first time that the oERN
and oPe were reliably elicited when computer algorithms
committed errors while performing the Eriksen flanker task.
This finding elaborates on the work of van Schie et al. (2004),
who demonstrated the oERN using human agents. In addition,
we hypothesized that the oERN and oPe would be sensitive
to differences in credibility and reliability of the algorithms.
We found that the oPe was modulated by the reliability, but
not the credibility, of the algorithms. In contrast, we did not
find a similar effect for the oERN. Questionnaires taken during
the experiment further confirmed that participants quickly
converged on the reliability levels of each of the algorithms and
quickly ignored the credibility levels. Finally, the mixed-linear
effects results revealed that oPe amplitudes significantly and
positively correlated with subjective trust ratings across the three
sequences.

Our study expands on van Schie et al. (2004) seminal work
in several important ways. First, the agents used in the present
study were computer algorithms instead of other humans in
the same room. This is an important elaboration of the original
study because our findings show that neural correlates of error
detection extend not just to the observation of other people, but
also to computer agents. Second, we have linked, for the first
time, a neural mechanism of error monitoring and awareness
as a key driver of subjective assessments of trust in computer
algorithms. Prior studies have not established this link. Third, we
have manipulated algorithm reliability rates and shown that these
rates directly affect oPe amplitudes. Lastly, we have established
that credibility as manipulated by a background story had a
negligible effect on performance compared to the reliability of an
algorithm.

What Do oPe and oERN Reflect?
The oPe and oERN, as well as their performance analogs, are
generally believed to reflect error salience, which increases as
a function of the magnitude of the mismatch between the
expected and actual action outcomes. Compelling evidence for
this notion has been provided in a recent large-scale study
showing that ERN amplitude increases as the frequency of errors
is diminished (Fischer et al., 2017). This finding is consistent with
work suggesting that the ERN indexes the automatic processing
of unexpected events, irrespective of whether those events are
unexpected stimuli or erroneous actions (Wessel et al., 2012;
Wessel, 2017). Similarly, the Pe has been suggested to be an
index of reflexive attentional orienting to errors (Ullsperger et al.,
2014a). Given that attentional orienting is stronger to unexpected
events, it seems reasonable to suggest that errors, which are
typically infrequent (and therefore unexpected), would evoke an
oPe of greater amplitude (Ullsperger et al., 2014a). Thus, given
that the reliable algorithms made errors at a lower frequency than
unreliable algorithms, it is not surprising that the oPe was larger
for reliable algorithms. Although the oERN would be expected to
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FIGURE 7 | Correlation between oPe magnitude and trust ratings. The graph portrays all algorithm types for the three sequences when participants observed the
algorithms. The line of best fit is displayed across all three sequences.

behave in a similar fashion to the oPe, it is possible that a reduced
signal to noise ratio, which would be expected for this smaller
component (at least in the observation condition), precluded
detecting a significant effect.

Neuroergonomics of Trust: Initial
Evidence for Neural Correlates of Trust
Calibration
The important discipline of neuroergonomics attempts to
connect neural mechanisms with broader cognitive constructs
in human factors and ergonomics fields (Parasuraman, 2003).
Consistent with this effort, our findings of neural indices of
observational error monitoring and positive correlation of one
of these indices (oPe) with subjective trust ratings provide the
first evidence for candidate neural mechanisms of established
findings in the automation literature as well as automation
theories (Fedota and Parasuraman, 2010).

A major finding in the automation literature is that the
salience of an automation error is directly related to the perceived
trustworthiness of the automation. This phenomenon manifests
itself in several ways. For example, operators may be startled
when an automated system, such as an automated pilot, does
something that does not match their current mental model of
the system, an effect known as automation surprise (Sarter et al.,
1997). A similar effect occurs when operators notice automation

errors during tasks that they can easily perform themselves
(Madhavan et al., 2006). The ease of the task makes automation
errors stand out, thus increasing their saliency. Finally, there
is the first failure effect, the notion that the first automation
failure experienced with automation has a strong anchoring effect
on subsequent interaction with automated system (Wickens
and Xu, 2002; Rovira et al., 2007). We believe that each of
these phenomena is driven by the mismatch in mental models,
unexpected events, or high saliency, and that a neural mechanism
behind these phenomena is captured by the oERN/oPe response
detected in the present study. In our study, the finding that rare
errors produced a significantly larger oPe demonstrates that these
effects produce more awareness at the neural level. The mixed-
linear effects analysis of the oPe with the subjective trust ratings
is direct evidence that error awareness is a critical mechanism that
predicts trust in the algorithm.

An additional observation by Madhavan et al. (2006) suggests
that automation failures on easy tasks (such as the Eriksen flanker
task) are more detrimental to performance than difficult tasks –
primarily because errors are more noticeable. Our study supports
the idea that the oPe is a neural driver of this monitoring process
because our results demonstrated that this component varied
with the salience of the errors as manipulated by the reliability
of the algorithm. Furthermore, previous research has suggested
the high initial expectations of automation performance, known
as automation bias, may induce a “fall from grace” with low
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reliability automated systems. For instance, if an operator has
an initially high expectation of automation performance, but
observes that automation actually has low performance, the
trustworthiness of this automation takes an extra hit, above
and beyond what would be explained by just low reliability
performance. While our study showed a strong reliability effect,
we did not find this interaction between credibility and reliability.
A possible reason for not observing an interaction between
credibility and reliability may have been due to the fact that our
participants quickly converged on the true reliability levels of the
algorithms. The Eriksen flanker task leaves little ambiguity and is
a clear-cut task. Any attempt to infuse credibility through stories
was therefore more complicated. Introducing more difficult tasks
with lower signal-to-noise ratio will make it more likely that
credibility will play a lasting role in the experiment. Increasing
uncertainty of the stimulus or increasing attentional load may
also achieve this effect.

Finally, our findings present evidence for the performance
or ability dimension of trustworthiness (Mayer et al., 1995; Lee
and See, 2004) that reflect the ability of an agent to perform
adequately on a task. Our assessment did not include dimensions
of integrity or benevolence. However, it is possible that the ACC,
the presumed neural generator of the oERN and oPe, is involved
in a more generalized capability of predicting the behavior of an
agent and reflecting a trust policy toward that agent. Previous
research has shown an “intention to trust” signal in the ACC and
caudate nucleus (Delgado et al., 2005; King-Casas et al., 2005).
A more general theory of trust based in neuroscience will also
need to include an explanation of dimensions of trustworthiness
such as integrity and benevolence.

Applications
The current findings suggest that the oPe might provide a more
reliable neural index when monitoring artificial agents, although
it is possible that the oERN may be useful in different contexts
(van Schie et al., 2004). Indeed, the ERN has been used in real-
time passive brain–computer interface (BCI) applications or for
controlling a robotic arm such as the Baxter robot (Bryk and
Raudenbush, 1987; Chavarriaga and del Millán, 2010; Zander
et al., 2010, 2016; Zander and Kothe, 2011; Chavarriaga et al.,
2014; Grissmann et al., 2017; Salazar-Gomez et al., 2017). In
a study similar to our task, participants gazed at a robot that
decides between targets (Salazar-Gomez et al., 2017). The robot
used its arm to reach for the target either correctly or incorrectly.
In this paradigm, the EEG signal was processed and classified
based on the features of the error potentials. Using this machine
learning approach, individual error potentials could be used to
provide feedback to the robot on a single-trial basis in a closed-
loop scenario, allowing the robot arm to switch to the correct
target in the middle of the reach. By extending this work to
cognitive tasks, such as driving and flying, it may also be possible
to use these error signals to serve as an early indicator of a
mental model mismatch between human and machine such as
automation surprise during performance monitoring in a work
setting (Sarter et al., 1997), as a real-time measure of trust to
drive adaptive automation approaches (Byrne and Parasuraman,
1996; Scerbo, 1996, Moray, 2000; Scerbo et al., 2003; Prinzel

et al., 2003; de Visser and Parasuraman, 2011) or during social
interactions between robots and people (Abubshait and Wiese,
2017; Mirnig et al., 2017; Wiese et al., 2017). An ERP signal may
be particularly useful in time-critical situations, when subjective
reports cannot be completed or when subjective reports are not
reliable. Collectively, the research to date suggests that neural
indices of error monitoring are good candidates for indicating
whether either the machine or the human needs assistance
with current task performance. While this research has already
demonstrated the ability to detect error signals without any other
data, the accuracy of the general moment-to-moment user model
can be updated with additional sources of data such as a person’s
profile, mood, and other tendencies. The neural measurement
of error detection and awareness can thus serve as a useful and
objective proxy of an algorithm’s perceived trustworthiness.

Limitations
This study had a number of limitations. First, we examined only
two reliability conditions, namely the 60 and 90% conditions.
The primary reason we chose these reliability levels was
to have algorithms perform distinctly different while both
attaining enough errors and keeping algorithm performance
above chance. Future studies could examine further whether
the oERN/oPe amplitudes vary consistently with the degree of
reliability anywhere between 0 and 100%. Evidence that such
sensitivity of amplitude exists has been provided by a study
that mapped out how close participants were to achieving their
goal by passively monitoring error responses to a dot moving
on screen in various directions. In this study, participants
exhibited a consistently stronger error signal when they were
further removed from their goal (Zander et al., 2016). Second,
our study had a small sample size. Despite the small sample
size, our effect sizes were large which alleviates concerns of
low power. We also employed statistical methods that are
designed to account for small samples such as mixed linear
effects analyses. Third, this study did not allow us to quantify
the consequences of the magnitude of oPe on subsequent
choice to interact or comply with a given agent in the future.
Compliance with agent recommendations is one of the primary
behavioral indicators of trust in automation research in more
ecologically valid tasks. For instance, a popular task to examine
this trust in automation cycle is the bag-screening task. In this
task, participants can screen for dangerous objects themselves
and follow an automated agent’s recommendation (Madhavan
et al., 2006; Madhavan and Wiegmann, 2007a; Merritt and
Ilgen, 2008; Merritt et al., 2013, 2014, 2015; Pop et al., 2015).
A complete neural explanatory mechanism of trust calibration
in automated agents would need to include the ERP profile of
the observation of the automation’s performance, the evaluation
of the automated agent’s decision recommendation as well as
the feedback on the consequence of either complying or not
complying with the advice of the agent. It is also important to
validate this work in more ecologically valid tasks to determine
whether a reliable signal can be extracted with varying task
parameters in different work domains. Lastly, a wider range of
accuracy measures could be employed to find the dose-response
relationship specifying when errors become more salient for
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a given credibility expectation. For example, if automation
performance was ∼72% for incompatible trials, perhaps an agent
that performs just over or under that threshold elicits different
ERPs.

Despite these limitations, the primary and main contribution
of our work is that we have identified a specific neurobiological
mechanism for subjective trust evaluations of trust in automated
agents. This discovery will help enable the development
of objective measurement of trust in automated systems,
a significant improvement over subjective evaluations of
trust.

CONCLUSION

Neural indices of error monitoring provide a novel, theoretically
grounded approach for monitoring the behaviors of other agents.
We have demonstrated that this approach is valid for monitoring
of and calibrating trust in computer algorithms. Our work
is consistent with a neuroergonomic approach in which we
combine both neuroscience and ergonomic theories to explain
the brain at work.
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APPENDIX A

The following script was used to manipulate credibility:
Throughout this experiment, you will observe the performance of two classes of computer algorithms as they perform a modified

version of the Eriksen Flanker task.

Flanker-GENIUS Algorithms
You will observe the performance of two expert-class computer algorithms called Flanker-GENIUS (Version Gamma and Version
Delta), which are “automated feature discrimination classifiers” that are able to consistently detect the orientation of the Eriksen
Flanker arrows. The algorithms are built upon 15 years of research on how humans perform the Eriksen Flanker task.

Flanker-GENIUS was developed through a relationship between two devoted academic labs at the Massachusetts Institute of
Technology (MIT). The combined intelligence of a dozen professors and PhD students with expertise in computer vision and machine
learning contributed to the final award-winning software product.

The Flanker-GENIUS algorithms have been thoroughly trained on an extensive database of shapes and characters under a wide
variety of noise conditions such as fuzziness, incompleteness, and visual distortions. The algorithms continue to improve themselves
through thousands of sessions of inferential learning. In their current state, the tools are consistently dependable and literate in a wide
variety of features: they can detect individual shapes, arrows, and letters in very complex images.

Flanker-GENIUS algorithms have recently been deployed to test and create increasingly secure CAPTCHAs, images that distort
letters and words to determine whether users are humans or spam-generating robots. They will soon be available to the community
as a free service.

Shape-DISCRIMINATE Algorithms
You will observe the performance of two novice-class computer algorithms called shape-DISCRIMINATE (Version Kappa and
Version Theta), which are “automated feature discrimination classifiers” that were designed to discriminate between simple shapes,
such as triangles and squares. The algorithms are unfinished prototypes that are still experiencing some technical issues.

shape-DISCRIMINATE is a group project by eight undergraduate students in the computing department at a
Midwestern technical college. The students have a variety of academic backgrounds, including visual arts. The algorithm
is part of a class project on computer programming. Their project adapted a discarded code-base from an online
catalog.

Shape-DISCRIMINATE algorithms have had limited training on simplistic clear images with uncomplicated shapes and no
visual noise. They cannot process images that contain distortions or complex characters, and remain relatively unsophisticated
in their attempt to determine whether a shape is a triangle or a square. The students are attempting to fix software bugs
to conduct further training with the tools. In their current state, the tools occasionally malfunction and require human
assistance.

The students will soon deploy the shape-DISCRIMINATE algorithms to attempt to find and defeat unsecured online CAPTCHAs,
images that distort letters and words to determine whether users are humans or robots. Shape-DISCRIMINATE algorithms will be
made available as a paid tool after all bugs are fixed.
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