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As far back as we can remember, we eat. In fact, we eat before we can remember.
Our first meal is amniotic fluid. We swallow it during the first trimester of gestation,
and with that, we expose our gut to a universe of molecules. These early molecules
have a profound influence on gut and brain function. For example, the taste of the
amniotic fluid changes based on the mother’s diet. Indeed, recent findings suggest that
food preferences begin in utero. Likewise, a baby’s first exposure to bacteria, previously
thought to be during birth, appears to be in utero as well. And just as postnatal food
and microbiota are implicated in brain function and dysfunction, prenatal nutrients and
microbes may have a long-lasting impact on the development of the gut-brain neural
circuits processing food, especially considering their plasticity during this vulnerable
period. Here, we use current literature to put forward concepts needed to understand
how the gut first meets the brain, and how this encounter may help us remember food.
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INTRODUCTION

Before we are born, we must learn to hear, smell, taste—and eat. The first meal a human consumes
is not its mother’s milk or formula, but instead amniotic fluid ingested by the fetus in utero. That
first meal introduces the brain and the gut, establishing communication which will be sustained
throughout its lifespan.

During gestation, the fetus recognizes the scent of its amniotic fluid (Marlier et al.,
1998; Schaal et al., 1998), and even its taste (Lipchock et al., 2011). After the first
ingestion, this fluid has a profound effect on the morphological development of the
gastrointestinal tract (Mulvihill et al., 1985; Bohórquez et al., 2011). How this first meal
influences our ability to sense food remains unexplored. Only in recent years have the means
through which the gut senses chemical components of food become evident (Jang et al.,
2007).

Soon after the discovery of taste receptors in the tongue (Adler et al., 2000), it became clear that
those receptors were not confined to the tongue, but are also prominently expressed throughout
the gastrointestinal epithelium (Rozengurt and Sternini, 2007). Those taste receptors are located
in specialized intestinal sensory epithelial cells, including enteroendocrine cells. And just like
other sensory epithelial cells, enteroendocrine cells are innervated (Bohórquez et al., 2015). This
synapse is the first link, the first pathway, from the gut to the brain. It serves as a sensory portal
for the transduction of stimuli from the gut lumen, and as a path for pathogens to access the
peripheral and central nervous systems. We draw information from other sensory systems to
infer potential implications of early sensory stimuli on the development and function of gut-brain
sensory transduction (Figure 1). These lines, rather than being an exhaustive account, should serve
as a foundation to stimulate the development of knowledge of the gut-brain sensory transduction
field.
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FIGURE 1 | Early exposure to amniotic fluid, nutrients and the microbiota influences gut-brain circuit development. Prior to birth, fetal swallowing exposes its gut to
amniotic fluid, containing both nutrients and a developing microbiome. There, nutrients, microbiota and their metabolites come in contact with developing gut sensor
cells—enteroendocrine cells—which form synapses with vagal nodose neurons. Dysregulation of the development of this gut-brain neural circuitry can have
profound, prolonged effects on later health. Created with BioRender.

THE FIRST ENTEROENDOCRINE CELL

What is known about enteroendocrine cell developmental origin
can be traced to the 1960s. Anthony Pearse discovered that
seemingly unrelated endocrine cells in different organs appeared
to have a common origin—the neural crest (Pearse, 1969).
This grouping of cells, known as amine precursor uptake and
decarboxylation (APUD) cells, has been heavily debated (Le
Douarin and Teillet, 1973; Andrew et al., 1998; Barker and
Clevers, 2007; Barker et al., 2008) and eventually fell out of favor.
Nonetheless, like other sensory epithelial cells of endodermal
origin, enteroendocrine cells have prominent neuronal features.
They are electrically excitable (Rogers et al., 2011), form
synapses (Bohórquez et al., 2015), and release neuropeptides
and neurotransmitters in response to stimuli (Hartenstein et al.,
2017). Because of the mounting evidence that these cells act as
true epithelial transducers, further exploration will elucidate the
precise origin of these cells.

The first enteroendocrine cells appear early in gestation,
during gut tube development. At this point the cells remain
mitotically active (Crosnier, 2005; Penkova et al., 2010;
Hartenstein et al., 2017). Upon folding of the gut epithelium
into crypts and villi, most cells are differentiated, and further
proliferation occurs from the Lgr5-expressing adult stem cells
of the crypts (Barker et al., 2007). The differentiation of an
intestinal stem cell into an enteroendocrine cell is dependent
on Delta-Notch signaling (Micchelli and Perrimon, 2006).

Low levels of Notch influence enteroendocrine differentiation,
while high levels of Notch promote an enterocyte fate. Then,
in the presence of low Notch activity, enteroendocrine cell
fate is driven by acheate-scute (ac-sc) complex genes that
encode bHLH transcription factors and the enteroendocrine
cell fate promoter Prospero, among others (Yin and Xi,
2018).

The role of ac-sc complex gene expression in driving neuronal
differentiation was established in Drosophila decades ago (Cubas
et al., 1991; Skeath and Carroll, 1991). Since then, ac-sc complex
gene expression has been found to promote enteroendocrine cell
fate (Bardin et al., 2010). Just recently, Chen and colleagues used
aDrosophilamodel to propose that Delta-Notch signaling guides
enterocyte generation from intestinal stem cells as the default
mode, and that, paralleling neuronal differentiation, transient Sc
expression is required to trigger enteroendocrine cell formation
(Chen et al., 2018). In mammals, the bHLH transcription factor
family is commonly known to be pro-neural, but certain bHLH
transcription factors including Math1 (Atoh1), Neurogenin3,
and NeuroD have also been identified as pro-endocrine. Math1 is
expressed in cells destined to become secretory cells (Yang
et al., 2001). Then, neurogenin3 expression is required for
intestinal enteroendocrine cell development (Jenny et al., 2002;
Schonhoff et al., 2004). NeuroD controls terminal differentiation
of specific enteroendocrine cells (Naya et al., 1997; Mutoh
et al., 1998). In parallel or downstream to ac-sc and bHLH
signaling, Prospero functions to commit intestinal stem cell
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differentiation to enteroendocrine cells (Zeng and Hou, 2015).
Though the discovery of its function in enteroendocrine cells is
recent, Prospero has long been studied as a transcription factor
predominantly found in the nervous system (Manning and Doe,
1999).

At a more macroscopic level, the similarities between
the differentiation of enteroendocrine cells and neural cells
persist. It has been suggested that enteroendocrine cells can
be generated from intestinal stem cells using one of three
pathways: terminal differentiation into an enteroendocrine
cell, asymmetric division into an intestinal stem cell and
an enteroendocrine cell, or symmetric division into two
enteroendocrine cells (Zeng and Hou, 2015). Experiments
from Chen and colleagues in Drosophila suggest that intestinal
stem cells actually yield enteroendocrine progenitor cells,
which then terminally divide into two enteroendocrine cells
(Chen et al., 2018). This proposed process of cell division
mirrors ganglion mother cells in Drosophila neuroblasts: each
neuroblast divides exactly once prior to terminal differentiation
into neurons or glial cells (Homem and Knoblich, 2012).
Regardless of method of division, intestinal stem cells are
located basally; similarly, sensory organ progenitors of
Drosophila that give rise to sensory neurons are located
sub-epidermally. And in both, polarity is acquired after
differentiation (Hartenstein et al., 2017). Thus, when Notch
activity is low, ac-sc complex genes, bHLH transcription
factors and Prospero signaling drive enteroendocrine cell
development from intestinal stem cells by inducing the
formation of an enteroendocrine progenitor cell that divides into
enteroendocrine cells.

WHEN THE GUT FIRST MEETS THE BRAIN

The discovery that enteroendocrine cells are innervated opened
a path for gut sensory transduction. Such signals could travel
from the gut lumen to the brain, via the vagus nerve. The
vagus is the primary integrator of visceral sensory information,
and vagal innervation of the gastrointestinal tract is critical to
various homeostatic processes including satiety and visceral pain
signaling (Berthoud, 2008; Ratcliffe et al., 2011b). Additionally,
the vagus has been shown to be critical in the communication
of the microbiome with the central nervous system. Chronic
exposure to Lactobaccillus rhamnosus has anxiolytic effects in
mice that are eliminated by subdiaphragmatic vagotomy (Bravo
et al., 2011).

Vagal innervation of the gastrointestinal tract begins early in
embryonic life. In one study of fetal mice, vagal sensory fibers
reached the stomach by embryonic day 12, the duodenum by
day 14, and the distal small intestine by day 16 (Ratcliffe et al.,
2011a). By visualizing vagal fibers with DiI applied to the fetal
nodose ganglia, vagal fibers appear to be attracted to Netrin-1
expressed by the developing foregut through deleted in colorectal
cancer receptors (Ratcliffe et al., 2006). Attractive signaling
through neurotrophins including brain-derived neurotrophic
factor (BDNF) and repulsive signaling through Slit/Robo are also
critical to the prenatal development of sensory vagal innervation
of the gastrointestinal tract.

BDNF is crucial for synapse regulation (Lu et al., 2014).
Centrally, hippocampal BDNF expression and neurogenesis
is dependent on the vagus nerve (O’Leary et al., 2018).
Peripherally, neurotrophin-3, neurotropin-4 and BDNF promote
vagal innervation of the gastrointestinal tract. In knockout
mice of neutrotropin-3 or neurotrophin-4, severely reduced
vagal innervation is observed in the esophagus (Raab et al.,
2003) and small intestine (Fox et al., 2001), respectively.
In a homozygous BDNF knockout, postnatal day 0 mice
exhibit altered morphology and reduced density of stomach
vagal afferent structures such as intramuscular arrays and
intraganglionic laminar endings compared to wild-type controls
(Murphy and Fox, 2010). BDNF is known to be expressed in
the muscle layers of the GI tract (Murphy and Fox, 2010),
and indeed, limited studies have suggested that enteroendocrine
cells of higher vertebrates express neurotrophic factors including
BDNF and neurotropin-3 (Lucini et al., 2002). In vitro,
when a murine enteroendocrine cell is co-cultured with a
sensory neuron there is a clear affinity. The neuroepithelial
circuit is recapitulated; enteroendocrine cells synapse with vagal
nodose neurons in vitro, and time-lapse footage suggests that
enteroendocrine cells guide the process (Bohórquez et al., 2015).

Repulsive signaling also works to counter attractive signaling
and restrict vagal afferents from entering the bowel wall;
Slit/Robo signaling is the most well-studied pathway. Transcripts
encoding Robo1-2 have been identified in the embryonic and
adult nodose ganglia; Slits1–3 in the embryonic and adult gut
(Goldberg et al., 2013). In the same study, co-cultures with
mouse nodose ganglia and Slit2 secreting cells demonstrated
chemorepulsion of nodose neurites by Slit2. Similarly, Slit/Robo
signaling functions in enteroendocrine cell differentiation and
development. In Drosophila, enteroendocrine cells release Slit1,
which acts on Robo2 receptors in intestinal stem cells to
limit differentiation to an endocrine fate, acting as a negative
feedback control (Biteau and Jasper, 2014). Although the
specific relationship of enteroendocrine-secreted Slit and vagal
innervation of the gastrointestinal tract has not been established,
juxtaposing these studies suggests a correlation. The repulsion-
attraction mechanisms in enteroendocrine cells could serve as
beacons for proper innervation of the intestinal mucosa.

Limited studies also suggest that vagal innervation of the
gastrointestinal tract promotes survival and proliferation of
enteroendocrine cells. In mice and calves, vagotomy reduces the
density of enteroendocrine cells in the stomach (Qian et al.,
1999; Soehartono et al., 2002). Although the moment of synapse
formation between the vagus nerve and enteroendocrine cells
remains unknown, the early development of vagal innervation
and similarities in signaling molecules suggest that the gut
and brain contact early in embryonic life. An early, synaptic,
gut-brain connection could help us understand how we process
early gut sensory stimulants—nutrients and bacteria.

THE GUT’S FIRST FEELING: NUTRIENTS
AND THE MICROBIOME

The first drink of a mother’s milk is not a newborn’s first meal.
Longitudinal, ultrasonographic studies of healthy, developing
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fetuses have demonstrated that as early as gestational week
12, newborn babies swallow amniotic fluid and by 18 weeks,
gestational suckling begins (de Vries et al., 1985; Miller et al.,
2003). Amniotic fluid contains the essential nutrients—glucose,
fructose, fatty acids and amino acids—that the fetus will need to
sense and absorb postnatally to survive. In fact, amniotic fluid
provides a significant portion of nutrition to the fetus, and the
inability to swallow is a risk factor for low birth weight and
poor gastrointestinal development (Mulvihill et al., 1985; Bagci
et al., 2016). However, the process of swallowing does more
than allow the fetus to absorb the nutrients in amniotic fluid.
Swallowing exposes the fetus’s orosensory and post-oral sensor
cells—enteroendocrine cells—to nutrients and bacterial ligands
that influence the development of gut-brain communication.

Early Nutrient Sensing
The development of flavor memories begins in utero and
influences later food preferences. In response to sweet solutions,
ovine fetuses increase their rate of swallowing, demonstrating
motivated behavior for rewarding substances (El-Haddad et al.,
2002). In a well-designed, randomized, controlled trial, babies
whose mothers drank carrot juice during the last trimester of
gestation or the first 3months of lactation weremore accepting of
carrots at 6 months of age (Mennella et al., 2001). In a subsequent
study, formula fed infants were randomized to receive palatable
cow milk-based formula or unpalatable protein hydrolysate
formula at varying ages and durations. They found a sensitive
period—prior to 4 months of age—when exposure to a flavor
determines its hedonic tone (Mennella et al., 2011).

Both gustatory and post-oral signaling pathways contribute
to the findings in these studies in fetuses and infants, but work
in adult mice has shown that post-oral signaling, likely via
enteroendocrine cells, can potently drive preference independent
of taste. Intragastric sugar infusions can rapidly stimulate
the intake and preference for non-nutritive solutions in mice
(Sclafani and Ackroff, 2012). Furthermore, sweet blind Trmp5
knockout mice can develop a preference for sucrose in a
dopamine-dependent pathway based solely on its caloric value
(de Araujo et al., 2008). Therefore, post-oral stimuli and
their interactions with enteroendocrine cells are also likely to
significantly influence the development and function of gut-brain
neural circuits.

The Fetal Microbiome
The amniotic fluid that constitutes a fetus’s first meal contains
more than nutrients—it also carries microbiota. Recently, the
dogma that the uterus is an immune-privileged environment has
been challenged. If the fetus is exposed to microbes, studying
intestinal sensation of nutrients in isolation would be only part
of the puzzle. It is crucial to assess how a prenatal microbiome
could affect gut-brain neural circuit development.

Microbiota play a critical role in the embryogenesis of many
lower species. In lumbricid earthworms, marine sponges and
caridean shrimp, for example, symbiotic bacteria are selectively
recruited and vertically transmitted to developing embryos
to support embryogenesis and protect them from pathogen
colonization (Gil-Turnes et al., 1989; Ereskovsky et al., 2005;

Davidson and Stahl, 2008). The same dependence on microbiota
in higher species has not been established, but increasing
evidence points toward vertical transmission of commensal
prenatal microbes in higher vertebrates. In turkeys, microbial
structures are clearly observed in the embryo’s intestinal tract
well before hatching (Bohórquez, 2010). Jiménez and colleagues
established the possibility of vertical transmission frommother to
fetal amniotic fluid in mice (Jiménez et al., 2005). They isolated
labeled Enterococcus faecium in the amniotic fluid of pregnant
mice orally inoculated with the same strain; the bacterium was
not isolated in control mice. In the same study, PCR analysis
of umbilical cord blood of healthy mouse neonates delivered
at term by cesarean section identified bacteria belonging
to species including Enterococcus faecium, Propionibacterium
acnes, Staphylococcus epidermidis and Streptococcus sanguinis
(Jiménez et al., 2005). This was one of the first studies
to suggest the presence of prenatal microbiota in healthy
pregnancies.

Furthermore, in humans, studies have established distinct
microbiota populations in the amniotic fluid, meconium,
placenta and umbilical cord (Jiménez et al., 2008; Aagaard et al.,
2014; Ardissone et al., 2014; Collado et al., 2016). In one study,
over 5 in 10 human infants delivered at greater than 33 weeks
of gestation had evidence of intestinal colonization by 16S rRNA
amplification and sequencing of meconium samples (Ardissone
et al., 2014). In this and corroborating studies, shared features
and specific genera of microbiota between the meconium,
amniotic fluid, and the placenta have been observed (Ardissone
et al., 2014; Collado et al., 2016). The process of swallowing
non-sterile amniotic fluid likely inoculates the healthy fetal gut
with a developing microbiome.

Early Influences of the Microbiome on
Development and Disease
The birthing process further colonizes the newborn gut with
microbial flora. Any disruption—including changes in birthing
method and maternal perinatal antibiotics—can increase the risk
of disease later in life. Using obesity as an example, in a study
of 436 mother child-dyads followed for 7 years after birth, the
risk for obesity was 84% greater in children whose mothers
had taken late term antibiotics and 46% greater in children
born by cesarean section (Mueller et al., 2015). In a subsequent
study, the association between childhood obesity and cesarean
section remained after controlling for maternal obesity (Mueller
et al., 2017). Shortly after birth, feeding continues to expose the
newborn’s gut to bacteria. And just as differences in diet alter
a newborn’s perception of nutrients, the microbiome of breast
and formula fed infants may also be affected. Breast feeding has
been associated with an increased abundance of bifidiobacteria
species, decreased microbial diversity, and increased stability of
the microbiota population (Bezirtzoglou et al., 2011; Kashtanova
et al., 2016). Alterations of the gut microbiota in this sensitive
time have also been shown to contribute to disease; antibiotics
administered in early infancy have also been associated with
an increased risk for obesity (Bailey et al., 2014; Cox et al.,
2014).
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The study of germ-free animals has allowed researchers to
investigate the role of the microbiota in gut-brain signaling and
development (Luczynski et al., 2016). Gnotobiotic zebrafish have
reduced levels of serotonin-positive enteroendocrine cells despite
normal levels of intestinal epithelial cells, and numbers can be
restored by inoculation with a complete microbiome (Bates et al.,
2006). In a mouse model of pre-term infants, inoculation of
pre-term mice with the microbiota of pre-term human infants
who were adequately gaining weight resulted in improved villus
height and crypt depth, increased cell proliferation, increased
density of Paneth and goblet cells, and improved tight junctions
(Yu et al., 2016). Microbiota are also essential for normal
brain development. In one study, germ free mice demonstrate
increased motor activity, reduced anxiety-like behavior, and
increased striatal levels of synaptophysin (a synaptic vesicle
maturation and synaptogenesis marker) and PSD-95 (marker for
maturation of excitatory synapses). Early colonization of these
germ-free mice with microbiota normalized several behavior
patterns and synaptophysin and PSD-95 levels, suggesting
early microbiota is crucial for normal brain development and
behavior (Diaz Heijtz, 2016). Carlson and colleagues recently
demonstrated associations between microbial composition and
cognitive functioning, as measured by the Mullen Scales of
Early Learning, in developmentally normal infants (Carlson
et al., 2018). Gut-brain sensory neural circuitry could link the
microbiome to its early effects on the development of the gut,
the brain, and disease.

CONCLUSION

Recently, gut-brain biology has become an attractive scientific
field. Most of the work has focused on correlative observations

between gut microbiota and the brain. But emerging literature
is revealing the neural circuits linking the gut surface and the
brain. The discovery of synapses in enteroendocrine cells has
provided a new avenue of exploration in how nutrients and
microbiota signals in the gut modulate brain function and
behaviors. It has also allowed us to look at the development
of gut-brain neural circuits from a new perspective. There are
significant parallels between enteroendocrine cell and sensory
neuron development and differentiation. At an early gestational
age, we begin to perceive the outside world through innervated
sensory epithelial cells. Enteroendocrine cells are included in
this family now. What we feel, hear, taste, smell and eat
in utero influences our development and later integration into
the world at birth. Alterations in the development of these
sensory neuroepithelial circuits are potential targets for gut
and brain disorders linked to visceral hypersensitivity. Some
of those include obesity, anorexia, autism, chronic abdominal
pain and irritable bowel disease. After all, when the gut first
meets the brain may be when our brain learns to feel food in
the gut.
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