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The term “resilience” refers to the ability to adapt successfully to stress, trauma
and adversity, enabling individuals to avoid stress-induced mental disorders such
as depression, posttraumatic stress disorder (PTSD) and anxiety. Here, we review
evidence from both animal models and humans that is increasingly revealing
the neurophysiological and neuropsychological mechanisms that underlie stress
susceptibility, as well as active mechanisms underlying the resilience phenotype.
Ultimately, this growing understanding of the neurobiological mechanisms of resilience
should result in the development of novel interventions that specifically target neural
circuitry and brain areas that enhance resilience and lead to more effective treatments
for stress-induced disorders. Stress resilience can be improved, but the outcomes and
effects depend on the type of intervention and the species treated.
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INTRODUCTION

Resilience means ‘‘the ability to withstand or recover quickly from difficult conditions’’ (Fletcher
and Sarkar, 2013; Robertson et al., 2015). However, in the context of recent biological and
psychological research, resilience has gained a more specific meaning. The idea of resilience
as resistance to stress (Figure 1) originated in the 1970s when researchers began to study
children capable of normal development despite a difficult upbringing (Masten, 2001). By the
early 1990s, the emphasis of resilience research has shifted away from identifying protective
factors, which involve positive emotions and the competence for self-regulation, to a study of
how individuals overcome adversity and an examination of the psychosocial determinants of
resilience in trauma-exposed adults (Luthar et al., 2000; Conger and Conger, 2002; Bonanno
et al., 2015; Cai et al., 2017). Negative manifestations of resilience manifest as mood disorders,
including major depressive disorder (MDD), fear, anxiety, posttraumatic stress disorder (PTSD)
and other stress-associated negative emotions (Feder et al., 2009; Friedman, 2014; Alves et al.,
2017).

Recent studies employing advanced technologies such as optogenetics have significantly
deepened our understanding of the intrinsic biological mechanisms of resilience. This review article
will first introduce the psychological and physiological perspectives of resilience, then describe
the important neural circuits and neuroendocrine mechanisms involved in resilience, and finally
discuss possible ways of improving resilience based on new insights provided by neurobiological
studies.
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FIGURE 1 | A brief history of resilience research.

FUNDAMENTAL CONCEPTS AND
FEATURES OF RESILIENCE RESEARCH

In the last 10 to 15 years, resilience has been examined in a
range of contexts in both humans and animals. Animals that
show fewer deleterious effects of stress are considered resilient
(Steimer and Driscoll, 2005; Krishnan et al., 2007; Feder et al.,
2009; Ergang et al., 2015). A number of animal models have
been used to improve our understanding of stress resilience or
susceptibility (Table 1), for example, chronic social defeat stress
(CSDS; Golden et al., 2011), learned helplessness (LH; Berton
et al., 2007; Fleshner et al., 2011), exposure to predator odor
(Cohen et al., 2012) or chronic mild stress (CMS; Delgado y
Palacios et al., 2011). Resilient and susceptible animals can be
distinguished by their performance in specific behavioral tasks.

Whether resilience should be defined as a trait, process
or outcome is frequently debated in human resilience
studies. Connor and Davidson (2003) believe that resilience
represents personal qualities that enable an individual to
thrive in the face of adversity; therefore, in their opinion,
resilience is a trait comprising a constellation of characteristics
that enable individuals to adapt to the circumstances they
encounter (Connor and Davidson, 2003). In contrast, the

‘‘process hypothesis’’ focuses on the interaction between
the individual and adverse circumstance and emphasizes
that changes over time are dynamic, encompassing positive
adaptation within the context of significant adversity (Luthar
et al., 2000). Finally, resilience can also be considered an
outcome after experienced adversity (Masten, 2001). It is
worth noting that all the above concepts of stress resilience
have two elements in common, adversity and positive
adaptation (Fletcher and Sarkar, 2013), which therefore
must both be included in studies of resilience in human and
animal models. In fact, most current psychological resilience
studies involve four aspects: (a) baseline or pre-adversity;
(b) the adversity itself; (c) post-adversity resilient outcomes;
and (d) predictors of resilient outcomes; (Bonanno et al.,
2015).

More cross-sectional studies that integrate different types
of adverse stress are needed to clarify whether different
stresses share common influential pathways. This is particularly
important given that the term ‘‘adversity’’ covers a wide range of
experiences. For example, in humans, adversity can encompass
social rejection, failure in examinations, early life stress,
depression and other chronic enduring stressful experiences,
while in animals it can mean social defeat, forced swimming,
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foot shock and other types of acutely stressful stimulation
(Janakiraman et al., 2016).

Depending on the specific stressful process, resilience might
be understood as the ability: (1) to maintain natural functions
and elude adversity; and (2) to deal with the stress positively
and obtain some benefit from it. Neurobiological studies show
that resilience is mediated by both the absence of certain
key molecules that occur in susceptible animals and impair
their coping ability, and the presence of distinct adaptation
mechanisms seen in resilient individuals that promote normal
behavior (Krishnan et al., 2007; Friedman et al., 2016). The
former and latter are considered to be mechanisms of passive and
active resilience, respectively (Russo et al., 2012).

REPRESENTATIVE ANIMAL MODELS OF
RESILIENCE

CSDS (Golden et al., 2011) and CMS (Liu et al., 2018) are
two of the most widely used resilient animal models and have
been widely applied in the study of resilience and depression,
although the more aggressive behavior of the outbred CD-1
mouse requires careful monitoring in the CSDS test (Albonetti
and Farabollini, 1994). CMS consists of various random negative
stressful stimuli, such as foot shock, swimming in cold water,
light/dark succession and hunger (Chang and Grace, 2014),
and may be more similar to the types of stress experienced by
humans. Since female mice exposed to CMS are less stable than
males (Franceschelli et al., 2014), gender differences should be
taken into account when using this model.

Although such animal models have dramatically improved
our understanding of the neural substrates underlying
resilience, they have been less useful in defining the complex
interactions between environmental stress, protective factors
and individual personality. For example, increased self-criticism
and decreased self-compassion enhance the risk of depression
in humans (Ehret et al., 2015), but these effects are not
represented (and arguably could not be represented) in animal
models of resilience. On the other hand, techniques used
to study regions of the brain involved in the regulation of
human resilience, such as functional magnetic resonance
imaging (fMRI), positron emission tomography (PET) or
deep brain stimulation (DBS), are limited by low spatio-
temporal resolution and ethical considerations. Therefore,
an appropriate combination of human and animal models is
required to enable researchers to gain a precise understanding of
resilience.

BEHAVIORAL CHARACTERISTICS OF
RESILIENCE

A range of psychosocial factors that contribute to resilience
have been identified. The factors include active coping (Snow-
Turek et al., 1996; Hanton et al., 2013), optimism (Warner
et al., 2012), cognitive reappraisal (Maren, 2008; Farchi and
Gidron, 2010; Troy et al., 2010), prosocial behavior (Staub and
Vollhardt, 2008), social support and others (Ozbay et al., 2008;
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Cai et al., 2017). Social support is one of the main protective
elements that influence family well-being, parenting quality and
child resilience (Armstrong et al., 2005). A 10-year longitudinal
study found that social support from partners promoted
resilience in response to economic stress (Conger and Conger,
2002). In contrast, poor social support enhanced stress, leading
to elevated heart rate (Stansfeld et al., 1997), depression (Oxman
and Hull, 2001) and increased susceptibility to PTSD (Johnson
et al., 1997).

Although the onset of psychiatric disorders such as PTSD
and depression might be prevented by promoting adaptation
to stress, the key to resilience and mental well-being lies in
emotion regulation processes (Hu et al., 2014). For example,
social support and resilience have multiple mediation effects on
the regulation of cognitive emotion and acute stress in Chinese
male soldiers (Cai et al., 2017). However, there are also studies
that claim there are no relationships between resilience and
social support, lifestyle factors or work-related factors (Corina
and Adriana, 2013; Black et al., 2017), although it is generally
acknowledged that resilience buffers against various types of
stress. These inconsistent behavioral results might be attributed
to the use of different resilience questionnaires, the sample
size and type of human subjects, and non-standardization of
the test procedure, suggesting that it is critical to identify
the physiological substrates underlying the manipulation of
resilience. Animal models and emerging technologies, such as
optogenetics (Friedman et al., 2014, 2016), electrophysiological
recording (Christoffel et al., 2015; Friedman et al., 2016) and
animal imaging systems (Delgado y Palacios et al., 2011; Anacker
et al., 2016), are generating a great deal of interest in the
elucidation of the neural circuits and molecules involved in
resilience.

A DYNAMIC FRAMEWORK OF
RESILIENCE

In early studies, psychological models of resilience were
established to describe the construction of active pathways of
resilience. Garmezy et al. (1984) emphasized the interaction
between adverse stimulation and the consequences of stress,
while Rutter (1987) elaborated four pathways to elucidate
how individuals process adversity, which involve reduction in
risk impact and negative chain reactions, establishment and
maintenance of self-esteem and self-efficacy, and the opening
up of opportunities. These early theories had a great impact
on psychological perspectives of resilience, and subsequently
these and other contemporaneous researchers attempted
to uncover how resilience interacts with environmental
stress and other personal traits to influence the behavior of
individuals.

The concept of ‘‘biopsychospiritual homeostasis’’ was
introduced by Richardson (2002), whose model proposed that
resilience was a dynamic equilibrium state in which physical,
psychological and spiritual ingredients, as well as various
adversity or protective factors reached a balance. However,
Rutter (2012) was forthright in declaring that resilience ‘‘should

not constitute a theory, nor should it be seen as equivalent to
positive psychology or competence.’’

Although neurobiological research into resilience has less
theoretical underpinning, new discoveries have emerged in
recent years. For example, resilient individuals have been shown
to have drastically different behavioral performances and neural
substrates compared with, more susceptible individuals (Feder
et al., 2009), while some recent study shows that a K+ channel
in ventral tegmental area (VTA) dopamine (DA) neurons
differentially mediates neuronal activity in resilient, normal and
susceptible mice (Friedman et al., 2016; Han and Nestler, 2017;
Barrese et al., 2018).

NEURAL BASIS OF RESILIENCE

Researchers have demonstrated that various brain structures and
pathways are involved in resilience (Franklin et al., 2012; Russo
et al., 2012), and we review these below.

Medial Prefrontal Cortex
The medial prefrontal cortex (mPFC) exerts strong negative
control over stress pathways, and maladaptive behavior in
response to stress involves mPFC dysfunction (Wang et al.,
2014). Inhibiting neuronal activity in the mPFC by DBS is
effective at alleviating symptoms in depressed humans or
rodent depression models (Covington et al., 2010; Warden
et al., 2012), while enhanced mPFC excitation results in
depression-like behavior (Wang et al., 2014). mPFC lesions
augment the hypothalamic-pituitary-adrenal (HPA) axis in
response to emotional stress, while, in contrast, intra-mPFC
injection of corticosterone attenuates this response (Diorio
et al., 1993). Neural activity and levels of immediate early
gene expression are lower in the ventral mPFC following
stressors such as CSDS, predator stress, or water submersion
in susceptible rodents (Covington et al., 2010). Interestingly,
depressive patients demonstrate decreased neuronal activity in
the postmortem anterior cingulate cortex (ACC), a brain area
with functional homology to the mPFC in rodents (Covington
et al., 2010). Moreover, hypoactivity is corrected by optogenetic
induction of cortical burst firing in animals and is accompanied
by the reversal of CSDS-induced social anxiety and anhedonia
(Covington et al., 2010; Adamec et al., 2012). In addition,
the subgenual cingulate cortex, which is also homologous to
the rodent mPFC, is hyperactive in mood disorders (Ressler
and Mayberg, 2007; Drevets et al., 2008; Hamani et al.,
2011).

The lateral prefrontal cortex often demonstrates hypoactivity
in neuroimaging studies of depressed patients (Kinou et al.,
2013; Rive et al., 2013). Selective activation of the mPFC–lateral
habenula (LHb; Li et al., 2011; Warden et al., 2012) or the
mPFC–amygdala pathway (Martinez et al., 2013; Moscarello and
LeDoux, 2013) results in depression-like activity. However,
stimulation of the mPFC–dorsal raphe nucleus (DRN)
pathway promotes resilience (Warden et al., 2012). The precise
mechanisms by which the mPFC interacts with its downstream
targets and integrates different behavioral responses to stress, and
in particular resilience to stress, deserve further investigation.
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It should be noted that the results of research into the
effect of early life stress on resilience remain inconsistent.
Stress has extensively proven to be related to the emergence
of diabetes (Marcovecchio and Chiarelli, 2012), child health
issues (Charmandari et al., 2012), cardiovascular disease
(Kivimäki and Steptoe, 2018) and depression (Pena et al.,
2017). Adverse childhood experiences (ACEs), such as
psychological or sexual abuse, violence against the mother
and household dysfunction, are strongly correlated with
a significantly increased risk of physical or psychological
disease and unhealthy habits in subsequent life, for example,
alcoholism, depression, smoking, severe obesity and illicit drug
use (Felitti et al., 1998; Anda et al., 1999; Dube et al., 2001,
2003; Van Niel et al., 2014; Gilbert et al., 2015). Although it
is well known that ACEs can result in serious longstanding
consequences, mild exposure to stress at an early age, so-called
stress inoculation (Meichenbaum and Cameron, 1989), might
improve resilience. However, despite investigations into the
mechanisms underlying the effects of stress inoculation, which
have focused mainly on HPA axis-related variations (reviewed
in Ashokan et al., 2016), the potential neural circuits and
plasticity have remained elusive. A recent study demonstrated
that learned-helplessness mice exposed to inescapable foot
shocks for 6 days experienced spatial memory deficits
and decreased basolateral amygdala-ventral hippocampus
CA1 connection. However, under the same conditions learned-
hopefulness mice showed enhanced spatial memory and neural
activity (Yang et al., 2016), suggesting the existence of neural
plasticity variations associated with a long period of negative
stress.

Hippocampal Pathways
The hippocampus, which is modulated by stress hormones,
is one of the main brain areas that exert regulatory control
over the HPA axis. Stressors rapidly stimulate the parvocellular
neurons of the paraventricular nucleus of the hypothalamus
to secrete corticotropin-releasing factor and vasopressin,
triggering the release of adrenocorticotropic hormone from
the anterior pituitary; in turn the latter promotes the release
of glucocorticoid stress hormones from the adrenal cortex into
the circulation (Levone et al., 2015). There are both direct and
indirect polysynaptic connections between the paraventricular
nucleus and the hippocampus, which negatively influence the
HPA axis via glucocorticoid-receptor- or mineralocorticoid-
receptor-dependent feedback (Franklin et al., 2012; Levone
et al., 2015). It has been shown, in both human and rodents,
that stimulation of the hippocampus decreases glucocorticoid
secretion, while, in contrast, hippocampal lesions increase
basal glucocorticoid levels, especially during the stress
recovery phase, the phase most reliant on negative feedback
(Jankord and Herman, 2008).

The hippocampus is particularly vulnerable to the impact
of stress. The glutamate hypothesis, of which impaired
hippocampal function is a major component, has been widely
accepted in the field of depression. Human studies show
that, abnormal glutamatergic synaptic transmission, maladaptive
structural and functional changes in hippocampal circuitry,

and reduction in hippocampal volume, are associated with
stress-induced conditions such as MDD (Franklin et al.,
2012). Glutamatergic ventral hippocampus (vHIP) → nucleus
accumbens (NAc) projections regulate susceptibility to CSDS.
Reduced activity in the vHIP has been observed in mice
resilient to CSDS (Bagot et al., 2015). Suppression of vHIP-NAc
synaptic transmission by optogenetic induction of long-term
depression is pro-resilient, while enhanced activity of this
pathway is pro-susceptible. However, optogenetic activation
of either mPFC or basolateral amygdala afferents to the
NAc is pro-resilient (Bagot et al., 2015), highlighting an
important circuit-specific mechanism in depression or stress
resilience. Using magnetic resonance imaging, social avoidance
in C57BL/6 mice with CSDS correlated positively with volume of
the hippocampal CA3, accompanied by synchronized anatomic
differences between hippocampus and several other areas,
including the VTA, the cingulate cortex and the hypothalamus
(Anacker et al., 2016).

Various postsynaptic receptors of the hippocampus, such
as G-protein coupled gama-aminobutyric acid B (GABAB)
receptors, play important roles in stress regulation. Different
isoforms of GABAB receptor subunits, such as GABAB(1a)
and GABAB(1b), have been shown to differentially regulate
stress resilience. Specifically, GABAB(1a) knockout mice are
susceptible whereas GABAB(1b)-deficient mice are resilient
to stress-induced anhedonia and social withdrawal (O’Leary
et al., 2014), suggesting that GABAB receptors may be novel
therapeutic targets for regulation of stress. Hippocampal
serotonin (5-HT) receptors are also important in stress
regulation. Thus, knockdown of the hippocampal 5-HT
receptor, 5-HT1A, significantly decreases the antidepressant-like
effect induced by a nicotinic partial agonist, cytisine
(Mineur et al., 2015).

VTA-NAc Pathways
A well-characterized reward circuit in the brain comprises
dopaminergic neurons in the VTA that give projections to the
NAc. This VTA–NAc circuit is crucial for rewardmotivation and
the consumption of addictive substances (Skibicka et al., 2013;
Juarez et al., 2017). However, increasing evidence in humans and
animals suggests that VTA-NAc pathways also play an important
role in mediating stress susceptibility.

DA neurons in the VTA mediate susceptibility and resilience
in CSDS-induced behavioral abnormalities. VTA DA neurons
exhibit low frequency tonic firing and high frequency phasic
firing in vivo (Grace et al., 2003). Induction of phasic, but
not tonic, firing by optogenetic stimulation in VTA DA
neurons results in a susceptible phenotype in mice undergoing
subthreshold CSDS, as indicated by social avoidance and
decreased sucrose consumption.

Activation of VTA-NAc, but not VTA-mPFC, pathways leads
to stress susceptibility to CSDS, highlighting a circuit-specific
mechanism in stress resilience (Razzoli et al., 2011). In support
of the above finding, VTA DA neurons of susceptible mice
exhibit hyperactivity (Friedman et al., 2014). In contrast, mice
resilient to CSDS exhibit stable normal firing of these neurons
(Friedman et al., 2014, 2016). mTOR, which has been shown
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to regulate cell growth, metabolism, proliferation and survival
(Elghazi et al., 2017), shows elevated levels in the VTA 3 weeks
after termination of CSDS in mice. Levels of phosphorylated
AKT, an upstream regulator of mTOR, are also increased (Der-
Avakian et al., 2014).

GABAergic medium spiny neurons (MSNs) are the principal
neurons in the NAc. Recent studies suggest that impairment
of GABAergic neurons in the NAc is linked to MDD. The
NAc of stressed mice features a decrease in inhibitory synapses,
leading to NAc dysfunction (Zhu et al., 2017). Mice in which the
metabotropic glutamate receptor subunit 5 (mGluR5) is deleted
display an increase in depression-like behavior compared to
controls, while lentiviral transfection of mGluR5 in the NAc
of these mutant mice counteracts their depression-like behavior
(Shin et al., 2015).

TOWARDS IMPROVEMENT OF
RESILIENCE

Both psychological and behavioral therapy have been used to
improve resilience and thus reduce the symptoms of mental
disorders and increase mental flexibility (Wolmer et al.,
2011; Horn et al., 2016; Creswell, 2017). The drawback of
psychological treatments is clear, as behavioral psychotherapy
generally takes place over a long period of time, works slowly,
and provides little improvement in our understanding of
the internal mechanisms involved. Resilience is probably
influenced largely by active adaptations, which occur specifically
in resilient individuals. Genome-wide screening using the
CSDS model has recognized numerous gene expression
variations and chromatin alterations in the VTA and NAc
that are observed only in resilience (Krishnan et al., 2007;
Wilkinson et al., 2009). Thus, it seems possible to trigger
natural mechanisms underlying resilience, which differ
from the effects of existing antidepressants, in susceptible
populations (Russo et al., 2012). We next discuss important
research that has changed the understanding of resilience and
indicates how new treatments of stress-related disorders might
be developed.

Improving Resilience by Altering Neural
Activity
Early studies showed that the degree of VTA DA neuronal
activity is a crucial element determining behavioral susceptibility.
Thus, ex vivo VTA neuronal firing increases in brain tissue
of susceptible but not resilient mice (Krishnan et al., 2007;
Feder et al., 2009), showing a negative correlation with social
avoidance behavior (Cao et al., 2010). Either chronic, but
not acute, administration of the antidepressant, fluoxetine,
or optogenetic stimulation of VTA DA neurons, completely
reverse these deleterious effects in susceptible mice (Cao et al.,
2010; Chaudhury et al., 2013). Moreover, the hyperpolarization-
activated cation current (Ih) increases in VTA DA neurons
of susceptible mice, while chronic treatment with fluoxetine
normalizes increased Ih (Cao et al., 2010). Local application
or systemic administration of retigabine, a KCNQ-type K+

channel opener, normalizes VTA DA neuron hyperactivity
and depressive behavior (Friedman et al., 2016), identifying
KCNQ as a target for conceptually novel antidepressants or
methods of stress regulation. However, an even larger significant
increase in Ih, in parallel with increased K+ channel currents,
is observed in resilient, compared to susceptible and control
mice. Further experimental enhancement of Ih or an optogenetic
activation of VTA DA neuron activity completely reverses
depression-related behavior in susceptible mice (Friedman et al.,
2014).

So we might ask, why don’t we observe hyperactivity
of VTA DA neurons in resilient mice? One possibility
is that the upregulation of Ih in VTA DA neurons of
resilient mice could drive neuronal firing to extremely high
frequencies in parallel with activating a self-tuning K+ current
mechanism to normalize the excessive firing. The Ih potentiation
could engender the overactivity that directly causes this K+

current compensation (Friedman et al., 2014), a homeostatic
plasticity mechanism established in the VTA-NAc, rather
than in the VTA-mPFC pathway; these observations might
lead to new therapeutic strategies for promoting natural
resilience.

Increased activity in the NAc DA1-MSN pathway promotes
resilience, while suppression of these MSNs leads to a
depression-like phenotype after CSDS. Although bidirectionally
modifying the NAc DA2-MSN pathway does not change
behavioral outcomes in the CSDS model, repeatedly activating
NAc DA2-MSNs evokes social avoidance in resilient mice after
subthreshold CSDS (Francis et al., 2015). Therefore, the NAc
DA1-MSN pathway may provide novel targets for the treatment
of depression or other affective disorders.

Considering the direct anatomical and functional connections
between the locus coeruleus (LC) noradrenergic neurons
(NEs) and the VTA, the LC might be responsible for
buffering the external stressors and stress response of VTA
DA neurons (Guiard et al., 2008; Chandler et al., 2013).
LC-VTA NE synaptic transmission is both necessary and
sufficient for the promotion of resilience in response to
social defeat. Furthermore, selective change in NE tone affects
VTA DA-NAc projections (Isingrini et al., 2016). Chronic
treatment with idazoxan, an α2 NE receptor antagonist, leads
to reduction in VTA DA neuron excitability, which counteracts
susceptibility (Chaudhury et al., 2013; Isingrini et al., 2016),
but whether K+ current compensation underlies the decreased
neuronal excitability of the VTA DA system requires further
investigation.

Improving Resilience Using
Neuropharmacological Approaches
Various neurochemicals have been found to change resilience.
The release of NPY, a 36 amino-acid peptide, is thought to help
limit the negative consequences of stress and has anxiolytic-like
effects (Cohen et al., 2012). Ketamine and a number of other
neurochemicals likewise also bring about intense and enduring
adaptations to stress (Sachs et al., 2015; Sciolino et al., 2015;
Brachman et al., 2016).
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NPY
Intranasal NPY administration provides neuronal protection
when applied immediately prior, or following, exposure to
traumatic stress in an animal model. Rats pretreated with
intranasal NPY before single prolonged stress (SPS) exposure
show less depressive-like and anxiety-like behavior (Serova et al.,
2013). Traumatic stress-triggered dysregulation of the HPA axis
can be prevented by intranasal NPY, which restores proper
negative feedback inhibition within the HPA axis by changing
the activity of glucocorticoid receptors (Laukova et al., 2014;
Serova et al., 2014). Furthermore, 1 week after SPS exposure,
when animals have developed symptoms of PTSD, treatment
with intranasal NPY reduces anxiety-like and depressive-like
behavior (Serova et al., 2014). These results suggest that NPY
holds enormous promise for novel therapeutic approaches to the
improvement of resilience, although the mechanism underlying
NPY function remains unclear.

Ketamine
As an antagonist of the glutamatergic N-methyl-D-aspartate
(NMDA) receptor, and an activator of α-amino-3-hydroxy-5-
methyl-4-isoxazole propionate (AMPA) receptors, ketamine has
rapid and sustained antidepressant effects (Berman et al., 2000;
Zarate et al., 2006; Murrough et al., 2013; Price, 2016; McGowan
et al., 2017). Ketamine infusion induces rapid reduction in the
severity of PTSD and depressive symptoms, thereby improving
the overall clinical presentation of PTSD patients (Murrough
et al., 2013; Feder et al., 2014). Importantly, ketamine does
not give rise, clinically, to significant persistent dissociative
symptoms (Feder et al., 2014). A recent study showed that a
single dose of ketamine prevents CSDS-induced depressive-like
behavior. The effects of ketamine were also confirmed in
LH and chronic corticosterone mouse models (Brachman
et al., 2016), suggesting that ketamine strengthens resilience
and thus might be useful in protecting against stress-induced
disorders.

Importantly, ketamine may be clinically most useful if
administered in a prophylactic manner, i.e., 1 week before a
stressor. In mice undergoing the contextual fear conditioning
(CFC) paradigm, administration of prophylactic ketamine for
1 week, but not 1 month or 1 h before CFC, prevents the animal
from freezing behavior. However, ketamine treatment following
CFC or during extinction does not change subsequent expression
of fear (McGowan et al., 2017).

Recently, two Nature articles revealed the mechanism
underlying the anti-depression effects of ketamine. Depressive
rats were found to have increased bursting activity in the
lateral habenula (LHb) due to upregulation of an astroglial
potassium channel, Kir4.1 (Cui et al., 2018). Ketamine blocked
NMDA-dependent bursting activity in the LHb and reversed
depression-like symptoms (Yang et al., 2018), implicating
the NMDA receptor and Kir4.1 in the LHb as potential
targets for treatment of depression. It should be noted,
however, that there is limited clinical use of ketamine due
to its psychotogenic side effects and addictive liability. In
the CSDS and LH models of depression, it was found that
R-ketamine is more potent and shows a longer antidepressant

effect than S-ketamine, while S-ketamine, but not R-ketamine,
precipitates behavioral abnormalities (Yang et al., 2015).
Therefore, unlike S-ketamine, R-ketamine could potentially
be used to elicit a sustained and safe antidepressant effect.
The antidepressant effect of ketamine requires metabolism of
(R,S)-ketamine to (2S,6S; 2R,6R)-hydroxynorketamine (HNK).
Moreover, the (2R,6R)-HNK enantiomer shows antidepressant
actions in mice that is independent of NMDA receptor
inhibition but involves early and persistent activation of AMPA
receptors (Zanos et al., 2016). The cortical NMDA receptor
complex is heteromultimeric, consisting of two GluN1 and
two GluN2 subunits, the latter primarily of the GluN2A
and GluN2B isotypes (Monyer et al., 1992). In addition to
regulating depression-like behavior, the GluN2B-containing
NMDA receptor plays a critical role in mediating the rapid
antidepressant effect of ketamine (Miller et al., 2014). More
work is required to reveal the details of how the NMDA
receptor, the AMPA receptor and ketamine interact, and
R-ketamine should be explored further as a potentially more
effective and safe antidepressant medicine for improving
resilience.

5-HT
5-HT is the neurotransmitter that is most relevant to resilience
(Kim et al., 2013). Either 5-HT deficiency in the brain or exposure
to psychosocial stress promotes the etiology of depression,
anxiety, PTSD and other mood disorders (Sachs et al., 2015).
Acute stress is associated with increased 5-HT turnover in the
amygdala, NAc and PFC (Feder et al., 2009). Reduced levels of
brain 5-HT result in enhanced vulnerability to psychosocial stress
and thus reduce the antidepressant effects of fluoxetine following
stress exposure in mice (Sachs et al., 2015).

The enteric nervous system, also called the gut brain, is
intimately linked with 5-HT and resilience (Foster and McVey
Neufeld, 2013). Some metabolites, derived from gut microbes,
increase the production of 5-HT in the cells lining the colon
(Yano et al., 2015). These cells account for 60% and more
than 90% of peripheral 5-HT in mice and humans, respectively
(Smith, 2015). In particular, germ-free mice, which lack an
intestinal microbiome, have an increased turnover rate of key
neurochemicals, including striatal 5-HT, which is associated with
anxious behavior, but have significantly decreased levels of 5-HT
in blood (Diaz Heijtz et al., 2011; Smith, 2015). Moreover, blood
5-HT levels in these mice can be restored by introducing spore-
forming bacteria into the intestine (DiazHeijtz et al., 2011; Smith,
2015), suggesting that gut microbes may directly or indirectly
impact neurotransmitter levels, at least in rodents. However,
it remains unclear whether these altered levels of 5-HT in the
gut trigger a cascade of molecular events that consequently
affect brain activity; the situation in humans requires further
investigation.

Other Means of Improving Resilience
The neuropeptide galanin and a galanin receptor subtype,
GalR1–3, are expressed throughout circuits that mediate stress
responses, including the mPFC, DRN, LC, hypothalamus,
hippocampus, VTA and amygdala (Hawes and Picciotto, 2004).
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Exposure to stress decreases time spent in open arm exploration
in sedentary rats, but not in those treated chronically with
intracerebroventricular galanin or exercised rats which have
increased galanin levels in the LC, implicating improved
resilience in the latter groups. Increased DA overflow and
loss of dendritic spines in the mPFC, observed after stress in
sedentary rats, are prevented by both exercise and chronic,
intracerebroventricular galanin. Moreover, chronic, but not
acute, administration of galanin receptor antagonist M40 blocks
the resilience-promoting effects of exercise (Sciolino et al., 2015).
These results suggest that increased galanin levels promote
resilience at both neural and behavioral levels, and galanin may
thus improve stress resilience by regulation of mPFC neural
plasticity. Phasic stimulation of VTA DA neurons leads to
susceptibility and reverses resilience rapidly (Chaudhury et al.,
2013), while midbrain DA activity and DA release can be
inhibited by galanin (Sciolino et al., 2015; Weinshenker and
Holmes, 2016).

Improving Resilience in Humans
Improvements in resilience in humans have been reported
as a result of psychological and cognitive therapies, such
as child caregiver advocacy resilience (Li et al., 2017), a
life skills education-based program (Sarkar et al., 2017), the
iNEAR programme (Tunariu et al., 2017), intensive mindfulness
meditation training (Hwang et al., 2018) and stress inoculation
training (Horn et al., 2016). Although all the above achieved
good outcomes, the same method may have different therapeutic
effects in different individuals. Therefore, the development of
more general, stable, and faster effective interventions is likely to
be a trend in the future.

DBS is now a well-established surgical option. More and
more studies indicate that DBS has beneficial effects in many
psychiatric disorders, such as PTSD (Koek et al., 2014),
depression (Schlaepfer et al., 2008) and Parkinson’s disease
(Pellaprat et al., 2014). Early research identified another clinical
tool, repetitive transcranial magnetic stimulation (rTMS), a
non-invasive technique that normalizes activity of the HPA
system and has an antidepressant effect (Czéh et al., 2002). It
seems that rTMS induces alterations in neural networks and has
an effect in some psychiatric disorders (Aleman, 2013). Since
resilience is closely related to these diseases, it is possible that
these technologies can be used to improve resilience, but this
remains to be studied.

CONCLUDING REMARKS

The enormous impact of stress, trauma or other forms of
adversity on humanity, together with limitations in available
treatments, make it necessary to explore resilience mechanisms
that might protect against PTSD, depression and other mental

disorders. Most work in this discipline over the past decades
has focused on the biological differences between resilience
and susceptibility, and has explored, in animal models, means
to reverse the deleterious effects of chronic stress. However,
reversing these deleterious effects does not necessarily mean
that resilience is enhanced and that the affected individuals
have a better life. A crucial novel perspective, which has
emerged in recent years, is that resilient animals have active
adaptive mechanisms that are distinct from actions that reverse
deleterious effects in susceptible animals. Therefore, current
research aimed at improving stress resilience focuses on
the relationship and essential distinction between reversing
deleterious effects and cultivating active adaptive mechanisms.
Finally, the development of ‘‘precision medicine’’ for improving
stress resilience will require a clearer picture to emerge out
of the messy realm of current resilience research. A dynamic
and integrated combination of psychological and neurobiological
studies will be essential for generating this clearer picture of
resilience. Further studies should focus not only on the resilience
of individuals or small human/animal populations, but also the
wider human community, much of which is under pressure
due to, for example, the global economic crisis. Given that
social support, economic pressure and prosocial behaviors have a
significant influence on an individual’s response to stress, it will
be necessary to uncover neuronal and psychological mechanisms
of resilience at the level of different human communities.

Although mild exposure to stress at an early age (stress
inoculation; Meichenbaum and Cameron, 1989), might improve
resilience, it is worth noting that ACEs, at high score, have
been proven to affect brain development, resulting in enormous,
awful and long-term sequelae in adulthood (Felitti et al.,
1998; Anda et al., 1999; Van Niel et al., 2014; Gilbert et al.,
2015). Importantly, the consequence of ACEs is longstanding
due, at least in part, to DNA methylation changes of BDNF
gene (Kundakovic et al., 2015). Therefore, efforts toward
reducing the childhood trauma that may require a public health
campaign would have the greatest impact for the prevention
of ACEs.
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