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As technological advances lead to rapid progress in driving automation, human-
machine interaction (HMI) issues such as comfort in automated driving gain increasing
attention. The research project KomfoPilot at Chemnitz University of Technology
aims to assess discomfort in automated driving using physiological parameters from
commercially available smartbands, pupillometry and body motion. Detected discomfort
should subsequently be used to adapt driving parameters as well as information
presentation and prevent potentially safety-critical take-over situations. In an empirical
driving simulator study, 40 participants from 25 years to 84 years old experienced
two highly automated drives with three potentially critical and discomfort-inducing
approaching situations in each trip. The ego car drove in a highly automated mode
at 100 km/h and approached a truck driving ahead with a constant speed of 80 km/h.
Automated braking started very late at a distance of 9 m, reaching a minimum of 4.2 m.
Perceived discomfort was assessed continuously using a handset control. Physiological
parameters were measured by the smartband Microsoft Band 2 and included heart
rate (HR), heart rate variability (HRV) and skin conductance level (SCL). Eye tracking
glasses recorded pupil diameter and eye blink frequency; body motion was captured
by a motion tracking system and a seat pressure mat. Trends of all parameters were
analyzed 10 s before, during and 10 s after reported discomfort to check for overall
parameter relevance, direction and strength of effects; timings of increase/decrease;
variability as well as filtering, standardization and artifact removal strategies to increase
the signal-to-noise ratio. Results showed a reduced eye blink rate during discomfort
as well as pupil dilation, also after correcting for ambient light influence. Contrary
to expectations, HR decreased significantly during discomfort periods, whereas HRV
diminished as expected. No effects could be observed for SCL. Body motion showed
the expected pushback movement during the close approach situation. Overall, besides
SCL, all other parameters showed changes associated with discomfort indicated by the
handset control. The results serve as a basis for designing and configuring a real-time
discomfort detection algorithm that will be implemented in the driving simulator and
validated in subsequent studies.
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INTRODUCTION

Automated driving is expected to bring several mobility benefits
such as improved traffic safety, reduced congestions and
emissions, social inclusion, accessibility and more comfort
(ERTRAC, 2017). As technological advances have enabled
the rapid progression in driving automation, human-machine
interaction (HMI) issues gain more attention and are considered
a key question for broad public acceptance (Banks and Stanton,
2016; Riener et al., 2016; ERTRAC, 2017). One central HMI issue
involves the question of how comfortable automated driving
can be implemented to ensure a positive driving experience
(Elbanhawi et al., 2015; ERTRAC, 2017; Bellem et al., 2018).
Having a positive driving experience is a main factor for deciding
to purchase and use a vehicle or in-vehicle system (Engelbrecht,
2013). In automated driving, discomfort could additionally
lead to potential safety-critical situations, for example, due
to (non-necessary) takeover with all associated risks such as
reduced situation awareness (Hergeth et al., 2017). As the
human role in automated driving changes from active driver to
passenger, new and additional determinants of driving comfort
are discussed, such as motion sickness, apparent safety, trust in
the system, feelings of control, familiarity of driving maneuvers,
and information about system states and actions (Beggiato et al.,
2015; Elbanhawi et al., 2015; Bellem et al., 2016). There is no
agreed-upon definition for comfort in the scientific community
(Hartwich et al., 2018); however, existing comfort definitions
share some central assumptions: comfort (a) is a subjective
construct and, therefore, differs between individuals; (b) is
affected by physical, physiological, and psychological factors; and
(c) results from interaction with the environment (de Looze
et al., 2003). Thus, comfort is hereby understood as a subjective,
pleasant state of relaxation expressed through confidence and
apparently safe vehicle operation (Constantin et al., 2014),
‘‘which is achieved by the removal or absence of uneasiness and
distress’’ (Bellem et al., 2016, p. 45).

The research project KomfoPilot at Chemnitz University of
Technology aims to investigate factors that influence comfort
in automated driving. One objective is to find parameters that
affect comfort on a general level, for example, situations and
driving parameters such as speed, longitudinal/lateral distance,
driving style familiarity, or personal characteristics (Hartwich
et al., 2015, 2018). A second objective is the development
of an algorithm for real-time discomfort detection to adapt
driving style and information presentation at each moment
once discomfort begins. The underlying idea is the metaphor
of a vehicle–driver–team that knows each other’s strengths,
limitations, and current states, and is able to react accordingly
(Klein et al., 2004). The algorithm will be developed by project
partners who specialize in data fusion (FusionSystems GmbH
and Communication Engineering Department at Chemnitz
University of Technology) and should combine data from
different sensors such as in-car sensors (2D and 3D cameras,
motion tracking), physiological sensors (smartband Microsoft
Band 2, eye tracking), vehicle data and environment sensors.
As a basis for developing the algorithm, the present article
reports the results of the psychophysiological parameters

pupil diameter, eye blink frequency, heart rate (HR), heart
rate variability (HRV), electrodermal activity (EDA) and
body motion with regard to discomfort during automated
driving in a driving simulator. Driving simulators offer an
optimal environment for creating standardized situations under
experimental control and applying sensors for measuring
physiological parameters (Brookhuis and de Waard, 2011),
although with limited external validity. The presented analyses
aim to provide information about the potential of each parameter
for detecting discomfort in an approaching automated situation,
such as overall relevance, variability, direction and strength
of effects, timing such as increase and decrease before and
after discomfort as well as filtering and artifact removal
strategies.

The use of these physiological parameters to infer mental
states has a long research tradition. Despite results that are
often contradictory, the main findings for these parameters are
summarized subsequently and hypotheses regarding discomfort
are derived. Pupil diameter has been studied largely as an
indicator for mental effort, cognitive workload, stress, fatigue,
information processing, affective processing and attention
(Andreassi, 2000; Cowley et al., 2016). One of the major
challenges in interpreting pupil size changes out of controlled
lab studies is the heavy dependance on ambient light (Palinko
and Kun, 2012). Despite these problems in separating the effects
of ambient factors and mental states, a central finding is that
pupil diameter increases with task difficulty, mental workload,
emotionality of stimuli, and information-processing demands
(Andreassi, 2000; Backs and Boucsein, 2000; Cowley et al.,
2016). Thus, an increase in pupil diameter is expected during
uncomfortable situations. Eye blink rate is considered a sensitive
indicator for mental workload, mood states, fatigue and task
demands (Andreassi, 2000; Cowley et al., 2016). A decrease in
blink rate in complex situations requiring visual attention has
been found for car driving in complex situations as well as for
fighter pilots (Backs and Boucsein, 2000). Thus, a decrease in eye
blink rate is expected during discomfort situations in automated
driving, which are visually monitored by the driver.

The cardiovascular parameters HR and HRV are often used
in driving simulation and on-road driving studies as indicators
of mental effort, stress, workload, and task demands (see the
overview of studies in Backs and Boucsein, 2000; Mulder
et al., 2005; Brookhuis and de Waard, 2011; Mehler et al.,
2012; Ahonen et al., 2016; Schmidt et al., 2016). A common
finding is that with higher invested effort and stress, HR
increases and HRV decreases. The discomfort-inducing close
approach situation investigated in this study could be seen
as analogous to stress situations, including the uncertainty
about the capability of a system to successfully complete a
task. Thus, an increase in HR and a decrease in HRV during
uncomfortable situations are expected. Similar to HR and HRV,
EDA has a long tradition in psychophysiological research.
Common findings include an increase of skin conductance level
(SCL) with higher arousal, alertness, mental effort, workload,
emotional load, stress, and task difficulty (Dawson et al., 2017).
However, as EDA is sensitive to a wide variety of stimuli,
it is not a clearly interpretable measure of any particular
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psychological process and must be interpreted by including
the stimulus conditions (Cowley et al., 2016; Dawson et al.,
2017). For discomfort, an increase in SCL is expected due
to a prediction of higher alertness and arousal. The HR,
HRV, and EDA were measured using the smartband Microsoft
(MS) Band 2. The use of a commercially available smartband
was an explicit project goal to estimate the potential and
problems of such a psychophysiological sensor. On the one
hand, the market for smartbands is growing (Wade, 2017);
thus, smartbands connected to vehicles could be an option for
assessing psychophysiological parameters inside cars. On the
other hand, the MS Band 2 has already been used in research
for assessing mental workload in different environments (Binsch
et al., 2016; Cropley et al., 2017; Reinerman-Jones et al., 2017;
Schmalfuß et al., 2018), activity recognition in a home setting
(Filippoupolitis et al., 2016), and for predicting and regulating
personal thermal comfort in buildings (Laftchiev and Nikovski,
2016; Li et al., 2017).

Body motion during driving has mainly been investigated
with regard to head movements for predicting driver intentions
(Pech et al., 2014), hand movements for estimating driver
distraction (Tran and Trivedi, 2009), trapezius muscle tension
as an indicator for stress (Morris et al., 2017), or facial features
for monitoring driver states (Baker et al., 2004). Moreover, the
whole 3D driver posture is considered potentially useful for
extracting information related to intentions, affective states, and
distraction (Tran and Trivedi, 2010). However, posture dynamics
are strongly related to situations and should, therefore, be
combined with other contextual information (Tran and Trivedi,
2010). In the specific approach situation with the danger of a
potential rear-end collision, a pushback movement is expected
that should be reflected in motion tracking and seat pressure mat
data. Table 1 provides a summary of the expected effects during
discomfort periods for all parameters.

MATERIALS AND METHODS

Study Design and Route
The driving simulator study was composed of two separate
driving sessions with an approximate 2-month delay in between.
Every driving session was composed of a 3-min highly automated
trip on a straight, single carriageway, rural road. The trip was
prerecorded and was exactly the same for all participants; there
was no possibility to intervene by pedals or steering wheel.
In every session, participants experienced three identical and
potentially discomfort-inducing approach situations with the

danger of a potential rear-end collision (Figure 1). A white
truck drove in front of the ego car with a constant speed of
80 km/h, whereas the ego car approached in a fully automated
mode at 100 km/h. Automated braking was initialized very late
at a distance of 9 m, which resulted in a minimum distance of
4.2 m and minimum time to contact of 1.1 s. After the approach,
the ego car fell back at a distance of 100 m, and the approach
started again. Participants were not informed about the situation
and were instructed to press the lever of the handset control
(Figure 2A) according to the extent of perceived discomfort.
Thus, every participant experienced six approach situations in
total, which resulted in 240 situations for all 40 participants and
both sessions. The main reasons for inviting the participants
twice were to: (a) obtain a higher overall number of discomfort
situations per person; and (b) assess habituation effects within
subjects over short and longer time periods (3 min vs. 2 months).
Evaluation of habituation effects resulted in small to almost no
effects, both for short- and long-term periods. Thus, all situations
were included in the subsequent analyses.

Participants
A total of 40 participants (15 females, 25 males) took part in both
sessions of the study. Ages ranged from 25 years to 84 years with
two distinct age groups, one from 25 years to 45 years (younger
group,N = 21,M = 30 years, SD = 4.3) and the other over 65 years
(older group, N = 19, M = 72 years, SD = 6.0). All subjects
were required to currently hold a valid driver’s license, and
none of them had had previous experience of highly automated
driving in the driving simulator. Participants were compensated
with 20 euros for participation. This study was carried out in
accordance with the recommendations, regulations and consent
templates of the TU Chemnitz ethics commission. The protocol
was approved by the TU Chemnitz ethics commission. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Material and Sensors
The study took place in a fixed-base driving simulator (SILAB
5.1 Software) with a fully equipped interior, a rear-view
mirror, two side mirrors and a 180◦ horizontal field of view.
Fully automated trips were prerecorded and replayed, while
the participants sat in the driver’s seat. Pedals and steering
wheel were inoperative during these trips. Perceived discomfort
was assessed during the whole trip by a handset control
integrated into the driving simulator (Hartwich et al., 2015,
2018; Figure 2A). Participants could press the lever gradually
in accordance with the extent of perceived discomfort. The

TABLE 1 | Overview of expected effects of different sensor parameters during discomfort.

Sensor Parameter Expected trend during discomfort

Eye tracking Pupil diameter Dilation (increase of diameter during mental effort/stress/attention/task difficulty)
Blink rate Decrease (attention/arousal/alertness)

MS Band 2 Heart rate Increase (mental workload/stress)
Heart rate variability Decrease (mental workload/stress)
Skin conductance level Increase (mental workload/arousal/alertness/emotional response/stress)

Motion tracking Shoulder/head movements Push-back/lean-back (decrease on z-axis)
Pressure mat Pressure Push-back/lean-back (pressure increase at back position sensor)
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FIGURE 1 | Setup of the driving simulator study during one approach situation to the truck driving ahead. Left side: motion capture markers at head, right shoulder,
and hands; handset control for reporting discomfort held in the right hand. Right side: driver camera view (top); front scenery camera view recorded from the roof of
the mock-up (middle); reported discomfort as well as driving parameters at that particular moment such as TTC, ego speed/truck speed/speed difference and
distance to the truck (bottom). Written informed consent was obtained from the individual for the publication of this image.

smartband Microsoft Band 2 (Figure 2B) was used to record
the physiological parameters of HR, HRV and SCL via a
Bluetooth connection. Accelerometer and gyroscope data were
recorded as well from the band sensors to identify and correct
for hand movements. The MS Band 2 was provided with a
Software Development Kit that allowed for programming a
dedicated logging application. Eye tracking data were recorded
by SMI Eye Tracking Glasses 2 (SMI ETG 2, Figure 2C)
and included pupil diameter, fixations, saccades and blinks.
Participants already wearing eyeglasses (N = 10) could not
wear the SMI ETG 2, which resulted in less eye tracking data.
In addition, the SMI ETG 2 were not applied in the whole
second driving session because of testing camera-based, facial-
feature recognition algorithms. Body motion was simultaneously
captured by two sensor systems. The first device was a marker-
based motion tracking system from OptiTrack composed of four
Flex 13 infrared cameras recording with 120 fps (Figure 2D).
A total of four distinct rigid bodies were tracked (left and right
hand, right shoulder and head; see Figures 1, 2D). Rigid bodies
are a collection of three or more markers on an undeformable
object. These rigid bodies can be attached to tracked objects
(e.g., clothes, gloves, headbands) and allow for recording position
and orientation in six degrees of freedom. Participants with
eyeglasses wore a headband with the rigid body attached (as in
Figure 1), whereas the SMI ETG 2 allowed for directly attaching
rigid bodies (Figure 2C). The second sensor system for body

motion was a seat pressure mat developed by the project partner
FusionSystems GmbH (Figure 2E). The mat can easily be placed
on top of the seat and includes eight pressure sensors at different
positions.

Data Recording and Sequence Extraction
Data were recorded by several independent data loggers for
each sensor with different recording frequencies. System time
for all recording devices was continuously synchronized with
a software tool based on the network time protocol (Meinberg
NTP Software). Recording frequencies were 60 Hz for the
driving simulator data, including handset control, 10 Hz for
the MS Band 2, 60 Hz for the SMI ETG 2 eye tracking data,
120 Hz for motion tracking, and 10 Hz for the seat pressure
mat. Raw data for each recorder were imported into a storage
and analysis framework based on the relational open-source
database management system PostgreSQL (Beggiato, 2015). The
synchronization procedure was based on the timestamps of
the driving simulator data (60 Hz) by adding the current
value of all other sensor systems at this specific moment. To
analyze changes in the sensor data with regard to perceived
discomfort, data during reported discomfort by the handset
control were compared with 10-s time intervals prior and after
(Figure 3).

Discomfort intervals were extracted from the start of pressing
the handset control lever until releasing, independent of the
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FIGURE 2 | Sensors: (A) Handset control for reporting discomfort; (B) smartband Microsoft Band 2; (C) SMI Eye Tracking Glasses 2; (D) camera and rigid body for
motion tracking; (E) schematic layout and placement of seat pressure mat.

magnitude. However, the handset control was only pressed
in 208 of the 240 approach situations. The distribution and
descriptive statistics of the 208 extracted discomfort intervals
are presented in Figure 4. In addition, single sensor channels
were not recorded in some situations (e.g., no SMI ETG 2 for
subjects already wearing eyeglasses or technical problems). Thus,
all charts in the results section contain the respective number and
mean duration of discomfort intervals that were included in the
analysis. For the subsequent results section, the term ‘‘sequence’’
refers to the whole time period including the discomfort interval
as well as the 10 s beforehand and afterwards.

Data Preparation
Common X-Axis
To show the development of all assessed parameters before,
during, and after the discomfort interval, a common time axis

was created for the charts in the results section (Figure 5).
As the discomfort intervals varied in duration (Figure 4), a
percent scale from 0% to 300% over the whole sequence was
used to allow for displaying all values in the same scale. Periods
before and after the discomfort interval were always 10 s long;
thus, 1% corresponds to 0.1 s. Each discomfort interval was
divided into percent slices, and the mean of each parameter
was calculated for the specific time period of the respective
percent slice. Finally, each percentage section before, during,
and after reported discomfort was combined into one chart to
show the progress of values over time. As not every sensor
was active during the trips, each chart contains the number
of sequences with mean duration and standard deviation of
the included discomfort intervals in the caption. The main
reason for using the percentage scale was to strictly respect
the subjective aspect of discomfort mentioned in the definition.
Thus, the different durations of reported discomfort intervals

FIGURE 3 | Example of synchronized sensor data during one trip, handset values in the first sensor channel and three extracted discomfort intervals (disc) with 10 s
before (pre) and 10 s after (post).
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FIGURE 4 | Distribution and descriptive statistics of the 208 extracted discomfort intervals.

should enter with the same weight in all analyses, which can be
obtained by the percentage scale. In addition, the analysis method
should also be applicable in less standardized situations, which
requires a reliance on the reported handset values. However,
using the percentage scale also has some drawbacks. It is
not possible to give precise time-related indications, as it is not
time, but the subjectively reported intervals that represent the
unit of measurement. However, descriptive statistics about the
intervals presented in Figure 4 provide an indication of temporal
dimensions. A second drawback is in regard to short sequences
of a few seconds, in which some physiological processes such
as changes in HR and SCL could hardly take effect. Similar
concerns could be raised regarding longer sequences in terms
of outliers, such as the six sequences over 20 s (Figure 4).
However, as the percentage scale assigns the same weight to all
sequences, excluding these six sequences does not change the
results (tested for all analyses). Thus, despite these mentioned
potential drawbacks, all sequences were included to present the
overall picture.

Z-Standardization and 95% Confidence Intervals
An important issue in processing psychophysiological data is
distinguishing the signal of interest from noise (Gratton and
Fabiani, 2017). Most of the physiological parameters such as
HR or EDA have a strong individual component, which means
that absolute values can hardly be compared between subjects.
Thus, relative changes within one person provide better signal-
to-noise ratio, for example, comparing changes of HR or
EDA before, during and after discomfort intervals. However,
these changes need to be transformed into a common scale
to be compared between subjects. One of the common and
best-performing transformations is the z-score, which expresses
all values as the distance to the mean in units of standard
deviations with a total mean of zero and a standard deviation
of one (Jennings and Allen, 2017). Z-transformation was applied
for each sequence, resulting in the relative changes over time in
units of standard deviations. Resulting z-values were averaged

over all sequences at each single percent level from 0% to 300%
and displayed as a blue line in the results charts (Figure 5).
Beside these general transformations, some parameter-specific
data correction methods and transformations were applied and
are described for each parameter in the subsequent results
sections. To obtain a quick estimation about the statistical
significance of changes over time, the 95% confidence interval
(CI) of each of these means was calculated pointwise and
plotted as a light red area around the blue means. If the 95%
CI does not overlap between two points in time, these two
means differ in a statistically significant manner at p < 0.01
(Field, 2013). The pointwise CI does not include multiplicity
correction as would be the case for simultaneous confidence
bands. Simultaneous CI bands control for the familywise error
in autocorrelated time series by estimating the simultaneous
coverage probability of the whole curve (Korpela et al., 2014;
Francisco-Fernández and Quintela-del-Río, 2016; Ahonen et al.,
2018). As the aim of the present analyses is not to fit a
curve, but allow for visual comparison of single points in time,
pointwise CIs were used. Pointwise CIs are narrower than
a simultaneous CI band would be, and pointwise CIs allow
only for comparing single points (as an ANOVA would do),
but do not appropriately reflect the CI for the curve as a
whole.

RESULTS

Pupil Diameter and Eye Blinks
Raw pupil diameters for the left and right eye (mm) from
the SMI ETG 2 were averaged to get a single diameter from
both eyes. To correct for signal fluctuations (especially close
to blinks), a moving average over ±300 ms was calculated,
and a z-transformation of these values was applied for each
sequence. As pupil diameter is not only dependent on mental
states, but primarily on ambient light (Watson and Yellott, 2012),
the metric could potentially be confounded during the white
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FIGURE 5 | (A) Mean luminance-adjusted z-score of pupil diameter before, during and after discomfort intervals (N = 65 intervals, M = 7.65 s, SD = 4.74 s).
(B) Mean z-score of interblink interval time before, during and after discomfort intervals (N = 67 intervals, M = 7.73 s, SD = 4.70 s). (C) Mean z-score of HR before,
during and after discomfort intervals (N = 206 intervals, M = 8.10 s, SD = 5.52 s). (D) Mean z-score of detrended SCL before, during and after discomfort intervals
(N = 203 intervals, M = 8.16 s, SD = 5.51 s). (E) Mean z-score of right shoulder movements on the z-axis before, during and after discomfort intervals
(N = 114 intervals, M = 7.85 s, SD = 4.79 s). (F) Mean z-score of pressure mat sensor at the back position before, during and after discomfort intervals
(N = 202 intervals, M = 8.04 s, SD = 5.41 s). The bold blue line shows the mean values, and the light red area shows the 95% pointwise confidence interval (CI) in all
charts.

truck approach situation. Thus, the mean luminance value of all
pixels (HSL color model) was calculated for each video frame
of the SMI ETG 2 front camera video. A z-transformation of
this mean luminance was applied for the whole trip in order
to subtract these luminance z-scores from the z-scores of pupil
diameter. The resulting luminance-adjusted z-values of pupil
diameter are shown in Figure 5A. In line with the hypotheses,
pupil diameter increased significantly during the discomfort
interval and decreased steadily after reported discomfort. About
5 s after the end of the discomfort interval (approx. 250%),
the 95% CI does not overlap anymore with the 95% CI
during the discomfort interval (side note: without correcting
for ambient luminance, the effects are the same but more
pronounced).

Eye blink rate recorded by the SMI ETG 2 was computed
in two different ways: first, blinks per second were calculated
for each whole interval before, during, and after reported
discomfort. Figure 6A shows the expected decrease in blink rate
from 0.25 blinks per second before discomfort to 0.17 blinks
per second during discomfort and the increase afterwards
to 0.37 blinks per second (F(1.37,118.57) = 26.37, p < 0.001,

η2p = 0.285). However, this representation of blink rate does
not allow for judging timings of increase/decrease as well
as significance levels over time. Thus, it does not provide
information for parameterizing an online detection algorithm.
Therefore, a second way of obtaining a continuous blink rate
was applied by calculating a running ‘‘interblink interval time.’’
This timer is set to zero every time a new blink is detected
by the eye tracker and increases until the subsequent eye blink
start is detected. Blink duration is not excluded and enters the
running time. Z-values of this running interblink interval time
were calculated for each sequence and averaged for each percent
of time. Figure 5B shows the progress of interblink interval time
z-scores with a noticeable increase during discomfort intervals
(meaning less blinks) and the return to the prior level after the
discomfort interval.

Heart Rate and Heart Rate Variability
Raw HR values in beats per minute recorded by the MS Band
2 were transformed into z-values for each of the 206 sequences.
Figure 5C shows the mean z-scores for HR over time. In contrast
to the hypothesis, HR decreased steadily at the beginning of the
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discomfort interval. The bottomHR plateau was reached at about
the middle of the discomfort interval (150%) and kept until about
5 s after reported discomfort (250%). Afterward, HR rapidly rose
up to approximately the prior level.

The HRV was computed using the interbeat interval times
(IBI) in s from the MS Band 2. The HR and IBI are not
exact reciprocal values in the case of the MS Band 2, but
IBI is recommended for HRV calculations (Cropley et al.,
2017). The time-domain metric root mean square successive
difference (RMSSD) was calculated for each interval and
averaged over all 202 sequences. The RMSSD is recommended
for measuring high-frequency HRV and when time intervals
to compare are not equally long (Berntson et al., 2017).
Frequency domain and nonlinear HRV measures were not
applied due to the relatively short time periods investigated.
In line with the hypothesis, Figure 6B shows the expected
u-shaped pattern with a decrease of HRV during reported
discomfort (χ2

(2) = 40.05, p < 0.001; nonparametric Friedman’s
ANOVA).

Skin Conductance Level
Two electrodes on the opposite side of the MS Band 2 display
(Figure 2B) measured skin resistance level in kilo ohm. These
values were inverted and multiplied by 1,000 to obtain the
SCL in micro Siemens. The SCL values were very sensitive
to changes in the hand/arm position such as placing a hand
on the knees. Thus, SCL values were excluded (missing data)
during high-movement episodes on the basis of the MS Band
2 accelerometer and gyroscope data. The remaining values were

z-standardized for each sequence. Results showed a continuous
linear increase of SCL over time, independent of the situation.
As this linear growing trend was probably related to the fact that
subjects simply got warm during driving, a detrending algorithm
was applied. Thus, a linear regression was calculated for each
sequence. The SCL z-scores were subtracted from the regression
values in order to obtain detrended z-scores, which are shown
in Figure 5D. Detrended SCL showed almost no changes during
the discomfort interval compared with the interval before and
after.

Body Movements
To assess body movements, data from the marker-based motion
tracking system as well as the seat pressure mat were evaluated.
The position of the right shoulder (mm) was captured by the
motion tracking system. As the absolute marker position in
the 3D space differed for each individual subject and each
drive, differences on the z-axis position were computed for each
sequence starting with zero at the beginning of the sequence.
These value changes were transformed into z-scores. Figure 5E
shows the mean z-scores of shoulder movement on the z-axis.
As expected, the pushback of the body was represented by
the u-shaped decrease of the shoulder z-position during the
discomfort interval. Shoulder movements on the x- and y-axis
showed similar but weaker effects; the main movement was
backwards.

The pushback movement should also be represented in the
data of the seat pressure mat, which would potentially allow
for an easier movement measurement than motion tracking. To

FIGURE 6 | (A) Mean eye blink rate before, during and after discomfort intervals (N = 67 intervals, M = 7.73 s, SD = 4.70 s). (B) Mean HRV (RMSSD) before, during
and after discomfort intervals (N = 202 intervals, M = 8.10 s, SD = 5.53 s). The bold blue dots show the mean values, and the light red bars show the
95% pointwise CI.
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analyze the seat pressure mat data, the sensor at the back position
was taken into account. Pressure values were z-transformed for
each sequence. The z-scores of the pressure sensor (Figure 5F)
showed the corresponding pattern to the motion-tracking results
with an increase of pressure during the discomfort interval
(pushback movement).

DISCUSSION

The present study aimed at detecting discomfort in automated
driving by physiological parameters from smartbands,
pupillometry and body motion. Discomfort is considered an
important issue for broad public acceptance of automated
vehicles as well as for safety issues such as critical and
not-necessary take-over situations. Considering the metaphor of
a vehicle-driver-team that knows each other, automated systems
could react to detected discomfort by changing driving style
parameters and information presentation. An important basis
for a real-time discomfort detection algorithm is information
about physiological sensor parameters associated with reported
discomfort, such as overall relevance, direction and strength
of effects, timings, variability as well as filtering and artifact
removal strategies.

Overall, besides SCL, all other assessed parameters like pupil
diameter, eye blink rate, HR, HRV and body motion showed
changes associated with discomfort indicated by the handset
control. However, filtering and standardization procedures are
required to increase the signal-to-noise ratio and remove
bias caused by individual differences. In addition, every
parameter has its own specificities, which are subsequently
discussed.

Pupil diameter showed the expected inverse u-shaped pattern
with a dilation during discomfort and recovery afterward,
analogous to results regarding workload (Andreassi, 2000;
Cowley et al., 2016). However, pupil diameter is not only
dependent on mental states, but also primarily on ambient light
conditions. Despite the fact that light conditions in the driving
simulator do not change as much as on-road, a correction
algorithm was applied by subtracting the z-standardized mean
pixel luminance from the z-values of pupil diameter at every
front camera video frame. Even with this adjustment, the effects
are still observable. However, this quite simple adjustment
procedure has some limitations. First, the exact association
between ambient light and pupil diameter is muchmore complex
than a simple linear relationship (Watson and Yellott, 2012).
Second, cameras themselves adapt to ambient light, which does
not allow to exactly measure luminance out of a video image.
Third, eye tracking with the front camera can be used for
lab experiments; in automated vehicles, luminance must be
measured by other sensors. Despite these limitations, the applied
adjustment procedure is real-time capable and will again be
tested in subsequent studies within the project.

Eye blink rate showed the expected u-shaped pattern with
fewer blinks during the discomfort interval (i.e., participants
kept their eyes open in this situation). However, as the
baseline blink rate is about one blink every 4 s, eye
blinks are a ‘‘rare event’’ in relation to the duration of

discomfort intervals. Thus, the low frequency of eye blinks
lowers the potential to serve as real-time predictor for
discomfort.

Contrary to the expected trend, HR decreased during
discomfort periods and returned to the prior level approximately
5 s after reported discomfort. A possible explanation for the
unexpected decrease could be the effect of ‘‘preparation for
action,’’ which means an anticipatory deceleration of HR prior
to planned actions (Schandry, 1998; Cooke et al., 2014). The
effect was reported for sport actions such as golf putting, but also
for simpler reaction time (RT) paradigms: ‘‘It is well established
that HR deceleration occurs during the fixed foreperiod of an
RT task’’ (Andreassi, 2000, p. 270). The HRV measured by the
RMSSD showed the expected u-shaped pattern with a decrease
during the discomfort intervals.

The SCL showed a linear increasing trend over time, which
could probably be explained by the effect that participants
got warm during driving. After correcting for this linear
trend using a regression approach, SCL showed almost
no situation-related changes during discomfort intervals.
The missing effects could be related to measurement
procedures associated with the smartband. First, absolute
SCL values were highly dependent on how tightly the
band was closed. These differences could be corrected by
the z-transformation; however, some bias could remain
(e.g., when the band was worn very loosely). Second, SCL
measures were taken from the outer side of the wrist, which
is considered a much less sensitive place for SCL-changes
compared with the fingers (Andreassi, 2000). Third, hand
movements partly caused strong offsets in EDA values. The
simple correction method of excluding these parts from the
analysis could potentially be improved by more sophisticated
algorithms.

The mentioned problems such as limited control on how
tight the band is closed are to some extent related to the
use of smartbands instead of more sophisticated measurement
devices for physiological parameters. However, the aim of
the KomfoPilot project was and is to estimate the potential
of existing wearable devices with all the real-world usage
challenges. Even with these problems, effects associated with
discomfort could be identified in the data. One of the major
challenges for using these devices will be the use of adequate
signal analysis methods for gaining maximum signal-to-noise
ratio.

Body movements captured by the pressure seat mat
and the motion tracking of the right shoulder showed
the expected pushback during the close approach to the
truck. As posture dynamics are strongly related to specific
situations (Tran and Trivedi, 2010), these movement patterns
cannot automatically be generalized across different discomfort
situations. However, discomfort associated with gaps that are
too close or potential rear-end collisions could be detected
involving body motion. A potential approach for data fusion
algorithms could be the inclusion of environment sensor
information such as time headway (Leonhardt et al., 2017)
and to consider the pushback motion pattern only in these
situations.
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To sum up, the predicted mechanism of the monitored
physiological signals for designing and configuring the real-time
detection algorithm includes the following aspects. Most relevant
parameters with the highest discomfort-specific changes resulted
in ambient light-corrected pupil diameter, HR and the pushback
movement. Interblink interval time and HRV measures showed
changes, but could be unstable due to the short time intervals.
The SCL from the MS Band 2 did not show specific changes and
is, therefore, not recommended for inclusion in the algorithm.
Regarding variability and filtering, relative changes within one
person need to be assessed due to the strong individual
component of all parameters. This could be achieved in real-time
by e.g., performing individual z-standardization in sliding time
windows and comparing the current signal value with these
scores. This comparison could include several time windows
of different lengths and different onsets, e.g., with 10 s and
5 s duration and an onset 3 s and 5 s before the current
moment. This procedure would allow one to keep trace of the
individual parameter variability by offering, at the same time,
the application of standardized thresholds (such as a decrease in
HR by 0.3 SD-units compared to the sliding window). Threshold
values as well as timings can be obtained from the results in
Figure 5 and can be adjusted to configure the sensitivity of
the detection algorithm. To combine these predictions of each
single parameter into one discomfort-score, probabilistic data
fusion methods such as Bayesian Networks could be used. The
nodes of such a network allow for integration of environment
information (such as presence of a vehicle driving ahead) as well
as for ‘‘inverting’’ the algorithm, once discomfort was detected,
in order to return to the baseline. This method has already
been applied by the Communication Engineering Department
at Chemnitz University of Technology for real-time prediction
of lane change maneuvers, combining parameters from the
driver, the vehicle and the environment (Leonhardt et al.,
2017).

In conclusion, the assessed parameters from smartbands,
eye tracking and motion tracking showed potential for
detecting discomfort in this approach situation. Despite
commercially available smartbands providing less precise
measures as dedicated lab devices, effects associated with
discomfort could be identified. However, wearable devices also
pose new challenges such as less control on how users apply

them. A limitation of this study is of course that only this
specific truck approach situation has been investigated. The
findings must be validated in other potentially discomfort-
inducing situations, which are the next steps in the project.
However, the use of this highly standardized approach situation
also provides some advantages: (a) a distance that is experienced
as too close is one of the most mentioned issues for discomfort as
a codriver (dpa, 2013); (b) comfortable adjustment of headway
distance and approach situations are not only relevant in
conditional and high automation (SAE Levels 3 and above),
but also for driver assistance systems such as adaptive cruise
control and partial automation (SAE levels 1 and 2); and (c) the
high standardization of the situation allowed for estimating the
potential of different sensors as well as testing data filtering and
artifact-removal strategies. Thus, the results serve as a basis for
designing and configuring the real-time detection algorithm that
is in development by the project partners who specialize in data
fusion (FusionSystems GmbH and Communication Engineering
Department at Chemnitz University of Technology). The
algorithmwill be implemented in the driving simulation software
and tested in subsequent studies.
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