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The analysis of neurophysiological changes during driving can clarify the mechanisms

of fatigue, considered an important cause of vehicle accidents. The fluctuations in

alertness can be investigated as changes in the brain network connections, reflected in

the direction and magnitude of the information transferred. Those changes are induced

not only by the time on task but also by the quality of sleep. In an unprecedented

5-month longitudinal study, daily sampling actigraphy and EEG data were collected

during a sustained-attention driving task within a near-real-world environment. Using a

performance index associated with the subjects’ reaction times and a predictive score

related to the sleep quality, we identify fatigue levels in drivers and investigate the shifts

in their effective connectivity in different frequency bands, through the analysis of the

dynamical coupling between brain areas. Study results support the hypothesis that

combining EEG, behavioral and actigraphy data can reveal new features of the decline

in alertness. In addition, the use of directed measures such as the Convergent Cross

Mapping can contribute to the development of fatigue countermeasure devices.

Keywords: drivers, fatigue, sleep, actigraphy, EEG, effective connectivity, Convergent Cross Mapping

1. INTRODUCTION

Fatigue is a complex, dynamic, multidimensional construct involving subjective, behavioral, neural,
and physiological processes that interact over varying timescales across a milieu of tasks and
environmental contexts, making it difficult to operationally define and measure in a consistent
or unitary way for scientific investigation. This study considers two different sources of fatigue
operating on different timescales that interact in complex ways and vary both across individuals
and within individuals over time. The first source of fatigue (or sleepiness) is related to circadian
rhythms or sleep-wake cycles (sleep-related, e.g., acute or chronic sleep deprivation leading to
sleep pressure) and the second source is related to the nature, complexity, and duration of the
current task one is performing (task-related, e.g., task difficulty or demand, time-on-task which
may lead to ones disinclination to continue performing a particular task). The importance of
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distinguishing between sleep- and task-related fatigue is that
they reflect two conceptually distinct and separable sources
of potential variations in performance and underlying brain
mechanisms and require different mitigation strategies (May and
Baldwin, 2009; Balkin and Wesensten, 2011). However, these
underlying processes may interact in complex ways. Fatigue
may lead to the decline of cognitive functioning and lapses in
attention. It has cumulative and persistent effects in daytime
performance (Belenky et al., 2003) and is considered a major
factor in traffic accidents caused by human errors (Inoue and
Komada, 2014).

Fatigue diminishes road safety, accounting for approximately
25% of car accidents (Brown, 1994) and 57% of commercial truck
accidents (Bonnet and Arand, 1995). Young people around 20
years old are particularly vulnerable to fatigue-related accidents
(Pack et al., 1995). Generally speaking, fatigue is also associated
with increased stress and impaired cognitive performance at
work (Härmä et al., 2006). The effects of fatigue can vary
over various timescales depending on task and context, but
are generally classified as acute (sudden onset, relieved by rest)
or chronic (persistent, lasting from days to years) which vary
from poor accomplishments to health and security problems
(Spurgeon et al., 1997).

Understanding antecedents and consequences of fatigue
and having a capability to predict fatigue-related performance
decrements is a matter of public safety and wellness. When
there is a risk of error or accident, the individual alertness and
cognitive performance can be measured and the attention lapses
can be putative. Specifically about drivers, biomathematical
models have been developed to associate fatigue levels with
working patterns. For instance, the circadian information, which
is linked to task performance (Harrison et al., 2007), can be
recorded from activity and rest periods and then processed
by those models to estimate sleep quality and to infer sleep-
related fatigue. From several biomathematical approaches we
choose the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE)
(Hursh et al., 2004), which records data of circadian rhythm,
homeostatic drive, and sleep inertia, to characterize the sleep-
awake history of drivers. The results of SAFTE has been validated
as a neurobehavioral performance predictor in laboratorial and
real-world environments (Dawson et al., 2011).

Another important resource to investigate and predict drivers’
fatigue is the qualitative and quantitative EEG analysis, which
has been used to unveil the relation between brain activity or
brain network changes and the decline in alertness (Huang
et al., 2015, 2016; Lin et al., 2016). The findings link behavioral
performance with changes in EEG power spectrum and in the
default mode network, suggesting that significant neural circuits
must be activated to sustain performance and prevent attentional
lapses. The investigation of those correlates is based on the
brain connectivity theory and considering the alert-drowsiness
transitions as an emergent effect of a complex system.

To analyze the underlying brain circuitry in the fatigue
phenomenon, concepts of functional and effective connectivity
can be applied. The first one refers to the statistical dependence
in the neuronal activity and the second quantifies the influence
that one brain area exerts over another (see Friston, 2011 and

Goldenberg and Galvn, 2015 for definitions and techniques).
Those concepts allow different interpretations and can be
complimentary (Friston et al., 2013).

Functional connectivity can be undirected as in correlation
and coherence measures, or directed as in Granger Causality
(GC) (Granger, 1969) and transfer entropy (Schreiber, 2000).
Multivariate extensions of GC such as directed transfer
function (Kaminski and Blinowska, 1991) and partial directed
coherence (Baccalá and Sameshima, 2001) allow time-varying
and frequency-selective analysis (see Barnett and Seth, 2014
for theoretical basis and numerical simulation of several brain
connectivity estimators based on GC). Effective connectivity
measures consider the directed integration in neuronal
macrocircuits as in the dynamic causal modeling (Friston et al.,
2003). The methodology choice relies on the assumptions of the
underlying mechanism.

In our analysis, we considered dynamic emergent effects
from coupling variables and the effective connectivity approach
was selected. The study was performed using the Convergent
Cross Mapping (CCM) (Sugihara et al., 2012). CCM quantifies
the directed interactions considering non-linear and linear
components, stationary and non-stationaty features in bivariate
or multivariate systems (McCracken and Weigel, 2014; Hirata
et al., 2016; Jiang et al., 2016). CCM detects the causal relation
strength and information exchanged between signals, assessing
the synchronization features through the correspondence of
the reconstructed phase-spaces, obtained from time-delay
embedding coordinates. CCM has provided new insights into
physiological states by considering the brain as a complex
network system (McBride et al., 2015; Schiecke et al., 2017).

This work analyzed the brain network changes of drivers by
the shifts in the effective connectivity expressed in the CCM
oscillations. Moreover, this work investigated the modulation of
the power spectra by those shifts. To assess possible CCM-power
correlations, we first decomposed the EEG signals into different
frequency bands prior to evaluating causal relations, providing
information about effective connectivity changes for each neural
rhythm. Using this procedure and the properties of dynamical
coupling, it is plausible to assume that the CCM from the source
signal to the target signal can modify dynamically phase and
amplitude of the target observation. This principle is supported
by fMRI studies such as Baechinger et al. (2017).

This methodology aims to detect changes in brain dynamics
associated with the task-positive network of drivers to
characterize alert and fatigue states during the simulated
driving task. We combine EEG and non-EEG (subjective and
behavioral data) recordings in the context of non-stationary
data. For EEG signals, we choose to explore causal features in
the reconstructed phase space considering the sources near the
Frontal Midline and Parietal Midline brain areas. Our approach
was based on the importance of dominating brain regions during
driving to detect fluctuations in attention (Lin et al., 2016) and on
the evidence of specific connectivity patterns in cortical regions
related to behavioral microsleeps, a inherently non-stationary
phenomena (Toppi et al., 2016).

The present study begins with a description of the subjects,
the actigraphy data used to define levels of sleep-related fatigue
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and of the realistic sustained-attention experiment, detailing
the EEG data, and Reaction Time (RT) acquisitions. The
information of those sources was combined to test the hypothesis
that driving performance impairment in fatigued drivers is
associated with effective connectivity shifts. Second, we define
a Driver Performance (DP) index, explained the phase-space
reconstruction procedure (needed for the CCM evaluation) and
presented a simulation study to test CCM efficiency in a brain
connectivity model. Next, we describe the statically analysis of
DP, CCM, and power values over the sleep-related fatigue levels.
Finally, we show the results and conclude our work with a
discussion of the different brain network patterns detected in the
sleep-related normal and fatigued levels.

2. MATERIALS AND METHODS

2.1. Subjects
Seventeen healthy university students, 13 males and 4 females,
with normal or corrected to normal eyesight, no neurological,
or psychiatric disorders, aged 22.4 ± 1.5 years, all right-
handed, from National Chiao Tung University (NCTU) in
Taiwan participated in this study. The experimental protocol of
the sustained-attention task was approved by the Institutional
Review Board and written informed consent was obtained from
each participant after a full explanation of the study.

2.2. Actigraphy Data Acquisition and
Fatigue Level
As a part of a Daily Sampling System (DSS), the subjects used a
wrist-worn device (Fatigue Science ReadibandTM), which records
circadian, homeostatic and sleep inertia processes on a minute
basis. This device incorporates the information collected in the
last 3 days and, applying the biomathematical model SAFTE,
provides a putative performance level called Effectiveness Score
(ES), which can be easily read from the device. Based on this
score, we classified the subjects into three levels of sleep-related
fatigue, Normal (NO) for ES greater than 90%, Reduced Risk
(RR) for ES between 70 and 90%, and High Risk (HR) for ES
smaller than 70%. TheHR level of sleep-related fatigue represents
a putative performance comparable to subjects with 0.08 blood
alcohol level or awake for 21 h. For more information about
the SAFTE model and ES use/validation see Hursh et al. (2004),
Hursh et al. (2006), and Russell et al. (2006).

2.3. Experimental Paradigm and Sessions
In this sustained-attention experiment we adapted the Lane
Keeping Task (LKT) as the driving paradigm (Huang et al., 2016),
where subjects must maintain the cruising position on the central
lane and compensate randomly induced vehicle deviations by
turning the steering wheel (see Figure 1). The experiment was
conducted at the Brain research Center at NCTU using a realistic
driving simulator (Chuang et al., 2012). The ES of the subjects
(reflecting the sleep quality of previous nights) were tracked
and reported automatically. They were asked to come to the
lab when a desirable score is detected, respecting a balance
among the sleep-related fatigue levels NO, RR, and HR. Each
LKT session lasted 30 min. Before it, they were instrumented

with the EEG and asked to sit and stay quiet for 2 min. The
experimental paradigm simulated a night-view cruising and
the lane departures were equally distributed between left and
right deviations. Perturbations were presented at intervals of
approximately 1 every 7 − 12 s jittered to prevent anticipatory
reactions of the drivers (resulting in approximately 180 events
per session). If there is no response to the deviation, the simulated
vehicle hits the curb and keeps its movement with no feedback to
the subject.

During a longitudinal study spanning a 5-month period of
daily sampling, 12 subjects were able to complete 3 sessions
within each of the three levels of the ES. The rest of the
participants completed at least 2 sessions within two classification
levels. The subjects attended the sessions within 1 − 3 week
intervals and the total number of completed EEG sessions was
141.

2.4. EEG Data Acquisition and
Preprocessing
A 64-channel EEG system (Neuroscan Inc.) was used to collect
EEG data during the driving task, with channel locations
measured by a 3D digitizer following the international 10-20
system. The sampling rate was 1,000 Hz and the impedance was
kept below 5K� for all electrodes. The ocular and muscular
artifacts were identified in epochs with an amplitude exceeding±
70µV (see Figure S1 in Supplementary Material for an example)
and removed by visual inspection (Tatum et al., 2007; Tandle
et al., 2016). The signals were band-pass filtered between 0.5
and 50 Hz and then downsampled to 500 Hz. For our analysis,
we selected brain areas and respective channels described in the
Table 1, based on Lainscek’s study (Lainscsek et al., 2013). Our
analyses focused on the EEG signals 1 s (or 500 points) before
each lane-departure event. This choice aims to capture the tonic
modulations of attention and engagement during a sustained
performance in simulated driving tasks and it was based on the
studies of Huang et al. (2007), Chuang et al. (2014), and Lin et al.
(2016).

2.5. Hypotheses
We hypothesize that the lack of attention in drivers emerges
from the interaction of neurobiological mechanisms associated
with sleep- and task-related fatigue processes. More specifically,
the performance decrements in fatigued drivers are accompanied
by effective connectivity changes in several brain areas tied
to different spectral behaviors associated with the real-world
distractors, resulting in different patterns of the neural rhythms
augmentation or suppression.

2.6. Reaction Time and Drive Performance
Defined as the elapsed time between the lane departure onset
and the response onset, the Reaction Time (RT) has been used by
several studies to detect subjects’ fluctuations of performance in
the simulated driving tasks (Huang et al., 2016; Lin et al., 2016).
Short RTs are expected from alert drivers who respond quickly
to cruising perturbations whereas drowsy drivers tend to react
slower and produce longer RTs. To alleviate inter- and intra-
subject variability, we define a Normalized Reaction Time (NRT)

Frontiers in Human Neuroscience | www.frontiersin.org 3 November 2018 | Volume 12 | Article 418

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Fonseca et al. Brain Network Changes in Fatigued Drivers

FIGURE 1 | Lane Keeping task experiment. Subjects have to steer the wheel, when the realistic simulated vehicle is drifting away from the original cruising lane, to

compensate the perturbation. There are no acceleration and brake controls; simulated cruising speed was kept constant at 45 mph.

TABLE 1 | Brain areas and the respective selected channels for the effective

connectivity analysis.

Areas Channels

Left anterior F1 F3 F5

Right anterior F2 F4 F6

Left motor FC1 FC3 FC5 C1 C3 C5

Right motor FC2 FC4 FC6 C2 C4 C6

Frontal midline FCz Cz

Left parietal CP3 CP5 TP7 P3 P5 P7

Right parietal CP6 CP4 TP8 P4 P6 P8

Parietal midline CPz Pz

Left occipital PO3 PO7 O1

Right occipital PO4 PO8 O2

For each session, the measures applied in this work were derived from single trials,

normalized to the baseline information and then averaged over channels.

dividing the RTs by the average of the 10% shortest values within
each session (sorted in ascending order). For our analyses, we
consider a RT lower bound 1 s and upper bound 4 s to analyze
transitions from alert to drowsy states. Subjects with NRT out
of this interval are considered in very high or very low vigilance
states. In the literature, significant changes in power spectra and
in directedmeasures were empirically observed between 2 and 3 s
(Chuang et al., 2012; Huang et al., 2015, 2016; Lin et al., 2016).We
used a logistic transformation to rescale the NRT to those limits,
defining a Driving Performance (DP) index (Huang et al., 2015):

DP(NRT) =
2+ 2e−0.5

(1+ e−0.5NRT)(1− e−0.5)
−

1+ e−0.5

1− e−0.5
.

Notice that DP(1) = 1, DP tends to approximately 4.08 as NRT
tends to infinity and it exhibits a close linear relation for NRT
between 1 and 4. After the transformation, we set DP = 1 for
DP < 1 and DP = 4 for DP > 4. Therefore, DP maps the
unbounded NRT to the interval [1, 4].

2.7. Phase-Space Reconstruction
Given an EEG signal, X = {x1, ..., xn}, the spatial and time-
delayed embedding coordinates are defined as Xvec = {−→xi =

(xi, xi+τ ,, ..., xi+(m−1)τ ); i = 1, ...,N} where N = n − (m −

1)τ . The embedding parameters m and τ can be determined
independently using the non-parametric Kozachenko-Leonenko
estimator (Kozachenko and Leonenko, 1987), as done by
Gautama, Mandic and Hulle (GMH) (Gautama et al., 2003). This
procedure avoids oversampled trajectories and autocorrelated
data effects (Kennel and Abarbanel, 2002). Using the GMH
approach for the EEG signals from all subjects and sessions (more
details and applications in Baggio and Fonseca, 2011; Fonseca
et al., 2015), we obtained m = 4 and τ = 1, respectively the
maximum embedding dimension and minimum time lag found
(see section 3.4 in SupplementaryMaterial for the reconstruction
Matlab script).

2.8. CCM
Given two EEG signals X, Y with length n, we calculate the
phase space reconstruction coordinates Xvec with embedding
parametersm and τ . For i = 1, . . . ,N where N = n− (m− 1)τ ,
we consider each vector −→xi (representing the system dynamical
evolution) and obtain:

1 - the distances from −→xi to all other states in Xvec:
Di = {d(−→xi ,

−→xj ) , i 6= j}, where d represents the euclidean
distance between vectors.

2 - the distance-related weights: ui = e
−d(−→xi ,

−→xj )

min , where min is
the minimum distance found in Di calculations.

3 - the normalized weights: wi =
ui

N−1∑

j=1

uj

.

4 - the scalar y-value estimated by Xvec: ŷi =

N−1∑

j=1

wjyj.

We define the CCM from the source signal X to the target
signal Y , as the correlation between Ŷ = {ŷ1, ..., ŷN} and
Y = {yn−N+1, ..., yn} where N = n− (m− 1)τ .

Notice that steps 1 to 3 are about X information and, in step
4, we use the temporal correspondence between Xvec and Yvec

to predict Y information, where the weights defined in step 3

Frontiers in Human Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 418

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Fonseca et al. Brain Network Changes in Fatigued Drivers

are the highest for the closest neighbors. By definition, CCM is
asymmetric and lies in the interval [−1, 1] (see section 3.5 in
Supplementary Material for the CCMmain Matlab script).

To test the efficiency of CCM, following the ideas reported
in Ball et al. (2016), we designed a brain connectivity model
with eight coupled damped oscillators sources (see Figure 2,
left panel) defined by Autoregressive Processes (AR) of order 5.
Sources 1 to 4 are coupled and located in the Anterior Cingulate
Cortex (ACC) with respective rhythms 8, 10, 11, and 12 Hz,
defining an alpha cluster. Sources 5 to 8 are coupled and lie in the
Posterior Cingulate Cortex (PCC) with respective frequencies 20,
22, 25, and 30 Hz, configuring a beta cluster. The simulation was
performed in three stages of 5 s each. ACC and PCC clusters are
disconnected in stages 1 and 3 and coupled during stage 2. Intra-
and inter-cluster couplings were defined by Gaussian mixture AR
models.

Aiming the analysis of the changes at the causal relationship
between the ACC and PCC clusters in the channel level, we
used a Boundary Element Method (BEM) from the SIFT toolbox
(Mullen, 2012) to generate 64-channel EEG signals. This realistic
forward head model projects the source activations to the scalp
using the “colin27” brain atlas as the reference (Holmes et al.,
1998). Varying the white-noise variances in the AR processes
from 0.1 to 1 s (step 0.1 s), we simulated ten 64-channel EEG
signals with the sampling frequency of 200Hz (see sections 3.1
to 3.3 in Supplementary Material for the SIFT settings).

We decomposed the signals into the alpha and beta bands and
calculated CCM in windows of 0.25 s (20 points per stage) from
the channels in the Left and Right Anterior areas to the ones in
the Left and Right Posterior areas (see Table 1). The averaged
CCM over channels (see Figure S2 in Supplementary Material
for the flowchart of simulation study). is plotted for each noise
level in Figure 1, right panel. The observed changes in the causal
outflow from anterior to posterior channels are consistent with
the brain connectivity model defined at the source level. CCM is
robust to noise and insensitive to linear mixtures.

2.9. Statistical Analysis
Considering 141 sessions and an average number of 143 events
per session (total of 20, 182 events), we checked the statistical

significance of CCM from source to target areas selected in this
work. We performed a bootstrapping approach using surrogate
data with the same power spectrum of the original signals (Baggio
and Fonseca, 2011). A Wilcoxon rank sum test was used with 1%
significance level to verify the null hypothesis that the original
data, epochs of 1 s before the events for each subject and session,
and its surrogates have the same distribution of the CCM values.
The null hypothesis was rejected for all sessions indicating that
the causal relations are a genuine non-linear feature of the data.

For each session and event, the signals were decomposed into
the bands θ : [4.5 , 7.5] Hz; α : [7.5 , 12.5] Hz; β : [12.5 , 20]
Hz and γ : [25 , 40] Hz, using a FFT procedure. For each
band, CCM from source to target channels were calculated in
the sessions. Considering in each session the baseline set as
the CCM values corresponding to the 10% shortest DPs (in
ascending order), CCM were normalized by subtracting the
median and dividing by the quartile dispersion of the baseline
set. Then, the normalized CCM values were averaged over
channel pairs belonging to source and target areas (see Table 1

for the channel sets definition), defining a baseline relative
causal relation between areas. See Figure 3 for the event signal
processing pipeline. The same pipeline was applied to the spectral
analysis calculations considering only the target channels Y . The
spectral analysis was performed using the FFT procedure in
Matlab (2012b). The results presented in this work will be always
relative to the baseline set within sessions and averaged over
channels.

The normalized CCM and spectral values from all subjects
and sessions were aggregated, sorted by DP, and then separated
in the three levels of sleep-related fatigue NO, RR, and HR with
respective sample sizes of 6811, 7136, and 6235.

The significant statistical difference for the normalized CCM
values between categories was analyzed by two criteria: the
distribution difference was validated by the Wilcoxon rank sum
test with 1% significance level, and the slope difference was
checked by the F-test with 1% significance level as well.

CCM-DP, power-DP, and CCM-power statistical relations
were investigated by the Pearson’s correlation (see Figure S3 in
Supplementary Material for a flowchart of the overall process).

FIGURE 2 | Illustration of the simulated eight dynamically coupled sources (Left) from the brain connectivity model performed in three stages of 5 s each. On stages

1 and 3 the alpha cluster in ACC and beta cluster in PCC are only intra-coupled. On stage 2, the clusters are intra- and inter-coupled. The source activations were

projected to the scalp using a BEM forward head model. The 64-channel EEG signals were simulated for 10 different levels of noise and then decomposed into the

alpha and beta bands. Averaged CCM values from anterior to posterior channels (Right) were consistent with the changes in the inter-cluster coupling during the

stages.

Frontiers in Human Neuroscience | www.frontiersin.org 5 November 2018 | Volume 12 | Article 418

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Fonseca et al. Brain Network Changes in Fatigued Drivers

FIGURE 3 | Event signal processing pipeline for the CCM values from source channels X to target channels Y . The power analysis for the target channels was

conducted using the same steps.

3. RESULTS

3.1. NRT and DP Distributions
The RTs were extracted from lane departure events for the 17

subjects and under three different sleep-related fatigue levels

(defined by the quality of sleep). For each session, the NRTs were

derived and then the DP indexes were obtained. Table 2 shows
the descriptive statistics across NO, RR, and HR conditions
defined by the ES. The NRT and DP distributions are skewed

to the right due to slow reactions of fatigued drivers and
the experimental paradigm (no feedback for hitting the curb).

Their distributions are super-Gaussians (Lee et al., 1999) with
one and two peaks, respectively, as shown in Figure 4. The
logistic transformation in the DP calculation was able to decrease

the normalized reaction time variance and keep the quartile
dispersion in the same order of magnitude than NRTs, i.e.,
a non-linear transformation with close to linear effects. The
conversion from NRT to DP is a useful procedure for correcting
experimental distortions and rescaling an unbounded measure to
a more practical behavioral performance index.

Also shown in Figure 4, the NRT-DP transformation keeps
the ascending order among the sleep-related fatigue levels, for the
NRTs- and DPs- distribution means and the peaks (lower values
for HR, middle for NO and higher for RR). In the DP domain, it
is clearly seen a higher probability of 4 (drowsy state) in the HR
level of sleep-related fatigue, not noticed in the NRT domain. The
DPs fit the interval [1, 4] (by definition) and reveal new features
in the changes of alertness levels.
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TABLE 2 | Descriptive Statistics of NRT and DP across the sleep-related fatigue

levels NO, RR, and HR.

Normal Reduced risk High risk

Number of events 6811 7136 6235

NRT

Mean 1.9172 2.0589 2.8199

Standard deviation 1.6897 3.2471 9.2638

Quartile dispersion 0.2331 0.2581 0.2935

DP

Mean 1.6873 1.7046 1.8858

Standard deviation 0.5986 0.6274 0.7987

Quartile dispersion 0.22097 0.2315 0.2579

The transformation NRT to DP provides distributions with lower variability, but with similar

quartiles dispersion structure.

3.2. CCM Oscillations Indexed by DP
We first analyzed the relation between the normalized CCM
and DP values. For different target areas and bands, the CCM
values exhibit a strong oscillatory behavior in DP between 1 and
2. For DP between 2 and 4, a nearly monotonic behavior was
noticed and the Pearson’s correlation was evaluated. Considering
the two categories of sleep-related fatigue NO and HR, for more
than 90% of the 144 cases (2 source areas × 9 target areas × 4
frequency bands × 2 categories), the causal relations exhibited
a strong positive or negative correlation (absolute value greater
than 0.7) with the performance index DP. The strong correlation
for the RR level of fatigue was not observed in this case. In the
Figure 5, the top panel shows the normalized CCM values from
the source, Frontal Midline, to the target, Parietal Midline areas,
sorted by DPs, for the four frequency bands and three levels of
sleep-related fatigue NO (blue), RR (green), and HR (red). In
short DP’s, between 1 and 2, related to alert states, it’s possible
to observe a mirror pattern between NO and HR levels. In the
longer DP’s, related to drowsy states, we observe different trends
in the nearly monotonic behavior between the same two levels.

Table 3 shows the significant changes in the normalized CCM
values of sleep-related fatigue levels NO vs. HR, for DPs between
2 and 4, where a nearly monotonic behavior was observed.
The source of the dynamical coupling was the Frontal Midline
area and the targets were the other selected areas represented
in different rows. For several targets and bands, the HR- and
NO-normalized CCM values have different distributions and
slopes. Gray background cells in Table 3 indicate simultaneous
significantly statistical differences in distributions and slopes
(considering the significance level of 1%) between the two levels
of sleep-related fatigue, i.e., it points out the targets and bands
where the causal relations have different trends (positive and
negative slopes) with different probability of occurrences.

We also investigated the effective connectivity from the
source, Parietal Midline, to the other selected targets. Although
CCM is not symmetric by definition, the causal relations from
the Parietal Midline to Frontal Midline are similar to its opposite
direction values, indicating a bi-directional causation between
those two areas. Table 4 shows the statistical analyses of the

normalized CCM values from the Parietal Midline area between
levels NO and HR, to different targets at different frequency
bands, as shown in Table 3.

3.3. Spectral Power Indexed by DP
The relation between normalized EEG power and DPwas studied
for all ten areas defined in Table 1, for the bands δ,α,β , γ , and
for the two categories of sleep-related fatigue NO and HR. In
Figure 5, for instance, the bottom panel shows the fluctuations of
the normalized power in different bands, for the Parietal Midline
area.

As for the normalized CCM values, the normalized power in
the targets exhibits an oscillatory behavior for DP less than 2. For
the DP higher than 2, we observed a nearly linear behavior. In
this domain, between 2 and 4, the Pearson’s correlation between
power and DP were calculated and the results exhibited a strong
positive or negative correlation (absolute value greater than 0.75)
between spectral activity and the performance index for more
than 90% of the 80 cases analyzed.

3.4. CCM-Power Correlation
After exploring the CCM-DP and power-DP relations, the
next question is how CCM and spectral power interacted
considering the same target area. The procedure of evaluating
the causal relation to a specific target in different frequency
bands allows a natural connection with spectral power in
the same target. Considering the source of CCM as the
Frontal Midline and Parietal Midline areas, we restricted our
study to the cases where the distributions and slopes were
significantly different between the levels of sleep-related fatigue
NO and HR, marked as gray in Table 3. Table 5 lists the
correlations between normalized CCM values (considering
both sources) and normalized spectral power sorted by
DPs.

4. DISCUSSION

This study observed a group of young university students in
their natural environment during a 20-week semester.We believe
our subjects are a representative sample of healthy young adults
in real-world environments, with expected high levels of stress
and irregular sleep (Lund et al., 2010). With the sustained-
attention experiment, we aim to understand the connections
between those subjective parameters and the performance
decrements in sleep-related fatigue, characterizing its variability
and instability (Chua et al., 2014). To achieve this goal,
the starting point was the signal-reconstruction process. The
embedding coordinates revealed different recurrence structures
linked to the three levels of sleep-related fatigue defined by
the ES. We consider that this representation was sensible to
the different quality and quantity of sleep across subjects,
quantifying behavioral and physiologic information from the
different fatigue states determined by the Readiband using the
SAFTE model.

The choice of the performance index to sort the normalized
CCM and power spectrum values was crucial. The NRTs exhibit
high variance and positive-skew distributions, an expected
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FIGURE 4 | PDFs of NRT (Left) and DP (Right) for the sleep-related fatigue levels NO (blue), RR (green), and HR (red). All distributions are super-Gaussian like. The

DP distributions exhibit a second peak, which is the highest for the HR level of sleep-related fatigue. The density was estimated at every 100 points.

FIGURE 5 | On the top are the normalized CCM values from the source area Frontal Midline to the target area Parietal Midline, sorted by DP . The bottom panels are

the normalized power for the target area, sorted by the same index. The EEGs considered were 1 s (or 500 data points) before lane-departure events and

decomposed into four brain rhythms. The subjects were classified by their ES into three sleep-related fatigue levels: NO (blue), RR (green), and HR (red). Possible

correlations between normalized CCM and spectral values in the same band were investigated in this work. The measures were averaged across each 100 events,

with standard deviation less than 10% of the mean value, and a moving-average filter with a window size of 0.5 s and a step size of 0.1 s was applied.

outcome since fatigued drivers can exhibit low performance,
failures (Huang et al., 2009; Liu et al., 2010), and even fall
asleep. As the subjects have no feedback from the driving
simulator when the vehicle hits the curb and maintains a
continuous cruising, the NRTs can deviate significantly from
the baseline. The transformation from NRTs to the DPs,

considering the interval [1, 4] to analyze the EEG correlates
of alertness-drowsiness transitions, alleviates this issue. As a
consequence of its nearly linear behavior we obtain lower
standard deviations, but with no robust changes in the data
structure observed in the quartile dispersion (see Table 2). The
DPs-distributions have two peaks, the second peak can be
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TABLE 3 | Statistical analysis of normalized CCM values in different bands (columns), considering the Frontal Midline area as the source and the other areas (rows) as

targets.

Source: Frontal Midline

Targets θ α β γ

NO HR p NO HR p NO HR p NO HR p

Left anterior −0.4455, 0.5050 (<10−4) 0.1723, 0.6949 (<10−4) −0.6168, 0.8107 (<10−4) −1.7217, 0.5473 (<10−4)

−0.0363, 0.7376 (<10−4) −0.1934, 0.3099 (<10−4) −0.1934, 0.3099 (<10−4) −1.863, 0.2306 (<10−4)

Right anterior −0.6473, −0.2415 (<10−4) 0.2379, 0.3733, (0.0040) −0.0364, 0.5440, (<10−4) −0.6130, 0.8925, (<10−4)

−0.1636, −0.0306 (0.0139) −0.1444, −0.01206 (0.0190) −0.1172, 0.2219, (<10−4) −0.0956, 0.71532 (<10−4)

Left motor −0.3352, −0.2282 (0.3771) 0.5908, 0.7794 (0.4944) −0.5266, 0.2940 (<10−4) −0.8709, 0.2390, (<10−4)

−0.0032, 0.4066 (<10−4) −0.1753, 0.6630 (<10−4) −0.2516, −0.2072 (0.2020) −0.5131, −0.2163 (<10−4)

Right motor −0.7234, 0.2485 (<10−4) −0.1045, 0.37740 (0.0015) −0.1504, −0.0984 (0.0343) −1.2960, 0.7357 (<10−4)

−0.1144, 0.9210 (<10−4) 0.3059, 0.6328 (<10−4) −0.1367, −0.0882 (0.0717) −0.6241, 0.2950 (<10−4)

Left parietal −0.4649, −0.5567 (0.582) 0.4727, 0.6611 (0.4533) −0.6212, 0.1600 (<10−4) −0.4561, 0.2505 (<10−4)

−0.3071, 0.1694 (<10−4) −0.2654, 0.7004 (<10−4) −0.2999, −0.0092 (<10−4) −0.1184, −0.1096 (0.8348)

Parietal midline −0.5704, −0.0533 (<10−4) −0.6464, 0.5359 (<10−4) 0.0687, −0.3857 (0.0001) −0.5312, −0.1902 (0.0026)

−0.2611, 0.1842 (<10−4) −0.1209, 0.0839 (<10−4) −0.2252, −0.6031 (0.0002) −0.3546, −0.4453 (0.2083)

Right parietal −0.7648, −0.4996 (0.0029) −0.8135, 0.4037 (<10−4) −0.06380, −0.4208 (<10−4) −0.9670, 1.1025 (<10−4)

0.1465, 0.3360 (<10−4) 0.2103, 0.2148 (0.9183) 0.2122, −0.2697 (<10−4) −0.4766, 0.3390 (<10−4)

For the sleep-related fatigue levels NO and HR, the distributions and slopes were analyzed for DP in the interval [2, 4]. In each cell, on the top, are the CCM means, respectively of

NO and HR categories, and the p-value for the Wilcoxon rank test inside brackets, with the null hypothesis that the two levels of sleep-related fatigue have CCM values with the same

distributions. On the bottom, are the slopes respectively of NO and HR values and the p-value for the F-test inside brackets, with the null hypothesis that those two levels have CCM

values with identical slopes in their linear regressions. Simultaneous significant probabilities shift and trend changes between NO and HR levels are indicated by the gray background.

See Figure 5 (top) to visualize plots of CCM from Frontal Midline to Parietal Midline areas.

TABLE 4 | Statistical analysis for normalized CCM values between NO and HR levels of sleep-related fatigue in different bands (columns), considering the Parietal Midline

area as the source.

Source: Parietal Midline

Targets θ α β γ

NO HR p NO HR p NO HR p NO HR p

Left motor −0.3324, −0.6485 (<10−4) −0.1870, 0.8239 (<10−4) −0.0292, −0.5834 (0.0003) −0.3783, 0.16174, (<10−4)

−0.1417, 0.1447 (<10−4) −0.5294, 0.0463 (<10−4) −0.2978, −0.7328 (0.0003) −0.5198, −0.2839 (0.0038)

Right motor −0.2939, −0.5015, (0.0002) −0.5207, 0.6376, (<10−4) −0.2758, −0.3164, (0.6054) −0.8973, 0.6191 (<10−4)

0.2246, 0.1532 (0.0126) −0.2958, −0.0573 (<10−4) −0.1883, −0.1997 (0.8385) −0.4069, 0.2053 (<10−4)

Left parietal −0.2060, −0.6120 (0.0002) 0.0133, 0.8920 (<10−4) 0.1918, 0.9166 (<10−4) −0.8330, −0.0814 (<10−4)

−0.0516, 0.4103 (<10−4) −0.1737, 0.1325 (0.0072) −0.1124, 0.4233 (<10−4) −1.1663, −0.1527 (<10−4)

Right parietal −0.9579, −0.2734 (<10−4) −0.3390, −0.0357 (<10−4) −0.3526, 0.0388 (0.0023) −0.4815, 0.9359 (<10−4)

0.4247, 0.1958 (<10−4) −0.1048, −0.1430 (0.1833) 0.3601, −0.4709 (<10−4) −0.1518, 0.2458 (<10−4)

Left occipital 0.9939, −0.7421 (<10−4) −0.8257, 0.5110 (<10−4) −0.3524, 0.3047 (<10−4) −0.4807, −0.4323 (0.4944)

0.9123, −0.1092 (<10−4) −0.4302, 0.1268 (<10−4) −0.2363, −0.2011 (0.3262) −0.6942, −0.2405 (<10−4)

Right occipital −1.0210, −0.0349 (<10−4) −0.7530, −0.4193 (<10−4) −0.9199, −1.4260 (0.6054) −1.2437, −0.1614 (<10−4)

0.0993, 0.0103 (<10−4) −0.1763, −0.1638 (0.7843) −0.2920, −2.0188 (<10−4) −0.9254, −0.4901 (<10−4)

The parameters and p-values are the same defined in Table 3. As done before, simultaneous significant probabilities shift and trend changes are indicated by the gray background.

attributed to the drowsiness state. For the HR level of sleep-
related fatigue, the second peak is the highest, which is consistent
with the putative fatigue level derived from the actigraphy data
(ES).

Both normalized CCM and spectral values were strongly
correlated (positively or negatively) with DPs between 2
and 4 in the levels NO and HR of sleep-related fatigue, as
illustrated in Figure 5. For the shorter DPs (lying in the

interval [1, 2]) when subjects were in the alert state under
the sleep levels NO and HR, different oscillations in several
sources and targets were observed, a mirror behavior,
indicating opposite shifts in the effective connectivity.
As for longer DPs (lying in the interval [2, 4]), where
subjects were drowsy, different trends and distributions
for the CCM values were found between the NO and HR
sleep levels, revealing again different shifts of the effective
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TABLE 5 | Pearson’s correlations for the normalized CCM-spectral values

considering the same target areas in different frequency bands for the

sleep-related fatigue levels NO and HR.

Targets NO HR

SOURCE: FRONTAL MIDLINE

Left anterior θ : 0.5622 0.9867

α : 0.9974 0.0684

β : 0.9773 −0.9129

γ : 0.9617 −0.9387

Right anterior β : 0.7320 −0.8859

γ : 0.0815 −0.9877

Right motor θ : 0.8766 0.9491

γ : 0.9920 −0.9716

Parietal midline θ : 0.7685 0.9666

α : 0.5330 0.9933

Right parietal β : −0.9527 0.9676

γ : 0.9938 −0.7273

SOURCE: PARIETAL MIDLINE

Left motor θ : 0.9319 0.9399

α : 0.9861 0.9038

Right motor γ : 0.9788 −0.8707

Left parietal θ : 0.6080 0.9916

α : 0.9180 0.1632

β : 0.6131 −0.9460

Right parietal β : −0.9363 0.9834

γ : 0.9389 −0.9494

Left occipital θ : −0.8264 −0.6177

α : 0.9674 0.6303

On the left, the source of CCM is the Frontal Midline Area. On the right, the source is

the Parietal Midline Area. The first column of each Table specifies the target areas. The

choice was based on the simultaneous significant differences in distributions and slopes

between those two levels (marked as gray in Tables 3, 4). Both measures were sorted

by DPs within the interval [2, 4]. See Figure 5 for the plots of the case from the Frontal

Midline source to the Parietal Midline target.

connectivity. Those results demonstrate that DP is an
efficient index to understand alertness-drowsiness transitions
(Huang et al., 2015).

The information transferred from the source areas Frontal
Midline and Parietal Midline to their neighboring areas during
the 1 s pre-stimulus period have different rates between
subjects in the NO and HR levels of sleep-related fatigue.
This difference can be attributed to specific patterns in the
effective connectivity related to behavioral microsleeps, reported
in Toppi et al. (2016). In both Frontal Midline and Parietal
Midline sources of connectivity, for almost all analyzed targets
(with the exception from the Parietal Midline area to the
Right Occipital area) the normalized CCM values, in some
frequency, have significantly different distributions, a negative
slope in the NO condition and a positive slope for the HR
of fatigue, indicating the ES classification (related to sleep
quality) can distinguish new features in the fatigued drivers
(with DPs between 2 and 4). In the HR fatigue level, for
the bands indicated in the gray background cells in Tables 3,
4, the normalized CCM values increase with the increments

in DP (with 3 exceptions), suggesting enhanced coupling
among the studied areas in the fatigued drivers with low sleep
quality.

The correlations between the normalized CCM and spectral
values are detailed in Table 5 and represent a novel application
to analyze the shifts in the effective connectivity in brain areas
during the sustained-attention tasks, allowing us to explore its
correlates with the subject fatigue level. We considered only
the couplings and bands where study results showed significant
differences in distributions and slopes of the causal relations
between the sleep-related fatigue categories. Strong positive and
negative values were derived.

The normalized CCM values sorted by DP with an increasing
magnitude indicates tonic changes of brain dynamics associated
with a decline in alertness (DP variation from 2 to 4 is associated
with sub-optimal and poor performances; Huang et al., 2015).
We focused our attention on those cases, where the CCM
values either increased with DP (a positive slope) or decreased
with DP (a negative slope). The effective connectivity measure
applied in this work is based on the dynamical coupling of
brain areas and can modulate the power spectra as reported in
Soldatenko and Chichkine (2014) and Lacot et al. (2016), where
new power peaks and the enhancement of the original harmonics
are associated with the increasing of coupling strength. In
brain networks, this modulation was noticed in the BOLD
signal analysis, where fMRI-based connectivity and frequency-
specific EEG power are related (Conner et al., 2011; Scheeringa
et al., 2012). So, it is reasonable to claim that strong CCM-
power correlations represent augmentation or suppression for a
specific oscillatory activity in the target areas. Taking this into
consideration, we combined the information from Tables 3–
5 and illustrated the brain network changes for the NO and
HR levels of sleep-related fatigue in Figure 6. In the figure,
the sources are indicated by the filled red circles and the
augmentation or suppression are represented, respectively, by
up and down arrows. The targets with significant differences
between levels (augmentation to suppression or vice-versa) are
indicated by red circles.

The γ band relates to the higher-order cognitive
activities for internal modeling of motor control to form a
representation shaping internal models to improve motor
performance, the suppression of this oscillation observed
in different areas for subjects in the NO and HR levels of
sleep-related fatigue could indicate the weakening in such
ability during fatigue. The γ rhythm suppression could also
suggest a weakening in the complex cognitive functions
related to attention and memory (Jensen et al., 2007)
expressed, for instance, in a difficult of maintaining visual
shapes in short-term memory (Tallon-Baudry et al., 1998),
reasonable for fatigued subjects (DP is higher than 2 in both
levels).

The θ frequency is related to cognitive control. The increase
of θ power is to coordinate activities of various brain regions
to update the motor plan in response to somatosensory inputs.
There is a suppression of this oscillation for subjects in the
NO level and augmentation for the HR level. This could
show the increase of the drowsy drivers’ efforts to maintain
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FIGURE 6 | Brain network changes for fatigued drivers (grand averages for DPs between 2 and 4) in the sleep-related fatigue levels NO (good quality sleep) and HR

(poor quality sleep). The Frontal Midline and Parietal Midline areas were considered sources (red filled circles) of the effective connectivity and the CCM-power

correlations were analyzed. Augmentation and suppression in the neural rhythms are indicated respectively by up and down arrows. The red circles indicate target

areas with different spectral activity (augmentation-suppression) between levels.

the similar driving performance. This significant increase
in the θ activity was also observed in drivers during the
transitional phase from alertness to fatigue (Lal and Craig,
2002), in the frontal area was associated with mental fatigue
(Wascher et al., 2014) and in the occipital-parietal areas was
related to working-memory processing (Raghavachari et al.,
2006).

We observed a suppression in the θ and α activities in
the occipital area for subjects in the NO level of sleep-
related fatigue. This finding suggests that the driver is more
concentrated on the task than the ones in the HR level, for
instance, processing some visual or auditory information from
the realistic simulated vehicle, as observed in Lin et al. (2010).
For subjects in the HR level, θ and α are activated in the
occipital, motor and parietal areas (by the sources Frontal
Midline and Parietal Midline). In this level of sleep-related
fatigue representing a lack of sleep, the subjects tend more
to mind-wandering under low perceptual demands (Lin et al.,
2016). Similar findings were obtained during simulated driving
in Huang et al. (2009).

The opposite trends in the change of α and β activities in the
parietal area between subjects in those two sleep-related fatigue
levels can be associated with different mechanisms for movement
processing. In this context, subjects in the HR level could bemore
sensitive to movement selection demands where an increasing α

and decreasing β were detected. Those findings are consistent
with the actual and imagined movements reported in Brinkman
et al. (2014).

The identification of distinct sleep-related fatigue levels
was crucial for discriminating the effective connectivity
patterns observed in the task-positive network of drivers.
Their importance is based on the hypothesis that the sleep

loss may affect brain functions locally, in a bottom-up
regulation of temporal changes in neurobehavioral performance
(Van Dongen et al., 2011), suggesting a dependence on
cumulative increase in activation of the neuronal groups.
This summative activation requiring to gather cognitive
resources can explain the neural network changes observed
in different frequencies during the sustained-attention driving
task. Our results from DP, normalized CCM and spectral
values support this bottom-up theory where performance
is readjusted by the circadian rhythm and time-on-task
effects.

5. CONCLUSION

The combination of EEG, behavioral and physiological
information (expressed respectively in the CCM, DP and
ES measures) as well the information about the task and socio-
environmental context in which the driving experiments were
performed, can highlight the real-world fatigue phenomenon.
The spectral changes observed in the alertness oscillations can
be explained by effective connectivity measures. CCM analysis
over specific brain areas brain areas can predict different patterns
of augmentation and suppression in the neural rhythms. CCM
results can improve the development of real time devices for
monitoring driver vigilance.
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