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Benjamin de Haas*

Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany

Neuroscience has been diagnosed with a pervasive lack of statistical power and, in
turn, reliability. One remedy proposed is a massive increase of typical sample sizes.
Parts of the neuroimaging community have embraced this recommendation and actively
push for a reallocation of resources toward fewer but larger studies. This is especially
true for neuroimaging studies focusing on individual differences to test brain-behavior
correlations. Here, | argue for a more efficient solution. Ad hoc simulations show that
statistical power crucially depends on the choice of behavioral and neural measures,
as well as on sampling strategy. Specifically, behavioral prescreening and the selection
of extreme groups can ascertain a high degree of robust in-sample variance. Due
to the low cost of behavioral testing compared to neurocimaging, this is a more
efficient way of increasing power. For example, prescreening can achieve the power
boost afforded by an increase of sample sizes from n = 30 to n = 100 at ~5%
of the cost. This perspective article briefly presents simulations yielding these results,
discusses the strengths and limitations of prescreening and addresses some potential
counter-arguments. Researchers can use the accompanying online code to simulate
the expected power boost of prescreening for their own studies.

Keywords: power, replication, individual differences, fMRI, MEG

INTRODUCTION

Recent estimates show that the statistical power of typical studies in neuroscience is inadequately
low (Button et al., 2013). Low power and a publication bias for significant results lead to low
replicability of published findings. Many researchers, journals and funding agencies are acutely
aware of the problem and discuss a range of potential remedies, including the publication of data
and analysis code (Pernet and Poline, 2015), preregistration (Chambers, 2013) and an increase of
typical sample sizes (Dubois and Adolphs, 2016).

In parallel to this, cognitive neuroscience is gaining interest in individual differences revealing
brain-behavior correlations (Kanai and Rees, 2011; Dubois and Adolphs, 2016). This trend
includes subfields like visual neuroscience (Charest and Kriegeskorte, 2015; Geng et al., 2015;
Moutsiana et al., 2016), which traditionally have treated such differences as ‘noise’ (Wilmer,
2008; Yovel et al., 2014; Peterzell and Kennedy, 2016). Studies investigating individual differences
typically require larger sample sizes, and in light of the replicability debate, Dubois and Adolphs
(2016) recently proposed a new standard of ‘n > 100.”

Here, I argue for a more efficient way of increasing the power to detect brain-behavior
correlations. Simulations show that adequate power can be achieved with a prescreening approach,
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in which researchers test a larger sample behaviorally and
selectively sample extreme-groups for brain scanning. Compared
to the proposed increase in sample size, this approach typically
enhances power at a fraction of the cost. Additionally,
prescreening can ensure the reliability of measures, which is
limiting observable effect sizes (see below).

Many others have discussed the importance of reliable
measures (see below), as well as the advantages and limitations of
prescreening (Alf and Abrahams, 1975; Abrahams and Alf, 1978;
Preacher et al., 2005; Preacher, 2015). This perspective does not
aim to make original points about either issue as such. Instead,
it aims to highlight their special importance in studies using
expensive techniques like MEG or MRI to study brain-behavior
correlations. This boundary condition renders prescreening an
efficient way to well-powered studies.

ENSURING RELIABILITY

The reliability of inter-individual differences in a given behavioral
or neural measure depends on two sources. It increases with
true between-subject variance of the measured trait and decreases
with measurement error. Reliability can be estimated as the
consistency between trials, items or parallel forms, or as test-
retest reliability. As has been pointed out by others (Hedge
et al., 2018), a given measure can robustly detect an effect at
the group level, without reliably capturing individual differences.
Personality and intelligence research have a history of developing
reliable measures of behavioral variance (with the search for
robust neural correlates of these measures proving more difficult;
Yarkoni, 2015; Dubois et al., 2018). But as the investigation
of brain-behavior correlations is adopted in other fields, the
reliability of behavioral measures is often unknown a priori.
Prescreening can be used to ensure and quantify this quality.

For example, de Haas et al. (2016) and de Haas and
Schwarzkopf (2018a) recently argued that face inversion effects
are driven by retinotopic tuning biases. A potential way of testing
this hypothesis would be to probe a correlation between the
corresponding neural and behavioral effects across observers.
However, these authors did not use this type of strategy, because
their measures did not reliably capture individual differences.
Figure 1A shows the individual magnitude of the Thatcher
illusion (Thompson, 1980) for 36 observers in de Haas and
Schwarzkopf (2018a). The illusion was highly robust - every
observer showed the effect for both, odd and even trials (all data
are in the upper right quadrant). At the same time, the inter-
individual variance was highly inconsistent (r = 0.20). That is,
even though any two observers consistently show an effect greater
than zero, the difference between them is not reliable.'

Compare this to Figure 1B, showing individual differences
in proneness to the sound-induced flash illusion (Shams et al.,
2000). Individual difference in this cross-modal measure were
reliable across visual field locations (r = 0.84) and negatively

"Note that this may partly be due to ceiling effects and a limited number of
trials. Individual face inversion effects in other designs may vary more consistently
(Rezlescu et al., 2017).

correlated with the size of primary visual cortex (de Haas et al.,
2012).

Typically, a priori knowledge about the reliability of brain
measures is rather limited. The reliability of neural measures
depends on a range of factors including participant state, imaging
method, the amount of data collected per participant, hardware,
acquisition parameters, experimental design, preprocessing, and
analysis pipelines. A thorough review of these factors is beyond
the scope of the current manuscript [for an overview regarding
fMRI, including pointers to optimization tools see (Bennett
and Miller, 2010)]. However, we note a few general trends: the
reported test-retest reliability of morphological MRI estimates
is very good, with typical intra-class correlations (ICCs) > 0.8
(Madan and Kensinger, 2017). The reliability of functional
measures can vary substantially for both, electrophysiology
(McEvoy et al., 2000; Martin-Buro et al., 2016) and MRI (Plichta
et al., 2012; Termenon et al., 2016). For example, Brandt et al.
(2013) report ICCs < = 0.4 for BOLD signal magnitudes in
novelty encoding paradigms, whereas van Dijk et al. (2016)
reported voxel-wise test-retest reliabilities > 0.8 or > 0.9 for
the individual layout of visual field maps. Generally, fMRI
reliability is higher for motor and sensory tasks compared to
those involving higher cognition, and for block designs compared
to event related ones (Bennett and Miller, 2010).

The importance of reliable measures has been pointed out
before (Dubois and Adolphs, 2016; Mollon et al., 2017; Hedge
et al., 2018). In the context of brain-behavior correlations, Vul
etal. (2009) prominently highlighted that measurement reliability
limits observable correlations. Following Spearman (1904), the
observable correlation r,, for a given ‘true’ or hypothesized brain-
behavior correlation ry, is attenuated by the geometric mean of the
corresponding measurement reliabilities (relpy,i, and relpehay):

To = Th¥v/ Telprain*7elpehay (1)

Figure 1C illustrates the effect of this for different effect sizes and
levels of reliability (y/7elprain*7elpehay). Researchers undertaking
power calculations have to decide for a minimum effect size
their study should be sensitive for. They may decide that a
biologically meaningful effect implies a minimum of ~9% shared
variance and therefore aim for adequate power (>85%) to detect
brain-behavior correlations > = 0.3. However, if the measures
used have limited reliability, this has to be taken into account.
Adequate power for an observable effect size r, = 0.3 will
correspond only to (much) stronger biological effects ry, if they
are attenuated by unreliable measures (the horizontal dashed
line in Figure 1C). Even a relatively moderate lack of reliability
will result in a noticeable drop in power. Using measures with a
reliability of 0.7, sensitivity for observable effects r, = 0.3 would
translate to biological effects r, > 0.43. Conversely, preserving
adequate power for ‘true’ effects r, > 0.3 would require sensitivity
for observable effect sizes r, > 0.21 (vertical dashed line in
Figure 1C). This implies an approximate doubling of the required
sample size from n = 97 to n = 201.

Wherever possible, an investment in reliable measures seems
more efficient than bringing a large sample with unreliable
measures to the scanner. For novel measures, reliability should
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FIGURE 1 | Measurement relibaility. (A) Shows individual data for the magnitude of the Thatcher illusion in odd and even trials from (de Haas and Schwarzkopf,
2018a). The effect is highly robust on the group level (all data are in the top right quadrant, i.e., every participant shows the effect in both, odd and even trials). But
the inter-individual variance is inconsistent (- = 0.2). (B) Shows individual data for the magnitude of the sound-induced flash illusion in the upper (UVF) and lower (LVF)
visual field from (de Haas et al., 2012). Here, the group-level effect as well as the inter-individual variance proved robust (- = 0.84). (C) Shows the attenuation of
observable correlations (r,) between measures with a given reliability, for different correlations (r,) between the properties they aim to measure. The vertical dashed
line indicates the attenuation of a 0.3 correlation for different levels of reliability. The horizontal dashed line indicates effect sizes which are attenuated to an
observable correlation of 0.3 for different levels of reliability.

be quantified and reported (Dubois and Adolphs, 2016). This
may have to be estimated post hoc for novel brain measures. But
for behavioral measures it should be done outside the scanner.
Prescreening can serve this purpose well and simultaneously be
used for selective sampling.

SAMPLING SELECTIVELY

The power to detect covariance depends on (true) in-sample
variance. Prescreening allows maximizing variance through
selective sampling. Here, I will briefly present the results of
ad hoc simulations of this effect. The code is available at

https://osf.io/hjdcf/ and interested readers can turn there to
find more details and adjust parameters for their own power
calculations.

To simulate the effect of a prescreening strategy, 10 bivariate
populations were created by drawing 10”7 normally distributed
random ‘behavioral’ values x ~ N(0,1). Corresponding
‘brain’ values (y) were simulated based on the normally
distributed random variable e ~ N(0,1) and a defined observable
brain-behavior correlation r, (specific for each population and
ranging from 0 to 0.9), such that

y=rokx+ /1 —12xe

)
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Results of y were only accepted if they correlated with x
by r, within a tolerated error margin of 0.01 (otherwise the
procedure was repeated). From each of the resulting populations,
10.000 random samples with n observations were drawn with
replacement (n ranging from 20 to 120 in steps of 10). For each
level of r, and n, Power was estimated as the fraction of the
10.000 samples showing a significant brain-behavior (Pearson)
correlation (P < 0.05). Figure 2A shows the relationship between
power, sample size and r,. In line with analytic predictions
and recent recommendations (Dubois and Adolphs, 2016),
researchers would indeed have to scan about 100 participants
in order to achieve good power (>85%) to detect moderate
observable effect sizes (r, > 0.3).

Figure 2B shows the results of the same simulation
incorporating prescreening. Here, for each sample size,
behavioral measures (x) were first drawn for a larger prescreening
sample, six times the size of n. Brain-behavior (Pearson)
correlations were only probed in a subsample, for which n
participants with extreme behavioral values were selected from
the prescreening sample (n/2 participants with the lowest and
highest prescreened values in x, respectively). This strategy
resulted in a remarkable power boost (Figure 2B). With
prescreening, good power (>85%) to detect r, > 0.3 could be
achieved with an in-scanner sample size of n = 30. Importantly,
this power boost was limited to true effects. For r, = 0 the
nominal false alarm rate of P = 0.05 was preserved. Figure 2H
shows corresponding results for further prescreening factors (i.e.,
multiples of # other than six).

The power boost afforded by prescreening does not come for
free. To achieve comparable power to n = 100 at n = 30, the
simulated researcher prescreened 180 participants. But the higher
cost of neural compared to behavioral testing should typically
render this a sensible choice. These factors can vary, but it is
worth considering an example.

In the author’s experience, many behavioral experiments can
be done in an hour, and the booking time for a typical fMRI
session is 2 h. The standard fee for participant reimbursement
at his current institution is 8€/h and that for booking a research
MRI machine in Germany is 150€/h*>. Assuming these numbers,
we can calculate the price tag of improving a traditional, low-
powered study (n = 30) to a well-powered one using different
strategies. Prescreening in this example would require additional
behavioral testing of 150 participants, which works out to
additional costs of 150*1h*8€/h = 1.200€. A similar level of
power could be achieved by testing and scanning 70 additional
participants, which would work out to 70*(1h*8€/h 4 2h*(8€/h +
150€/h)) = 22.680€. Remarkably, prescreening achieves a similar
power boost as the recommended increase in sample size at ~5%
of the cost.

I expect this estimate to be a conservative one. The assumed
cost of scanning is a fraction of that charged in many centers
outside Germany. The example also left aside all staff costs.
A single student can typically do behavioral testing, while most
neuroimaging facilities will require at least two professionally
trained operators. Likewise, the analysis of neuroimaging data

2http:/ /www.dfg.de/formulare/55_04/55_04_de.pdf

requires specialized training and can be more time consuming
than that of behavioral experiments. Researchers and funding
agencies are encouraged to do their own calculations, adjusting
parameters as needed.

Note that error in this simulation was captured by the
error term /1 — r2 * ¢, which negatively scales with r, (Eq. 2).
The observable correlation r, in turn depends on the shared
variance between ‘true’ behavioral and neural traits, ry,, as
well as on measurement errors attenuating this relationship
(Eq. 1). Expanding r, to directly enter measurement error
into the simulation yields identical results (also see section
“Counterargument 3: Real Data May Be ‘Nastier’ Than
Simulations” below). But specifying r, in a separate, first step
seems closer to practical purposes.

To consider an example: A researcher hypothesizes that
retinotopically determined V1 surface area negatively correlates
with individual proneness to the sound induced flash illusion (c.f.
de Haas et al., 2012). First, she has to decide on a minimum
‘true’ effect size she considers biologically meaningful and the
level of power she wants to achieve for this effect (let’s say 85%
power for r, > 0.36). Next she has to estimate the reliability
of the corresponding behavioral (relpeh,y = 0.84) and neural
measures (relppin = 0.82) — which in this case could be done
using previous literature (de Haas et al., 2012; Schwarzkopf and
Rees, 2013). Based on these values (and following Eq. 1), she
can now determine the minimum observable correlation she aims
for as r, > 0.3. Entering this into the power simulation code’,
the researcher finds that she can achieve > 85% power, e.g., by
scanning n = 30 extreme participants from a behavioral sample
of n*6 = 180 participants, or by scanning n = 40 extreme
participants from a behavioral sample of n*4 = 160 (Figure 2H).
Based on available resources and costs, she decides for the
former approach and tests proneness to the sound-induced flash
illusion in 180 participants. After confirming relpep,, in this
sample, she invites the 36 participants with highest and lowest
proneness values back for a retinotopy scan (18 from either tail).
The researcher scans the first 15 participants from either group
accepting this invitation. This approach anticipates a dropout
up tp 20% among those re-invited for scanning and according
to supplementary simulations leaves the afforded power boost
virtually unchanged (Supplementary Figure 1C).

CAVEATS AND COUNTERARGUMENTS

Conterargument 1: Sampling Extreme
Groups Will Yield Inflated Estimates of
Effect Sizes

Yes. Researchers applying prescreening should be aware of
this and highlight it in their publications. The application of
correlation measures across extreme groups is well-established
(Preacher, 2015) and more powerful than group comparisons
(e.g., via t-tests). This is because correlation measures take into
account the variance within as well as between extreme groups
(Alf and Abrahams, 1975). At the same time, the increase in

3https://osf.io/hjdcf/
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FIGURE 2 | Selective sampling. Left hand plots in black ink show power simulations without prescreening; right hand plots in blue show corresponding results for
prescreening with selective sampling of extreme groups. Selective samples were drawn based on behavioral measures from a prescreening group six times the size
of n (extreme groups for B,D, even sampling for G). In each panel, ink saturation indicates the simulated effect size on the population level, as shown in the inset
(observable correlation ry). Red ink indicates simulation results for zero-effects (ro = 0). All x axes indicate sample size n (10.000 random samples drawn for each
level). (A,B) Shows power, i.e., the fraction of samples showing a statistically significant correlation (P < 0.05). (C,D) Shows corresponding effect sizes (mean of
observed significant correlations). (E) Shows the (inverse) precision of effect size estimates (width of 95% confidence interval) as a function of observed effect size
and sample size. (F,G) Shows the accuracy of a model selection procedure aiming to distinguish between linear and non-linear relationships based on simulated
data (see main text for details). (H) Shows the power boost afforded by different prescreening factors, for two different observable effect sizes (r, = 0.3/0.4, as
shown). The prescreening factor corresponds to the size of the prescreening sample divided by the final n, as shown in the legend to the right.
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variance achieved through selective sampling inflates the size of
(non-zero) correlations.

Figures 2C,D shows average effect size estimates with
and without prescreening for the power simulation shown in
Figures 2A,B. Effect size estimates are inflated in both cases,
because they are based on significant results only [the simulation
assumes a ‘ file drawer problem’ (Simonsohn et al., 2014)]. But
the degree of inflation is larger for selective sampling. It will be
especially important to take this into consideration for meta-
analyses.

However, inflation is limited to true effects; for r, = 0, the
average effect size stays zero. Prescreening preserves a low false
positive rate, while affording a high probability of detecting
true effects. Just as for increased sample sizes, this results in a
high positive predictive value of significant findings. That is, a
significant result has a higher probability of reflecting a true effect
when the study was well-powered - regardless of whether that
power was achieved through prescreening or increased sample
sizes.

Selective sampling is an efficient strategy for detecting (or
rejecting) brain-behavior correlations. It is not suitable for
precise estimates of their size or the parameters of a predictive
model (c.f. Bzdok et al., 2018). Whenever precise effect size
estimates are of interest, researchers should be aware that a
sample size of n = 100 could be far too small*. The width of 95%
correlation confidence intervals decreases with #, but only slowly.
As shown in Figure 2E, for moderate effect sizes (r, = 0.3) this
measure of imprecision is still > 0.1 at n = 1000. In practice,
precise effect size estimates will be limited to very strong effects
or large-scale initiatives like the Human Connectome Project’ or
UK Biobank®.

Finally, the description of a population parameter requires a
well-defined population (Henrich et al., 2010; Smith and Little,
2018). Scanning an extremely large student sample would still
yield a biased estimate of any population other than that of
students. Researchers aiming at representative sampling can adapt
prescreening to this end (see below).

Counterargument 2: Sampling Extreme
Groups Can Conceal Non-linear

Brain-Behavior Relations

Yes. The extreme-group strategy proposed here aims at detecting
(quasi-)linear relationships. Researchers aiming to compare
different models should optimize their sampling strategy
accordingly.

Figures 2F,G show the results of a simulation of ‘true’ linear
and non-linear brain-behavior relationships. This simulation
followed three steps. First, it drew random behavioral data
(x) from a normal distribution x ~ N(0,1). Second, idealized
brain predictions (yp) were generated, 50% of which perfectly
corresponded to the model:

Yh =X (3)

“http://datacolada.org/20
>http://www.humanconnectomeproject.org/
Chttp://www.ukbiobank.ac.uk/

and 50% of perfectly corresponded to the model
= @+3)? 4)

Importantly, a third step added brain measurement noise, which
was manipulated to be comparable for both models and to the
power calculations above. Specifically, brain measures (y) were
simulated as random data linearly correlated to the respective
model predictions (yy,) with r,. In this way, 10.000 samples were
drawn for both models at each level of , and sample sizes ranging
from n =20 to n = 120.

For each sample, the simulation aimed to distinguish linear
from non-linear relationships by fitting 1%t and 2°¢ order
polynomials. The ‘wining’ model for each sample was chosen
based on the Akaike Information Criterion (Akaike, 1974). As
can be seen in Figure 2F, the proportion of correct model choices
(unsurprisingly) increases as a factor of r, and n. Note that
adequate sensitivity for model comparison required very large
sample sizes and/or strong effects.

To evaluate the usefulness of prescreening in such a scenario,
the simulation was repeated for behavioral prescreening with
n*6. The sampling strategy was adjusted to the needs of model
comparison. Instead of sampling the tails of the prescreening
sample, the algorithm aimed at choosing a subsample that
covered the behavioral range of the prescreening sample as evenly
as possible (see online code for details). Figure 2G shows that
this strategy significantly enhanced the sensitivity to discriminate
non-linear from linear relationships.

Counterargument 3: Real Data May Be

‘Nastier’ Than Simulations
Yes. The simulations presented here assume normally distributed
data and random errors. Real data may be less well-behaved.
However, it is not clear a priori that this would pose more
of a problem for the prescreening compared to a full-sample
approach. Moreover, prescreening samples enable informed
hypotheses regarding potentially problematic aspects of the data.
A particularly relevant example of problematic data is that
of heteroscedastic measurement error, scaling with the latent
variable. In this scenario, extreme groups will be affected by
particularly low and high measurement errors, respectively.
Importantly, supplementary simulations confirm the robustness
of prescreening in this situation. Prescreening and selective
sampling preserved nominal false positive rates and a strong
power boost, even for a population with strongly heteroscedastic
measurement error (Supplementary Data and Supplementary
Figure 1).

Counterargument 4: Extreme Groups
May Be Special
Yes, but it is important to spell out what that means.

It may refer to the relationship of a behavioral and a
neural trait not following a uniform, linear model across the
entire distribution. In such cases, the underlying linear model
is inappropriate, regardless of the sampling approach. See
Counterargument 2 for prescreening in the context of non-linear
model comparisons.
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Alternatively, the argument may refer to measurement error.
Even random measurement errors will correlate with observed
values. That is, extreme measurements will partly reflect extreme
errors (and more so for less reliable measures). This biased error
sampling causes regression to the mean (Barnett et al., 2004).
Importantly, extreme observed values also reflect true extreme
values (at least for measures with non-zero reliability). This is the
source of the power boost afforded by prescreening. Additional
simulations show that the elevation of error variance in extreme
groups is much smaller than that of true variance, even for
reliabilities as low as 0.3. For a given r,, prescreening causes
virtually identical power boosts, regardless of the constituting
ry and reliabilities (Supplementary Data and Supplementary
Figure 2). Another, more specific worry is that of measurement
errors scaling with the latent variable. See Counterargument 3
and Supplementary Material for the robustness of prescreening
to heteroscedastic errors.

Finally, confounding factors may be especially pronounced in
behavioral extreme groups. Statistical control for confounding
factors can be difficult if they have to be estimated with noisy
measures (Westfall and Yarkoni, 2016). Behavioral prescreening
is an excellent tool to estimate the magnitude of confounding
factors as well the associated measurement errors across the
distribution. If parts of the distribution are particularly affected
by confounding factors or by measurement noise for the
corresponding estimates, this can motivate a sampling strategy
targeting more robust cases (which may or may not coincide with
extreme groups, c.f. Counterargument 2).

Counterargument 5: Prescreening
Should Be Combined With Large
Samples Rather Than Pitted Against
Them

Not necessarily.

Researchers interested in precise effect size estimates will
indeed need four-figure sample sizes, unless the effects they study
are unusually large. However, the aim of many brain-behavior
studies is arguably more humble. Researchers often are interested
in testing the hypothesis that there is some relationship between
a given neural and a behavioral measure which is captured
well-enough by a linear model to be relevant in the context of
their theory (e.g., ro > 0.3). Testing this hypothesis can be a
valuable first step, even though (for affirmative cases) it certainly
should not be the last (Smith and Little, 2018). Most importantly,
detection studies can only give valid pointers to relevant effects if
they are well-powered.

Prescreening can ensure adequate power with small sample
sizes in the scanner, even for moderate effects (e.g., >85% power
for ro > 0.3 at n = 30). Researchers combining this approach
with individually consistent measures can be confident in the
detection power and replicability” of their studies (Figure 2B).

’Note that replicability here refers to the detection question: experiments will give
reliable answers to the question whether there is an effect whenever there is no
effect (repetitions of the experiment will yield mostly negative results) or a true
effect of a magnitude they are well-powered for (repetitions of the experiment will
mostly yield significant results). Replicability in a stricter sense of near-identical

The savings afforded by this strategy relative to a blanket increase
of sample sizes should routinely be around a factor 20 or
higher. Given the limited resources available to neuroscience,
these savings would translate to a larger number of well-powered
detection studies.

Counterargument 6: Prescreening
Precludes the Reuse of Data for
Unrelated Research Questions

Yes (usually). Neuroimaging experiments can produce data that
are highly specific to an underlying research question, like
the retinotopic specificity of visual cortex responses to illusory
contours (de Haas and Schwarzkopf, 2018b). However, most
experiments yield at least some data that can potentially be
‘recycled’ for entirely unrelated questions (like structural and
diffusion weighted scans, or retinotopic maps). Prescreened
samples are inherently biased and as such not ideally suited for
such recycling. Does that mean the savings afforded by pre-
screening are only short-term?

Not in the author’s opinion. The best sources of ‘general
purpose’ data are public datasets like the aforementioned Human
Connectome Project. These are truly large scale, representative
and include extensive test batteries. This will typically not
be the case for data from individual experiments. Consider
a researcher investigating the relationship between V1 surface
area and the individual strength of contextual size illusions
(Schwarzkopfetal., 2011). Several years later, the same researcher
may become interested in the question whether V1 surface area
varies with fluid intelligence. It is true that prescreening for
the initial experiment would yield a smaller and potentially
biased dataset for the second question. But not to prescreen
would only marginally improve the situation. The typical sample
would still be anything but representative and most likely miss
crucial data. At the same time a high quality public dataset is
readily available (Benson et al., 2018). Division of labor appears
a far more efficient approach for human neuroscience: ‘General
purpose’ data are acquired in dedicated large-scale studies, while
hypotheses requiring more specific experiments are tested in
studies optimized to that end. The latter type can profit from
prescreening.

Counterargument 7: Prescreening
Sometimes Is Not Feasible

Yes. For instance, it can be more efficient to scan every
participant if the recruitment process itself is costly (as for some
special populations). In general, the cost ratio of behavioral and
neural testing will vary with the type of behavioral measure.
The example calculation given above assumed a simple, lab-
based psychophysics or eyetracking experiment. The potential
advantage of prescreening will be even more pronounced for
questionnaires, or tasks that can be completed online. At the
other end of the spectrum are resource-intensive behavioral tasks,

effect size estimates is much harder to achieve (3.1). Both concepts are linked in
the sense that more precise effect size estimates imply power for smaller effect
sizes. That is, more precise effect size estimates reduce the range of true effects
the experiment is not well-powered for.
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like reverse correlation techniques requiring 10s of 1000s of trials
(Gosselin and Schyns, 2003), which will render the prescreening
cost-advantage small or even absent.

Furthermore, for some behavioral tasks it may be impossible
to estimate the reliability of between subject variance, for
instance because they require participants to be naive and
cannot be repeated (like some measures of perceptual learning).
However, such scenarios will typically call for an entirely different
research design. Measures that cannot be tested for the reliability
of between-subject variance are unsuitable for brain-behavior
correlations as such, not just for prescreening. Group level effects
can be robust independently of this (Figure 1A) and should be
the variable of interest in this type of situation.

CONCLUSION

Like all of science, studies aiming at the detection of brain-
behavior correlations depend on well-powered experiments,
yielding replicable results. This perspective highlighted how this
can be achieved with relatively small sample sizes in the scanner.
Behavioral prescreening can achieve a power boost comparable to
larger sample sizes at a fraction of the cost and without inflating
the false positive rate.

Researchers investigating brain-behavior correlations should
base their power calculations on a broader basis than sample
size alone. The simulation code accompanying this perspective
can be used to incorporate the boost afforded by prescreening.
Researchers should also pay attention to the reliability of
measures and adjust their power estimates for attenuation.
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