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Driver cognitive distraction is a critical factor in road safety, and its evaluation, especially

under real conditions, presents challenges to researchers and engineers. In this study,

we considered mental workload from a secondary task as a potential source of cognitive

distraction and aimed to estimate the increased cognitive load on the driver with a

four-channel near-infrared spectroscopy (NIRS) device by introducing amachine-learning

method for hemodynamic data. To produce added cognitive workload in a driver beyond

just driving, two levels of an auditory presentation n-back task were used. A total of 60

experimental data sets from the NIRS device during two driving tasks were obtained and

analyzed by machine-learning algorithms. We used two techniques to prevent overfitting

of the classification models: (1) k-fold cross-validation and principal-component analysis,

and (2) retaining 25% of the data (testing data) for testing of the model after classification.

Six types of classifier were trained and tested: decision tree, discriminant analysis, logistic

regression, the support vector machine, the nearest neighbor classifier, and the ensemble

classifier. Cognitive workload levels were well classified from the NIRS data in the cases

of subject-dependent classification (the accuracy of classification increased from 81.30

to 95.40%, and the accuracy of prediction of the testing data was 82.18 to 96.08%),

subject 26 independent classification (the accuracy of classification increased from 84.90

to 89.50%, and the accuracy of prediction of the testing data increased from 84.08

to 89.91%), and channel-independent classification (classification 82.90%, prediction

82.74%). NIRS data in conjunction with an artificial intelligence method can therefore be

used to classify mental workload as a source of potential cognitive distraction in real time

under naturalistic conditions; this information may be utilized in driver assistance systems

to prevent road accidents.
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INTRODUCTION

Driver distraction is a major cause of traffic accidents
(NHTSA, 2015). An analysis by the US Highway Traffic Safety
Administration (NHTSA) showed that driver distraction can
be categorized into three types: visual distraction, manual
distraction, and cognitive distraction (NHTSA, 2012). Among
these, cognitive distraction is the most difficult type to address,
because it occurs within the driver’s brain (Rizzo and Hurtig,
1987; Engström et al., 2005; Angell et al., 2006). Cognitive
distraction is defined as the mental workload associated with a
task that involves thinking about something other than driving.
The detection of cognitive distraction imposed by a secondary
task while driving might play an important role in creating a
new driver-assistance system to reduce the incidence of traffic
accidents.

Dong et al. (2011) categorized techniques for measuring
mental workload while driving into five groups: (1) subjective
metrics, (2) biological metrics, (3) physical metrics, (4)
performance metrics, and (5) combinations of these metrics.
Because the central goal of our research was to identify and
improve a metric that might permit the detection of mental
workload in real time and which could operate under real
conditions in the presence of, for example, vibration from the
vehicle, we examined only physical metrics in the present study.

One potential physical metric involves the use of eye-
movement information. Many researchers have previously
attempted to identify a relationship between mental workload
and various items of information on the eye, such as blink
(Tsai et al., 2007; Benedetto et al., 2011), pupil diameter (Backs
and Walratht, 1992; Klingner et al., 2008; Schwalm et al.,
2008; Klingner, 2010), saccades (Tsai et al., 2007; Pierce, 2009;
Tokuda et al., 2009), gaze concentration (Wang et al., 2014),
or eye fixation (Klingner, 2010). Each of these methods has its
advantages and disadvantages. For example, pupil diameter has
a strong relationship to the level of cognitive load but it is also
highly sensitive to the frequent changes in light that occur while
driving (Palinko and Kun, 2012). Another potential method is
to use the involuntary eye movements based on the vestibulo-
ocular reflex model that are simulated by head movements or by
vibrations from the moving vehicle. In this method, differences
between predicted and actual eye simulation are assessed as a
measure of mental workload (Obinata et al., 2008, 2009, 2010;
Aoki et al., 2015; Anh Son et al., 2016, 2017a,b,c,d,e, 2018; Le and
Aoki, 2018; Son and Hirofumi, 2018; Son et al., 2018) However,
the use of eye information to measure mental workload still has
some limitations, such as oversensitivity to light, vibration, noise,
and visual information.

In terms of a physical metric, monitoring of brain activity
by electroencephalography or the use of the heart rate as an
indicator of mental workload have been confirmed to be effective
(Meshkati, 1988; Lee and Park, 1990; Jorna, 1992; Porges and
Byrne, 1992; Veltman and Gaillard, 1996; Ryu and Myung, 2005;
Henelius et al., 2009; Mehler et al., 2012; Cinaz et al., 2013; Angell
and Perez, 2015). However, these techniques require physical
attachment of the monitoring equipment and are highly sensitive
to the driver age, body position, and muscle activity.

One method with a high potential for application is the
use of information from near-infrared spectroscopy (NIRS) to
classify mental workload (Kopton and Kenning, 2014). NIRS
has been used in various fields; for example, in agriculture
to check the quality of crops and in medicine to assess
oxygenation and microvascular function. In terms of classifying
mental workload, a relationship between mental workload and
activity of the central nervous system has been confirmed
by McBride and Schmorrow (2005). Since their work, other
researchers have attempted to classify levels of mental workload
by applying artificial-intelligence analyses (Tsunashima and
Yanagisawa, 2009; Herff et al., 2014; Ichikawa et al., 2014;
Aghajani et al., 2017). All of these researchers showed that NIRS
has considerable potential in quantifying mental workload while
driving, especially in naturalistic cases (Kopton and Kenning,
2014; Liu et al., 2016).

Furthermore, Toshinori Kato and his group have done various
investigations on NIRS data, especially how to filter the signals
and map it (Kohri et al., 2002; Yoshino et al., 2013, 2015;
Orino et al., 2015). In actual driving, his group pointed out
that there was a relationship of the brain activity with the
vehicle speed. Their research also confirmed that fNIRS data is
one of a good solution for monitoring the driver status while
driving especially in actual condition. Further, Liu et al. (2017)
confirmed that the cognitive workload has a relationship with
the hemodynamic activity level (Liu et al., 2017). His team also
mentioned that the effective association can be weak in case
of driving with subtasks. However, none of them investigated
in applying machine learning with raw data to detect mental
workload by secondary task while driving.

The central goal of our study was to examine whether or not it
is possible to classify driver mental workload by using supervised
learning with NIRS data obtained in a real vehicle. In this report,
we initially point out the importance of detecting cognitive load
while driving. We then review and summarize methods for
evaluating cognitive workload that have been reported in the
literature. We also discuss the differences in mental workload
between doing one task and driving with secondary task. We
then review the use of NIRS information to classify cognitive
load, and we describe our experimental design and methods for
analyzing NIRS data. The result of the classification are reported
and, finally, we discuss our conclusions and any challenges that
remain.

MATERIALS AND METHODS

Experimental Design
One female and four male subjects, who each held a
driver’s license (mean age: 38 ± 10; two professional drivers,
and three newly qualified drivers), were recruited for this
test. A total of 60 experiments were performed involving
navigating a defined course alone (autocross) or following
another vehicle (car-following) on a test course (Figure 1). The
experiments were approved by the Ethical Review Board of
Nagoya University’s Institute of Innovation for Future Society.
All subjects were provided with explanations regarding the
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experimental procedure, and all gave their written informed
consent.

The experiment procedure is shown in Figure 2. The subjects
performed a series of tests involving a driving task (autocross or
car following) during which drivers were asked to drive around
40 km/h. For portions of these drives, additionalmental workload
was introduced by asking subjects to engage in two levels of an
n-back auditory digit recall task in which a number was verbally
presented to the subject every 2 s. In the 1-back test, the subject
was asked to press the “Yes” button when the number heard
was the same as the previous one or the “No” button when it
was different. In the 2-back task, the subject similarly had to
remember the number preceding the previous one. The “Yes” and

“No” buttons were installed on the driving wheel so they could be
easily pressed.

As our main aim is to create an algorithm for an advanced
driver-assistance system to help prevent traffic accidents by
identifying driver cognitive distraction, the classification needed
to be reliable, quick, and easy. To achieve this, we used a
commercial four-channel NIRS system (Astem Corp., Fukuoka,
Japan) which was placed on the forehead of the subject, where the
signals from the four channels are almost the same (Figure 3).
This device can measure blood oxyhemoglobin (oxy-Hb) and
deoxyhemoglobin (deoxy-Hb) levels at wavelengths of 770 nm
(probe distance 35mm) and 830 nm (probe distance is 40mm),
and oxygen saturation at 35mm.

FIGURE 1 | Test course.

FIGURE 2 | Experiment procedure and hypothetical image of MWL.
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FIGURE 3 | ASTEM’s NIRS device.

Furthermore, to keep the class-balance data set for machine
learning, the subjects were asked to drive around the course for
each task (driving task only, driving plus 1-back task, and driving
plus 2-back task), and repeat it twice (average time for each trial
was 1min 54 ± 16 s depending upon the speed actually driven).
Therefore, the sample data input to machine learning step was
class-balance.

Data Processing
Figure 4 provides an overview of the method we used to
preprocess the NIRS data. Because of noise arising from
movement artifacts (Cooper et al., 2012; Kirlilna et al., 2013),
the raw NIRS data from each channel were preprocessed by
using a modified form of the Beer–Lambert Law (Huppert et al.,
2016) with removal of lost data (time shift) (Kirlilna et al.,
2013), bandpass filtration (0.02–1Hz) (Ichikawa et al., 2014), and
Kalman filtration (Abdelnour and Huppert, 2009), before finally
being transformed into features.

In our experiment, the raw data of each channel
includes (Figure 5): oxyhemoglobin at 35mm (OxHb35),
deoxyhemoglobin at 35mm (DoxHb35), total oxyhemoglobin
(ToxHb35), absolute tissue saturation (StO2), oxyhemoglobin at
40mm (OxHb40), deoxyhemoglobin at 40mm (DoxHb40). After
filtering, all of the information from NIRS will be transform to 6
features namely OxHb35, DoxHb35, ToxHb35, StO2, OxyHb40,
and DoxHb40 for preparing to input for machine learning step.

These features were then processed to create training data
and testing data for subject-dependent, subject-independent,
channel-independent, and subject-independent plus channel-
independent cases. After taking all of the data, they were divided
into 75% (training data) and 25% (testing data, which is not used
to improve the model, but to measure its predictive performance;
Figure 6). Because we used four channels for the forehead,
the data combinations were obtained merely by combining the
data together. To prevent overfitting during machine learning,
a fivefold cross-validation and a principal-component analysis
were applied before the data were used to train the system. The
fivefold cross-validation was conducted in the following three

steps. First, the training data (75% of all data) was split into
5-fold. Second, a model for each fold using all the data outside
the fold (75% of the training data) was trained and validated.
After that, the features were transformed with PCA to reduce
the dimensionality of the predictor space (we applied 5 principal
components).

Definition:

- Subject-dependent (Subject-dependent+ channel-dependent;
Figure 7): data of each channel for each subject in all task was
combined as the input of the machine learning step. Total 20
datasets were prepared for running machine learning.

- Subject-independent (Subject-independent + channel-
dependent; Figure 8): data of each channel for all subjects in
all task was combined as the input of the machine learning
step. Total 4 datasets were prepared for running machine
learning.

- Channel-independent (Channel-independent + Subject-
dependent; Figure 7): data of all channel for each subject in
all task were combined as the input of machine learning step.
Total 5 datasets were prepared for running machine learning.

- Subject-independent+Channel-independent (Figure 8): data
of all channel for all subject in all task were combined as the
input ofmachine learning step. Only one data set was prepared
for running machine learning.

The Classification Method
Previous studies on the classification of mental workload from
NIRS data have used an SVM (Devos et al., 2009; Ichikawa
et al., 2014; Aghajani et al., 2017), linear discriminant analysis
(Luu and Chau, 2009), the hidden Markov model (Sitaram et al.,
2007; Zimmermann et al., 2013), or artificial neural networks
(Chan et al., 2012; Thanh Hai et al., 2013). However, most of
these studies involved complicated multichannel NIRS systems.
In our study, because of the large number of samples and the low
number of channels, we applied supervised learning in MATLAB
2017b (MathWorks Inc., Natick, MA, United States) (Figure 5).
We used the 75% of the data to train several well-known
models, including the decision-tree model, the discriminant-
analysis model, the logistic-regression model, SVMs, nearest-
neighbor classifiers, and ensemble classifiers. The performance of
these classifiers was determined from the accuracy, as calculated
by using the equation shown below:

Accuracy (Acc) =
(TP + TN)

(TP + FP + TN + FN)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives.

In addition, in case of applying SVMs to perform
multiclass classification (just driving vs. 1-back vs. 2-back),
the transformation technique was applied to reduce the
multiclass classification problem to a set of binary classification
subproblems, with one SVM learner for each subproblem. One-
vs.-All trains one learner for each class. It learns to distinguish
one class from all others will be applied in our case.
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FIGURE 4 | Pre-processing data.

FIGURE 5 | (A–C) data collection in one trail for subject 1 (D). Example of filtering data for subject 2.
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FIGURE 6 | Combining channels.

FIGURE 7 | Example for data processing 1.
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FIGURE 8 | Example for data processing 2.

The most accurate model for classification was selected and
used in the prediction step with the testing data. All parameters
of any model were kept the same in both classification and
prediction step.
Definition (Figure 9):

- Classification accuracy: the accuracy of the classification using
75% of the data for train step. The model of highest accuracy
was selected to use in the prediction step.

- Accuracy on the testing data: the accuracy of prediction using
25% of the data for the prediction step. In this step, the
prediction model was exported from the selected model in the
classification step and apply it for the new data (25% testing
data).

RESULTS

Subject-Dependent Classification Analysis
Data for each channel for each subject were separated for the
purposes of training and prediction. The classification between
driving only, driving with a 1-back task, and driving with a
2-back task showed a good performance and a high accuracy (the
classification accuracy increased from 81.30 to 95.40%, and the
accuracy for the testing data increased from 82.18 to 96.08%)
(Video 1). Details of the accuracy are shown in Table 1.

Subject-Independent Classification
Analysis
With the main arm of comparing the effects of individual
characteristics on the accuracy of classification, we also
performed a classification with the data for each channel for
all subjects. The results are shown in Figure 10. The accuracies

in classifying the driver’s mental workload from each channel
were found to be in the range 84.9 to 89.5%, and the accuracy
in predicting testing data increased from 84.08 to 89.91%.
These results indicated that individual characteristics affected the
accuracy of classification of the mental workload.

Channel-Independent Classification
Analysis
Before combining the data from all channels from the NIRS
together, we performed a multiple comparison of oxy-HB and
deoxy-HB levels for all the channel data from each subject in
the same task by means of a Bonferroni test. The results showed
that there was no significant difference between the data from
the various channels in the same task (the p-value in all cases
was >0.05). According to the result, we decided to combine the
data from all the channels together when checking the accuracy
of classification.

First, the data from the four channels for each subject
were combined to test the accuracy of classification. The
results of this classification are shown in Figure 11. The
accuracy of classification increased from 80.8 to 88.6%, and
the accuracy on the testing data increased from 83.4 to 88.2%.
This shows that acceptably accurate results of classification can
be obtained simply by combining the data for the various
channels.

Subject-Independent +

Channel-Independent Classification
Analysis
Finally, to examine the potential for creating a system real-time
classification of driver cognitive load to prevent accidents, we
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FIGURE 9 | Classification accuracy and prediction accuracy.

TABLE 1 | The classification accuracy (the accuracy on the testing data) (%).

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Channel 1 94.0 (93.3) 95.4 (96.1) 91.4 (91.3) 92.1 (91.3) 89.7 (91.1)

Channel 2 88.9 (87.9) 92.1 (88.3) 89.7 (89.9) 92.6 (92.3) 87.3 (91.0)

Channel 3 92.9 (90.4) 89.8 (90.6) 91.9 (88.7) 85.2 (82.3) 83.0 (86.4)

Channel 4 94.4 (92.5) 89.9 (90.0) 87.8 (89.5) 85.7 (85.4) 81.3 (82.2)

combined the data from all the channels and all the subjects
and we used the combined date to train the classification. We
then examined the effect of this combination on the accuracy
of classification and on the accuracy of prediction. As expected,
the accuracy of classification was 82.9% and the accuracy of
prediction was 82.71%, which were similar values to those
previously obtained. This showed that that the position of the
channel on the forehead did not have a significant effect on
the accuracy, and it confirmed that a compact NIRS device
can capture the cognitive distraction of a driver, even under
naturalistic conditions.

Compare with the result done by Naseer and Hong (2015)
and Hong et al. (2015), which was used fNIRS signal, and
then show the possibility of the hybrid feature extraction to
classification with motor imagery tasks. The highest classification
accuracy was around 77.5% with multi-class LDA. Furthermore,
the classification of the right—and left—wrist motor imageries
also done by Naseer and Hong (2013) using fNIRS information.
By reducing the time span within the task period to 2–7 s, the
accuracy for classification was increased to 77.56 and 87.28%.
Here, we performed the classification with a machine learning
algorithm and get better results with accuracy around 82.9% (in
the case of subject-independent + channel-independent). The
different of the accuracy may depend on the difference in mental
workload level, different experiment condition, and so on.

DISCUSSION

Model Selection for Classification of NIRS
Data
As we have mentioned above, most previous researchers have
used an SVM (Devos et al., 2009; Ichikawa et al., 2014; Aghajani
et al., 2017), linear discriminant analysis (Luu and Chau, 2009),
the hidden Markov model (Sitaram et al., 2007; Zimmermann
et al., 2013), or artificial neural networks (Chan et al., 2012;
Thanh Hai et al., 2013) to classify mental workload. In this
study, we trained the data with some new models, such as the
k-nearest neighbors model (k-NN) and the bagged tree (random
forests) model, depending on the number of samples. Our results
showed that the random forests model provided the highest
accuracy, even with large numbers of samples, whereas the cubic
SVM showed the worst performance (The average accuracies of
each model in all previous analyses are shown in Figure 12). In
addition, the k-NN model is also suitable for classifying mental
workloads by using NIRS data because of its ability to maintain
similar levels of accuracy even when the sample size changes
markedly.

The SVM, a well-known method that has been previously
applied in various classifications of NIRS data, showed very good
performance with small numbers of samples. However, when
there were large numbers of samples, the SVM was very slow
and its accuracy was low compared with other methods. For
example, in the case of a channel-independent test for Subject
1, where the sample size was over 15,000 samples, the accuracy
of the SVM was 68.2%, compared with 87.3% for the random
forests method and 88.6% for the k-NN classifier. In addition,
the SVM took 1,341 s to perform the classification, whereas the k-
NN classifier required only 88.6 s. Similar effects were observed in
subject-dependent and subject-independent classifications. The
sudden reduction in the accuracy of the SVM might arise from
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FIGURE 10 | Subject-independent classification accuracy.

FIGURE 11 | Channel-independent classification accuracy.

differences in the data after data combination, as well as from
effects of individual characteristics.

On the other hand, the way to select testing sample also plays a
very importance role in the classification. In our case, we selected
the testing sample following X→ X→ X→ Y→ X→ X→ X→
Y→ X . . . , where X is a sample taken for the 75% and Y is a
testing sample. It may make the nearest neighbor classifier that
will perform very well, probably because the variation from Y to
its neighbors in time (the X before and after Y) will be very low.

We also believe that for higher numbers of subjects, a
lower accuracy is attained for subject-independent classification.

Consequently, for large numbers of subjects, the machine-
learning algorithm should be changed to a deep learning or
convolution neural-network algorithm, which can still show
good performance with large quantities of data.

The Potential For Using NIRS Data to
Evaluate Levels of Driver Mental Workload
This study is one example of the application of machine learning
in classifying driver mental workload from data obtained with
a simple commercial NIRS device, which has a high potential
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FIGURE 12 | Model performance in Subject-dependent test.

for routine use with drivers because of its acceptable price.
However, we believe that the use of a combination of channels
for NISR is necessary because signal losses tended to occur often
under naturalistic conditions. In some cases, however, one or two
channels provided sufficient signals due to the activities of the
driver.

The ability to unobtrusively detect changes in mental
workload is relevant since high levels of cognitive load can
reduce a driver’s ability to anticipate and respond to emergent
dangers in the driving environment. Broadly considered, these
findings suggest various lines of potential research related to
the development of advanced driver assistance systems (e.g., a
new method to prevent accidents by detecting levels of mental
workload that may lead to cognitive distraction), basic human
factors insight (exploring the relationship between individual
characteristics and objective indicators of mental workload), and
mathematical modeling (combining channel, improve accuracy
by applying different technical).

In conclusion, as previously suggested (Kopton and Kenning,
2014; Unni et al., 2017), simple NIRS has considerable
potential for capturing driver mental workload, especially under
naturalistic conditions.

LIMITATIONS

The relatively small sample size used in this study (a total
of 5 subjects including one female and four males) could be
considered a limitation. While we believe that the NIRS signals
were found to be predictive for this small sample under our
specific set of conditions, it would be worthwhile to repeat the
experiment with a larger sample and a wider range of conditions
(e.g., driving track, time of day, gender balance, driver skill level,
age, etc.).

CONCLUSIONS

Our study suggested that it is possible to use NIRS data to classify
levels of driver mental workload, even in a naturalistic situation.
Furthermore, a simple combination of forehead channels was
shown to provide acceptably high accuracies of classification.
While the fNIRS sensors employed in this study required
contact with the participants’ skin, the lightweight ball cap
configuration was much less intrusive than more traditional
electrophysiological measures used in related work. We also
confirmed the potential of using machine learning (channel-
and subject-independent) to predict possible driver cognitive
distraction, a critical factor in road safety.
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Video 1 | NIRS toolbox for classifying driver mental workload.
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