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As an index of behavioral inhibition and an individual’s propensity to avoid, rather
than seek, potentially dangerous situations, harm avoidance has been linked to
internalizing psychopathology. Altered connectivity within intrinsic functional neural
networks (i.e., default mode [DMN], central executive [CEN] and salience networks [SN])
has been related to internalizing psychopathology; however, less is known about the
effects of harm avoidance on functional connectivity within and between these networks.
Importantly, harm avoidance may be distinguishable from trait anxiety and have clinical
relevance as a risk factor for internalizing psychopathology. A sample of young adults
(n = 99) completed a resting state functional magnetic resonance imaging (fMRI) scan
and self-report measures of harm avoidance and trait anxiety. Whole brain seed-to-voxel
and seed-to-network connectivity analyses were conducted using anterior insula seeds
to examine associations between harm avoidance/trait anxiety and connectivity. After
adjusting for sex and age, there was a significant negative effect of harm avoidance
on connectivity between the anterior insula and clusters in the precuneus/posterior
cingulate cortex (PCC) left superior/middle frontal gyrus, dorsal anterior cingulate cortex
(dACC) and bilateral inferior parietal lobule (IPL)/angular gyrus. Seed-to-network analyses
indicated a negative effect of harm avoidance on connectivity between the right anterior
insula and anterior and posterior DMN. There were no effects of trait anxiety on functional
connectivity of the anterior insula. Overall, the results indicate that individual differences
in harm avoidance relate to disruptions in internetwork connectivity that may contribute
to deficits in appropriately modulating attentional focus.
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INTRODUCTION

Harm avoidance, a personality trait reflecting individuals’ propensities to avoid potentially
dangerous situations, has consistently been observed in depressive (Abrams et al., 2004;
Smith et al., 2005) and anxious psychopathologies (Starcevic et al., 1996; Ettelt et al., 2008;
Wachleski et al., 2008). More specifically, harm avoidance has been characterized as a motivational
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tendency that subserves approach-avoidance behaviors,
independent of psychopathology (Tellegen and Waller, 2008;
Sylvers et al., 2011). For instance, harm avoidance is thought
to reflect hypersensitivity to danger, while, in contrast, general
anxiety may correspond to a vague sense of fear and desire to
escape that may not have an identifiable source (Tellegen and
Waller, 2008). As such, harm avoidance may be characterized
better as trait fear, rather than trait anxiety (Sylvers et al., 2011).
Individual differences in harm avoidance have been proposed
to be consequent to variability in arousal regulation, which may
further indicate susceptibility to affective disorders (Zuckerman
and Kuhlman, 2000; Hariri et al., 2005). Thus, given the clinical
relevance of this form of behavioral inhibition, examining
individual differences in harm avoidance and its supporting
neurobiological features may provide insight into mechanisms
of risk for internalizing psychopathology.

Although the neural systems implicated in anxiety and
depression have been studied extensively (see Etkin and Wager,
2007; Hamilton et al., 2012), less is known about which neural
circuits are uniquely linked to psychopathology and which may
relate to personality traits, such as harm avoidance, that are
relevant to internalizing symptoms. As personality describes
individuals’ persistent behavioral response patterns, it is likely
that these traits may be reflected in the brain’s functional
architecture, and may be distinguishable from the patterns
observed in relation to internalizing symptomatology. Moreover,
neural signatures of harm avoidance that are separable from
actual symptoms may have implications on risk for internalizing
psychopathology, playing a mechanistic role. Specifically, as
harm avoidance describes a persistent pattern of avoidance in
response to dangerous, fear-inducing situations, this behavioral
pattern could exacerbate internalizing symptoms as highly harm
avoidant individuals fail to learn avoided situations may be
safe or rewarding and, subsequently, become more fearful
or inhibited. However, to date, insight into such a pattern
has remained elusive, as limited research on neurobiological
correlates of harm avoidance has also been muddied by
differences in construct definition (Tellegen, 1985; Cloninger
et al., 1993; Tellegen and Waller, 2008). Broader definitions of
harm avoidance have contributed to overlapping constructs that
somewhat conflate trait anxiety and trait fear; yet, it has been
proposed that these constructs are distinct and supported by
different neurobiological systems (Sylvers et al., 2011).

Examination of the brain’s intrinsic functional architecture
may help elucidate the neural systems unique to harm avoidance.
To this end, neuroimaging research has revealed spatially
distinct, anti-correlated networks—the default mode network
(DMN) and central executive network (CEN)—that support
different cognitive processes (Fox et al., 2005; Damoiseaux et al.,
2006). The DMN consists of a number regions demonstrated
to be active during wakeful, resting states and includes key
nodes such as the medial prefrontal cortex (mPFC), posterior
cingulate cortex (PCC), and precuneus (Buckner et al., 2008).
These neural regions generally subserve internally focused or
cued processes, including self-referential processing, thinking
about others and episodic memory (Buckner et al., 2008;
Uddin et al., 2008). In contrast, the regions comprising the

CEN have been shown to come online during performance
of cognitively demanding tasks. This network includes a set
of regions consistently engaged during processes requiring
endogenous attention and goal-directed task performance, such
as the dorsolateral PFC and posterior parietal cortex (PPC;
Fox et al., 2006; Seeley et al., 2007; Sridharan et al., 2008).
Taken together, the DMN and CEN demonstrate an antagonistic
relationship, wherein increases in regions of one network
correspond to proportionate decreases in the other (and vice
versa) and are dependent on cognitive demands and task
difficulty.

Disruption within these networks has been related to various
disease states, traits and overt behaviors (Adelstein et al.,
2011); insular dysfunction within the salience network (SN)
is associated with severity of symptoms and aberrant inter-
network connectivity in major depressive disorder, (Menon,
2011; Manoliu et al., 2014; Wang et al., 2015). For instance,
hyperactivity and hyperconnectivity of the DMN is frequently
observed in depression (Hamilton et al., 2011, 2015) and thought
to reflect disruption in passive self-referential processing (e.g.,
excessive rumination, negative attributions to self; Buckner et al.,
2008). Atypical function and connectivity of the DMN has also
been observed relative to individual differences in anxiety and
in anxious psychopathologies (Simpson et al., 2001; Zhao et al.,
2007; Gentili et al., 2009; Coutinho et al., 2015). Within the
CEN, atypical function and communicationmay underlie deficits
in cognitive functioning commonly observed in internalizing
psychopathology. For example, impairments in executive control
correspond to deficient recruitment of core regions of the
CEN, such as the dlPFC, in individuals high in trait anxiety
(Bishop, 2008; Pacheco-Unguetti et al., 2010; Basten et al.,
2011), and decreased functional coupling within the CEN has
also been demonstrated in patients with social anxiety disorder,
compared to healthy controls (Liao et al., 2011; Qiu et al.,
2011).

However, it is also important to consider how disrupted
communication between the DMN and CEN may relate to
psychopathology and personality. The antagonistic relationship
between the DMN and CEN is facilitated by a separate
network—the SN—which includes core regions such as the
anterior insula, dorsal anterior cingulate cortex (dACC)
and amygdala (Goulden et al., 2014; Menon, 2015). The
SN has been proposed to detect the salience of incoming
information to appropriately direct attention (Seeley et al.,
2007; Menon, 2015); thus, the perceived salience of stimuli
can have significant repercussions on attentional allocation and
how internal and exogenous cues are processed. Moreover,
functional connections between the SN and CEN have been
demonstrated to underlie actual performance of cognitive tasks
(Fang et al., 2016). Within the SN, the right anterior insula
has been particularly noteworthy, as research has demonstrated
that this region plays a causal role in initiating attentional
switching between DMN and CEN states (Sridharan et al.,
2008; Goulden et al., 2014). Given this role, inefficient
communication between the anterior insula and nodes of
either or both of these regions may result in difficulties
shifting out of internally-focused processing and subsequently
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contribute to weaker performance on cognitively demanding
tasks.

Indeed, the extant literature suggests that SN and anterior
insula functioning is disrupted in internalizing psychopathology.
Compared to healthy controls, individuals with depression have
demonstrated decreased intra-network connectivity within the
SN and decreased inter-network connectivity between the SN
and DMN (Manoliu et al., 2014). For those with anxious
pathology and related traits (e.g., neuroticism), hyperactivity
of the insula appears to be a common feature (Wright et al.,
2003; Mataix-Cols et al., 2004; Paulus and Stein, 2006). Increased
connectivity within regions of the SN has also been found
to relate to anxiety (Sylvester et al., 2012; Baur et al., 2013).
Considering the role of the right anterior insula in attentional
switching, disruption in SN may have profound downstream
effects on appropriately integrating salient information to initiate
CEN or DMN engagement.

Less is known about the specific relations between the SN
and harm avoidance; however, several neuroimaging studies
have revealed associations between harm avoidance and anterior
insula functioning. Markett et al. (2013) demonstrated a positive
association between harm avoidance and intra-SN connectivity
between the anterior insula and dACC. In another study, Paulus
et al. (2003) found that right anterior insula activation increased
when participants made risky vs. safe decisions. Moreover,
in this study, insular activation was modulated by subjects’
degree of harm avoidance, such that higher scores on this
trait corresponded to greater magnitude of insula activation.
Thus, although several neuroimaging studies have supported an
association between the anterior insula and harm avoidance, to
date, research has failed to investigate how complex internetwork
communication may be modulated by individual differences in
harm avoidance.

The goal of the current study was to examine the
associations between harm avoidance and resting state functional
connectivity. Given the role of the SN’s right anterior insula
in modulating DMN vs. CEN states, the anterior insula was
selected as a seed region to examine functional connectivity with
both the DMN and CEN, as well as within the SN. Although
the extant literature suggests that the right anterior insula, in
particular, is critical in switching between the DMN and CEN
(Sridharan et al., 2008; Goulden et al., 2014), several studies
have indicated left hemispheric effects related to trait and state
anxiety (Dennis et al., 2011; Baur et al., 2013). Accordingly, both
left and right anterior insula were examined as seed regions
to support continued examination of lateralized function and
connectivity. The extant literature has suggested that harm
avoidance is associated with increased intra-SN connectivity
(Markett et al., 2013), while research within internalizing
psychopathology relevant to harm avoidance has indicated
excessive DMN (Hamilton et al., 2011, 2015) and deficient CEN
connectivity (Bishop, 2008; Basten et al., 2011). This suggests
that the anterior insula may not be appropriately modulating
between attentional states, perhaps as a function of insufficient
functional connections between the insula and these networks.
As such, we hypothesized that harm avoidance would be:
(1) positively correlated with connectivity between the anterior

insula and other regions of the SN; and (2) negatively correlated
with connectivity between the anterior insula and regions of
the DMN and CEN. In order to examine specificity of these
hypothesized effects, we utilized a self-report measure that more
narrowly assesses harm avoidance as a behavioral inhibitory
trait, and we also examined the association between trait anxiety
and anterior insula-seeded resting state functional connectivity.
Substantial research has also demonstrated aberrant activity and
connectivity of the amygdala corresponds with anxiety (Rauch
et al., 2003; Kim et al., 2011b; Baur et al., 2013). Thus to
further explore differentiation between harm avoidance and
trait anxiety, analyses were also conducted with an amygdala
seed.

MATERIALS AND METHODS

Participants and Procedure
Participants were 110 undergraduate students aged 18–35
(69 female) recruited from the University of Wisconsin-
Milwaukee research subject pool. Eleven subjects were excluded
for poor neuroimaging data quality (i.e., excessive motion
during rest scan), resulting in a final analyzable n of 99.
Participants were excluded from participation if they were
left-handed, had any contraindications to magnetic resonance
imaging (e.g., irremovable metal in body, pregnancy), or had a
history of significant head trauma, neurological disorder, bipolar
disorder, or psychotic disorder. Participants provided written
informed consent after reviewing the study procedures. Study
participation comprised completion of self-report questionnaires
and magnetic resonance imaging (MRI) session. The scanning
session lasted approximately 1.5 h and included structural and
functional scans. Tasks completed in the scanner included fear
conditioning/extinction, working memory and picture viewing
tasks. Self-report measures were typically completed on a
different day prior to the MRI scan, and functional resting
state scans were collected at the end of the scanning session.
All procedures were approved by the University of Wisconsin-
Milwaukee and Medical College of Wisconsin Institutional
Review Boards. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. Participants were
compensated with course credit and $60 cash payment for their
participation.

Measures
Harm Avoidance
Harm avoidance was assessed using the harm avoidance subscale
from the Multidimensional Personality Questionnaire (MPQ;
Tellegen, 1985). The harm avoidance scale of the MPQ consists
of 28 dichotomous self-report items. Nine items are true-false
statements (e.g., ‘‘I would not like to try skydiving’’). For the
remaining 19 items, the respondent is asked to choose which
of two situations they would like least (e.g., ‘‘Of the following
two situations I would like least: (a) Walking a mile when it’s
15◦ below zero; (b) being near a volcano when it’s about to
erupt’’). The MPQ harm avoidance dimension has demonstrated
good internal consistency (Patrick et al., 2002) and has also
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shown good specificity compared to other personality measures
of harm avoidance, which may map onto traits such as negative
emotionality or neuroticism rather than behavioral inhibition
(Waller et al., 1991).

Trait Anxiety
The Trait version of the Spielberger State-Trait Anxiety
Inventory (STAI; Spielberger et al., 1983) was used to measure
trait anxiety. The STAI consists of 20 self-report items rated on a
four-point scale. The STAI has demonstrated good psychometric
properties, including high test-retest reliability and internal
consistency (Barnes et al., 2002).

MRI Data Acquisition
Imaging data was collected on a 3.0 Tesla short bore
GE Signa Excite MRI system at the Medical College of
Wisconsin. Functional T2∗-weighted echoplanar images
(EPIs) were collected for the resting state scan in a sagittal
orientation: repetition time (TR)/echo time (TE) = 2,000/25 ms;
FOV = 24 mm; matrix = 64 × 64; flip angle = 77◦; slice
thickness = 3.5 mm. Participants were instructed to remain still
and to keep their eyes open while data was collected for 5 min.

For coregistration of the functional data, high resolution
spoiled gradient recalled (SPGR) images were also acquired
(TR/TE = 8,200/3.2 ms; FOV = 240 mm; matrix = 256 × 224;
flip angle = 12◦; voxel size = 0.9375 × 0.9375 × 1 mm).

MRI Data Analysis
Image Processing
Resting state functional MRI (fMRI) data was analyzed using the
CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012).
In preprocessing, EPI data was slice-time corrected to adjust for
non-simultaneous slice acquisition within each volume. Images
were corrected for head movements using a six-parameter
(rigid body) linear transformation. Images were transformed
to Montreal Neurological Institute space (MNI 152) and
spatially smoothed to minimize effects of anatomical variability
(FWHM = 6 mm). Linear detrending and temporal bandpass
(0.01–0.1 Hz) filtering were performed to remove low-frequency
drifts and high-frequency physiological noise (Cordes et al., 2001;
Fox et al., 2005). Nuisance covariates including head motion
parameters (and their first order derivatives), white matter signal
and cerebrospinal fluid signal were regressed out (Cole et al.,
2010).

Motion correction procedures in resting state functional
connectivity analyses have become a prominent concern, as
research has demonstrated that these analyses are particularly
susceptible to spurious noise and distance-dependent changes
in signal correlations caused by small head movements (Power
et al., 2015). To reduce confounding effects of motion,
frame-wise displacement (FD) was computed. Volumes with
FD > 0.3 mm were ‘‘scrubbed’’ (i.e., excluded from further
analysis), and participants with excessive motion (<4 min of
useable data) were excluded from analyses.

To examine functional connectivity, both seed-to-voxel and
independent component analyses (ICA) were conducted.

Seed-to-Voxel Functional Connectivity Analysis
For first-level seed-to-voxel analysis, the left (−44, 13, 1)
and right anterior insula (47, 14, 10) from the CONN
network atlas (Whitfield-Gabrieli and Nieto-Castanon, 2012)
and left and right amygdala (anatomically derived from
the automated anatomical labeling [AAL] toolbox; Tzourio-
Mazoyer et al., 2002) were selected as seed regions. Mean
BOLD time series were extracted from these seed regions
and correlated with the time course of each voxel of the
brain, resulting in a three-dimensional correlation coefficient
(r) map for each subject and each seed. Normalized Fisher-
transformed correlation maps were used for group analysis.
Second-level seed-to-voxel analyses were conducted to allow
for between-subjects comparisons. Subject connectivity maps
were entered into a second-level general linear model to
compare functional connectivity patterns as associated with:
(1) MPQ-harm avoidance; and (2) STAI-trait anxiety scores.
Sex and age were included as covariates in the model. The
statistical threshold was set at p < 0.05 and corrected for
multiple comparisons. The height threshold was set at p < 0.001
(uncorrected) and cluster-size threshold at p < 0.05 (FDR-
corrected).

Seed-to-Network Functional Connectivity Analysis
An ICA was conducted to examine the spatial distribution of
functional networks and their associated time courses. ICA
analyses were employed in the CONN toolbox. Procedures
included temporal concatenation across subjects and a principal
component analysis (PCA) for group-level dimensionality
reduction. The FastICA algorithm was used to extract
20 independent components. Identification of intrinsic
functional networks was determined based on correlations
between the spatial components and the CONN atlas, as
well as visual examination of the spatial maps. Group-level
maps were backprojected onto individual subject data to
estimate subject-specific time courses and spatial maps.
Sex differences in the spatial distribution of resting state
networks were examined. To examine whether seed-to-
network connectivity was modulated by individual differences
in harm avoidance, the right and left anterior insula were
selected as seeds in an ROI-to-ROI analysis where independent
components for the DMN, SN and CEN served as other
ROIs. Sex and age were included as covariates in the
model. The statistical threshold was set at p < 0.05 (FDR-
corrected).

RESULTS

Participant Characteristics
Participant characteristics are provided in Table 1. There
was a significant sex difference in harm avoidance,
t(97) = −4.74, p < 0.001, such that women reported
higher levels of harm avoidance (M = 18.65, SD = 4.57)
than men (M = 13.97, SD = 4.41). There were no
significant differences in age or trait anxiety between
males and females. Harm avoidance and trait anxiety
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TABLE 1 | Sample characteristics (n = 99).

Mean (SD) or %

Sex
Female 69.7%
Male 30.3%

Age 21.54 (3.34)
MPQ harm avoidance 17.23 (4.99)
STAI trait anxiety 40.31 (10.99)

MPQ, Multidimensional Personality Questionnaire; STAI, Spielberger State-Trait
Anxiety Inventory.

were not significantly correlated in the sample (r = 0.15,
p = 0.16).

Functional Connectivity Results
Seed-to-Voxel Results
After adjusting for sex and age, results indicated a main effect
of MPQ harm avoidance on functional connectivity of both
anterior insula seeds. These results are reported in Table 2 and
Figure 1. For visualization purposes, connectivity (z) values
from the significant clusters were extracted for each subject.
For the right anterior insula, harm avoidance was negatively
associated (i.e., stronger anticorrelations) with connectivity to
clusters located in the precuneus/PCC (6, −54, 22; cluster size
k = 2048), left superior and middle frontal gyrus (−24, 28,
54; cluster size k = 269), medial frontal gyrus/ACC (0, 48, −2;
k = 181) and bilateral inferior parietal lobule (IPL)/angular gyrus
(left: −40, −70, 38; k = 238; right: 46, −68, 38; k = 127). For
the left anterior insula, harm avoidance was negatively associated
with connectivity to a cluster in the precuneus/PCC (8, −32, 8;
cluster size k = 432).

There were nomain effects of STAI trait anxiety on functional
connectivity of the left or right anterior insula. There were no
main effects of MPQ harm avoidance or STAI trait anxiety on
functional connectivity of the amygdala.

Seed-to-Network Results
Results of the ICA revealed several networks of interest to the
current analyses: anterior DMN (mPFC), posterior DMN (PCC,
precuneus), left and right frontoparietal/CENs (frontal eye fields,
dlPFC) and SN (insula, ACC). The effects of sex on the spatial
distribution of functional networks was examined. There were
no significant differences on any of the functional networks of
interest between males and females.

In ROI-to-ROI analysis, harm avoidance was significantly
negatively associated with connectivity between the right anterior
insula and the components identified as the posterior, b = −0.02,
t(95) = −3.6, p-FDR = 0.01, and anterior DMN, b = −0.02,
t(95) = −3.57, p-FDR = 0.01. There were no effects of harm
avoidance on connectivity between the insula and SN or CEN.
There were also no effects of harm avoidance on connectivity
between the amygdala and any of these networks of interest.

DISCUSSION

The current study examined the associations between harm
avoidance and resting state functional connectivity of the

anterior insula. Results indicated that harm avoidance was
negatively associated with connectivity between the anterior
insula and several clusters located within the DMN, CEN and
SN. Effects of harm avoidance on connectivity were observed
primarily based on the right anterior insula seed, consistent
with research indicating the causal role of the anterior insula in
modulating brain states is right lateralized (Sridharan et al., 2008;
Goulden et al., 2014). However, a similar negative association
between the left anterior insula and precuneus/PCC was also
observed. Notably, no significant differences in connectivity
were observed relative to individual differences in trait anxiety.
Additional seed-to-network analyses indicated that there was
a similar significant negative effect of harm avoidance on
connectivity between the right anterior insula and components
identified as the anterior and posterior DMN. Harm avoidance
and trait anxiety were also not significantly correlated with
each other. Thus, these findings support the notion that harm
avoidance is a separable construct from general trait anxiety,
and it appears that these processes are supported by different
neurobiological substrates.

Moderating effects of harm avoidance were observed on
internetwork connectivity between the SN’s anterior insula and
DMN andCEN.Most notably, the observed negative associations
between harm avoidance and connectivity reflected stronger
anticorrelations between the anterior insula and DMN, including
a large cluster within the precuneus/PCC. The precuneus/PCC
has been established as a key node of the DMN (Fransson
and Marrelec, 2008; Utevsky et al., 2014). Notably, while at
rest, the precuneus/PCC has demonstrated higher metabolic
activity than any other region of the brain (Gusnard and
Raichle, 2001), suggesting that the precuneus/PCC is critical
to the general internally-focused processes relevant to the
DMN. Moreover, aberrant DMN activity and connectivity is
common in internalizing psychopathology relevant to harm
avoidance (Hamilton et al., 2011; Whitfield-Gabrieli and Ford,
2012). While anticorrelated activity between these regions
is normal in healthy individuals (Fox et al., 2005; Uddin
et al., 2008), it is possible that the increased magnitude
of these anticorrelations reflects impairment in attentional
allocation, such that excessive attentional resources are devoted
to identified anxiety-provoking, behaviorally-relevant stimuli,
making it difficult to disengage from these stimuli and return
to baseline. Consistent with this idea, research has demonstrated
that greater anticorrelations between the SN and DMN are
associated with difficulties with emotion regulation (Rabany
et al., 2017). As such, elevations in harm avoidance may
be associated with deficits in attentional shifting, with the
anterior insula being more easily triggered to processing external
stimuli. Additional disruptions in internetwork connectivity
likely further contribute to this deficit in attentional shifting
for those high in harm avoidance, as connectivity was also
reduced between the anterior insula and other regions such
as the bilateral IPL and left middle and superior frontal
gyrus.

Surprisingly, harm avoidance was associated with decreased
connectivity within the SN, specifically between the anterior
insula and dACC. Given the role of the SN in detecting
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TABLE 2 | Regions demonstrating decreased functional connectivity with increased harm avoidance.

Region k t(95) pFDR−corrected Peak coordinates (MNI)

x y z

Right anterior insula seed
Precuneus/PCC 2,048 5.32 <0.001 6 −54 22
Superior/middle frontal gyrus (L) 269 4.50 0.001 −24 28 54
dACC 181 4.27 0.004 0 48 −2
IPL/angular gyrus (R) 127 4.18 0.012 46 −68 38
IPL/angular gyrus (L) 238 4.15 0.001 −40 −70 38

Left anterior insula seed
Precuneus/PCC 858 4.80 <0.001 −6 −50 16

PCC, posterior cingulate cortex; dACC, dorsal anterior cingulate cortex; IPL, inferior parietal lobule.

the importance of incoming information in order to direct
attentional resources (Menon, 2015), it had been hypothesized
that perhaps increased attention to dangerous/threatening
stimuli for those high in harm avoidance would have
downstream consequences for how attentional resources
are allocated. However, the current findings are consistent
with some extant literature indicating that internalizing

psychopathology, including depression and anxiety, is associated
with decreased intra-SN connectivity (Liao et al., 2011; Manoliu
et al., 2014). Notably, research on risk-taking has found that
increased functional connectivity between the dACC and right
anterior insula is associated with risky decision-making and
externalizing behavior (e.g., alcohol/nicotine use; Claus et al.,
2011, 2017; Wei et al., 2016). In light of the current findings,

FIGURE 1 | (A) Clusters showing significant negative effect of harm avoidance on connectivity to right anterior insula seed (p < 0.05 FDR-corrected, adjusted for sex
and age). Clusters located within precuneus/posterior cingulate cortex (PCC; 6, −54, 22; k = 2,048), left superior/middle frontal gyrus (−24, 28, 54; k = 269), dorsal
anterior cingulate cortex (dACC; 0, 48, −2; k = 181), right inferior parietal lobule (IPL; 46, −68, 38) and left IPL (−40, −70, 38; k = 238). (B) Scatterplots depicting
functional connectivity (Fisher’s z) of the clusters plotted against harm avoidance scores from the Multidimensional Personality Questionnaire (MPQ).
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connectivity within this anterior insula-dACC circuit appears
to index motivational/reward-seeking behavior, and thus the
negative association between connectivity and harm avoidance
may reflect a maladaptive propensity for risk aversion. However,
other intra-SN circuits (e.g., insula-amygdala) have reliably
demonstrated increased connectivity in those with internalizing
psychopathology or high in trait anxiety (Rabinak et al., 2011;
Baur et al., 2013). The current study did not find a positive
association between anterior insula-amygdala connectivity and
harm avoidance, suggesting that perhaps individual differences
in harm avoidance do not affect the initial perceived salience
of incoming information, but rather result from excessive
attentional allocation to the anxiety-provoking stimulus and
a struggle to disengage from it. As the current findings reflect
functional connectivity while at rest inside the scanner, it is
also possible that enhanced connectivity within certain circuits
of the SN may only be present while in the actual presence of
threat.

Contrary to a priori hypotheses, trait anxiety was not
associated with any differences in connectivity of either the
left or right anterior insula. One possible explanation for a
lack of findings related to trait anxiety is that the sample
comprised relatively healthy undergraduate students. Thus,
anxious symptoms may not have been significantly elevated
enough to correspond to differences in functional connectivity.
It may be beneficial to examine whether trait anxiety relates
to disrupted insular functional connectivity in clinical samples
and whether these patterns differ from those related to harm
avoidance. Alternatively, the current study may have failed to
observe a main effect of trait anxiety on functional connectivity
given the selection of the anterior insula as a seed region.
In anxiety research, the extant literature has largely focused
on the functional connections between the amygdala and
prefrontal regions, such as the ventromedial PFC, proposed
to downregulate hyperactive amygdala activity (Kim et al.,
2011a). It is possible that trait anxiety is better characterized
by disrupted communication between the amygdala and these
inhibitory regions, rather than in dynamic interplay of DMN
and CEN. It should be noted that in the current study, we
also failed to observe modulation of amygdala-seeded functional
connectivity by individual differences in both trait anxiety
and harm avoidance. Again, this may be a limitation of the
relatively healthy sample, and future work should aim to
examine this question in more symptomatic samples. The STAI
has also previously been criticized for its heterogeneity, as
items of the STAI have been shown to map onto separate
constructs related to anxiety/worry and sadness/self-deprecation
(see Bieling et al., 1998). In light of the current findings, disrupted
connectivity between the insula and DMN and CEN may be
more relevant to the specific behavioral propensities captured
by harm avoidance, while broader indices of trait anxiety may
modulate different functional connections within the brain.
Future work would likely benefit from further disentangling
the complex features of internalizing psychopathology in
order to better understand more precise neural mechanisms
implicated in different facets of these phenotypes (e.g., cognition,
behavior).

The current study has several limitations. First, the resting
state fMRI scan was 5 min in duration. Emerging evidence
has indicated that longer resting state scans produce more
reliable data (Birn et al., 2013). Second, while the resting
state design of the study helps provide initial evidence
regarding the associations between harm avoidance and the
interplay of intrinsic functional neural networks (as well as
its discriminability from trait anxiety), future work would
likely benefit from utilizing task-based designs to examine
the functional connections between the anterior insula and
DMN/CEN during tasks that may require attentional switching
or simulate real-world behavioral inhibitory tendencies. Finally,
the current study utilized a sample of relatively healthy college
students. Although the sample included a good range of
variability in regards to the harm avoidance and trait anxiety
measures, it would likely be beneficial to have samples including
those with clinical levels of internalizing symptoms in order
to better characterize the potential mechanistic role of harm
avoidance in these disorders. In addition, it would also be
informative to examine the neurobiological correlates of harm
avoidance for those low in harm avoidance, as this is also
likely maladaptive and leads to reckless, harmful behavior.
Indeed, harm avoidance has been found to be negatively
correlated with components of psychopathy (e.g., antisocial
behavior, callousness; Levenson et al., 1995; Gaughan et al.,
2009).

Overall, the results suggest that increased harm avoidance is
associated with disrupted functional connections between the
anterior insula and regions of the DMN and CEN, suggesting
individuals high in harm avoidance may experience difficulties
in appropriately modulating attention between internally and
externally focused processes. These findings were distinct from
trait anxiety, for which there were no significant effects on
anterior insula connectivity. As such, the behavioral inhibitory
tendencies captured by harm avoidancemay be uniquely relevant
to individuals’ attentional switching abilities. Future work would
likely benefit from continuing to disentangle the underlying
neurobiological systems relevant to harm avoidance and its
distinguishability from higher order personality traits (e.g.,
neuroticism) and anxiety.
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