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Instructions have a powerful effect on learning and decision-making, biasing choice even

in the face of disconfirming feedback. Detrimental biasing effects have been reported

in a number of studies in which instruction was given prior to trial-and-error learning.

Previous work has attributed individual differences in instructional bias to variations in

prefrontal and striatal dopaminergic genes, suggesting a role for prefrontally-mediated

cognitive control processes in biasing learning. The current study replicates and extends

these findings. Human subjects performed a probabilistic reinforcement learning task

after receiving inaccurate instructions about the quality of one of the options. In

order to establish a causal relationship between prefrontal cortical mechanisms and

instructional bias, we applied transcranial direct current stimulation over dorsolateral

prefrontal cortex (anodal, cathodal, or sham) while subjects performed the task. We

additionally genotyped subjects for the COMT Val158Met genetic polymorphism, which

influences the breakdown of prefrontal dopamine, and for the DAT1/SLC6A3 variable

number tandem repeat, which affects expression of striatal dopamine transporter.

We replicated the finding that the COMT Met allele is associated with increased

instructional bias and further demonstrated that variation in DAT1 has similar effects

to variation in COMT, with 9-repeat carriers demonstrating increased bias relative to

10-repeat homozygotes. Consistent with increased top-down regulation of reinforcement

learning, anodal subjects demonstrated greater bias relative to sham, though this

effect was present only early in training. In contrast, there was no effect of cathodal

stimulation. Finally, we fit computational models to subjects’ data to better characterize

the mechanisms underlying instruction bias. A novel choice bias model, in which

instructions influence decision-making rather than learning, was found to best account for

subjects’ behavior. Overall, these data provide further evidence for the role of frontostriatal

interactions in biasing instructed reinforcement learning, which adds to the growing

literature documenting both costs and benefits of cognitive control.
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INTRODUCTION

Successful learning and decision-making require a balance
between exploiting prior information and learning from new

experiences that may contradict it. One pervasive source
of prior information in humans is instruction from others.
Such instruction has clear benefits on both ontogenetic and
historical timescales, allowing children to rapidly learn about

the world and allowing culture and technology to develop and
evolve (Tomasello, 1999). On an individual level, advice and

information received from friends, professionals, and the media
shape our view of the world and our choices.

The alternative to learning from advice and instruction
is learning from direct experience of the world. One
well-characterized method of learning from experience is

reinforcement learning (RL), in which actions are selected so
as to maximize reward (see Niv, 2009; Dolan and Dayan, 2013
for reviews). Recent work exploring the effects of instruction
on RL has found that accurate advice can significantly improve
performance (Biele et al., 2009; Doll et al., 2011). Yet such
instruction is often detrimental when it is inaccurate. A potential
consequence of inaccurate instruction and, more generally,
inaccurate prior information, is confirmation bias, whereby data
that are consistent with a prior hypothesis are sought, attended
to, or valued over disconfirming data, which are neglected,
filtered, or devalued (Nickerson, 1998). Confirmation bias is
thought to be pervasive in human reasoning, affecting children
and adults’ scientific reasoning as well as that of professional
scientists (Mahoney, 1977; Kuhn, 1989; MacCoun, 1998;
Hergovich et al., 2010).

Biases have been induced in both social and non-social
RL tasks utilizing various methods of information delivery.
Information indicative of the moral character of computerized
partners in a repeated trust game biases share decisions to
“good” and “bad” partners despite identical behavior by the
computer (Delgado et al., 2005; Fareri et al., 2012). Poor
advice provided by fellow subjects impairs performance on
the Iowa Gambling Task (Biele et al., 2009, 2011). Finally,
in an RL task in which subjects learn to discriminate among
pairs of probabilistically rewarded symbols, subjects instructed
that a particular symbol is desirable persist in choosing
that symbol more than would be expected given negative
feedback, selecting it more frequently than symbols rewarded
at an equal rate (Doll et al., 2009, 2011, 2014; Staudinger
and Büchel, 2013). In sum, instructional biases appear to
be persistent, and they are only partially ameliorated by
feedback.

The neural substrates of instructed learning are still emerging,
though as in uninstructed RL, frontostriatal areas are commonly
implicated (Doll et al., 2009; Wolfensteller and Ruge, 2012).
Neuroimaging has supported a role for prefrontal cortex (PFC)
in representing instructions or prior information (Li et al.,
2011; Fouragnan et al., 2013), with activity in instructed
conditions found in dorsolateral PFC (DLPFC) and medial PFC.
Connectivity analyses further support a role for PFC, reporting
increased functional connectivity between frontal and striatal
regions during instructed/prior knowledge conditions, consistent

with top-down influence on striatal reward prediction errors (Li
et al., 2011; Fouragnan et al., 2013).

Evidence of PFC altering striatal learning comports well
with accounts of PFC-mediated cognitive control biasing
or filtering information in other brain regions. Such top-
down modulation focuses information processing on task-
relevant information while suppressing irrelevant information
(Shimamura, 2000; Miller and Cohen, 2001; Chrysikou et al.,
2014). Performance should be optimal when the level of filtering
is suitable to the demands of the task (Chrysikou et al., 2014).
Consequently, increased top-down control can incur both costs
and benefits. This is the case in instructed RL, where instruction-
induced bias has been shown to vary according to individual
differences in PFC dopaminergic tone caused by the catechol-
O-methyltransferase (COMT) Val158Met genetic polymorphism
(Doll et al., 2011). In particular, the Met allele, which has
been shown to confer benefits in tests of working memory and
cognitive control as compared to the Val allele (Durstewitz and
Seamans, 2008; Witte and Flöel, 2012), is associated with a cost in
the form of increased adherence to inaccurate instructions.

The goal of the present study was three-fold. First, we sought
to replicate the effect of COMT on instructed reinforcement
learning, providing further evidence for the role of PFC-mediated
top-down control in biasing RL.

Second, we aimed to expand the understanding of the impact
of striatal dopaminergic genes on instructed RL. While Doll et al.
(2011) examined the effects of genetic polymorphisms specific
to approach or avoidance learning in the striatum, we examined
the effect of the DAT1/SLC6A3 variable number tandem
repeat (VNTR), which affects striatal dopamine (DA) reuptake
by altering expression of the dopamine transporter (DAT;
Vandenbergh et al., 1992; Faraone et al., 2014). Though there
are conflicting reports on the exact effects of the DAT1/SLC6A3
VNTR, a recentmeta-analysis suggests that in healthy individuals
the 9-repeat allele is associated with increased DAT expression in
human striatum, and thus potentially more efficient reuptake of
DA as compared to the 10-repeat variant (Faraone et al., 2014;
cf. Costa et al., 2011). Striatal DA levels have previously been
linked to cognitive flexibility (Cools and D’Esposito, 2009; Beeler
et al., 2010; Garcia-Garcia et al., 2010), making DAT1 a plausible
modulator of instructed RL.

Finally, while genetic and neuroimaging evidence is
compelling, it falls short of establishing a causal role for
PFC in biasing RL. We therefore hoped to establish this
causal link by directly modulating PFC via transcranial direct
current stimulation (tDCS). In keeping with a costs/benefits
framework, we predicted that anodal stimulation—which
has been successfully applied to PFC in order to improve
cognitive control (Fregni et al., 2005; Cattaneo et al., 2011;
Zaehle et al., 2011; Nozari and Thompson-Schill, 2013; Karuza
et al., 2016)—would lead to increased bias due to increased
top-down regulation. Cathodal stimulation over PFC has
produced inconsistent results in cognitive domains (Jacobson
et al., 2012; Nozari et al., 2014). However, supporting the
costs/benefits framework, it has been linked to decreased
working memory (Zaehle et al., 2011) and selective attention
(Nozari et al., 2014; Zmigrod et al., 2016), but improved dual
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task performance (Filmer et al., 2013) and cognitive flexibility
(Chrysikou et al., 2013). Therefore we tentatively predicted
that cathodal stimulation would lead to decreased bias due to
decreased top-down control of RL.

METHODS

Subjects
One-hundred and twenty-six right-handed subjects (42 per
condition, 80 female, Mage = 22.20 years) participated in the
study, receiving $20 in compensation, regardless of performance.
Informed consent was obtained from each subject in accordance
with the University of Pennsylvania IRB. Subjects were randomly
assigned to stimulation condition. We excluded a total of 23
subjects from the analyses for failure to meet the performance
criteria described in section Performance Criteria (9 anodal,
6 cathodal, 8 sham), for a final sample of 103 (65 female,
Mage = 21.84 years). Of these subjects, genotyping failed for
one subject. For the Val158Met single-nucleotide polymorphism
(SNP) of the COMT gene (rs4680), frequencies per allele in the
final sample were 34:53:15 (Val/Val:Val/Met:Met/Met). For the
DAT1/SLC6A3 VNTR in the 3′ untranslated region, frequencies
per allele were 65:26:6:2:1:1:1 (10/10:9/10:9/9:10/11:8/9:8/8:6/10).
Subjects were placed in a 10/10 group if they had two
repeats of 10+; otherwise they were placed in a 9-repeat
carrier group (67 10/10, 35 9c). Neither gene differed from
Hardy-Weinberg equilibrium either across the whole sample
(all ps > 0.14) or within racial/ethnic subgroups (all ps >

0.15; see Supplementary Tables 3–6 for sample demographic
breakdown). There was no association between COMT and DAT
genotypes (p > 0.35, Fisher’s Exact Test), nor were there any
associations between the two genes and stimulation condition (all
ps> 0.3). For the dopamine genotype composite, the distribution
of subjects was: 25:43:27:7 (0:1:2:3). The composite was also not
significantly associated with stimulation condition (p= 0.09).

Materials and Procedure
Subjects completed an instructed probabilistic selection task
(iPST), presented on a 13′′ laptop computer via PsychoPy (Peirce,
2009). This task required subjects to learn the value of symbols
initially presented in 3 pairs (AB, CD, EF; Figure 1). Within
each pair, one symbol had a higher probability of reward.
Symbols were rendered as Japanese Hiragana characters, and
the assignment of Japanese character to underlying stimulus was
randomized across subjects. During the instructions, each symbol
was presented individually for 5 s to familiarize subjects with the
stimuli. Crucially, when symbol D was presented the screen also
displayed the following false advice: “This symbol has the best
chance of being correct.”

During the training phase, subjects had to learn the value
of each symbol via probabilistic feedback, which was delivered
according to the symbol’s underlying P(reward). Importantly,
subjects were expected to learn to select the more highly
rewarded symbol within each pair. Subjects completed 4
training blocks. Each block contained 20 repetitions of each
pair, for a total of 60 trials per block and 240 total training
trials. Trial order and feedback were randomized within each

A (0.8) B (0.2) 

C (0.6) D (0.4) 

E (0.6) F (0.4) 

FIGURE 1 | Stimuli (reward probabilities) for the instructed probabilistic

selection task. Subjects are instructed that D is the best symbol.

block. During the test phase, all possible symbol pairings were
presented (e.g., AB, AC, AD, AE, AF, . . . ) without feedback. Each
pair was presented 6 times, for a total of 90 trials. Order was
randomized across subjects. See section 1.1 of the Supplementary
Material for further details regarding task design and
presentation.

Performance Criteria
Subjects had to meet the following performance criteria for the
uninstructed symbols in order to be included in the analyses:
≥ 60% accuracy on the AB pair and ≥ 50% accuracy on the
EF pair in at least one training block after the first block, with
both criteria met in the same block. These criteria are similar to
training phase learning criteria used in previous reports (Frank
et al., 2007; Doll et al., 2009, 2011, 2014), but were relaxed slightly
for AB to allow for additional variability in learning performance,
given a previous report of tDCS effects on this pair (Turi et al.,
2015). Subjects were also excluded if they failed to respond on
>10% of training trials.

In addition to excluding subjects who failed to pay attention
or learn, these criteria helped ensure that subjects with arbitrary
biases for one of the uninstructed symbols were excluded
from the analyses. However, to further protect against arbitrary
affinities introducing bias into the between-group analyses, we
further tested for the presence of genotype or stimulation
differences in the first 10 training trials of the uninstructed
training pairs. There were no significant effects (all ps >

0.10), indicating that none of our genotype or stimulation
groups entered the training phase with arbitrary stimulus
preferences.

Genotyping
DNA samples were collected via Oragene saliva kits (DNA
Genotek) and genotyped at the Penn Molecular Profiling Facility
using standard procedures (see section 1.2 of the Supplementary
Material).
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TABLE 1 | Stimulation procedure and duration for verum stimulation (sham was

identical except stimulation only lasted for 30 s, at the onset of the fixation period).

Phase tDCS Duration

Instructions No Variable

Fixation Yes 3 min

Training Yes 17 min

Test Instructions No Variable

Test No 6 min

Transcranial Direct Current Stimulation
We delivered direct current via saline-soaked sponge electrodes
with a 25 cm2 surface area. Current was generated by a
continuous current stimulator (Magstim Eldith 1 Channel DC
Stimulator Plus, Magstim Company Ltd., Whitland, Wales). In
all conditions, 1.0mA direct current was applied after a 30 s
ramp-up period and was followed by a 30 s ramp-down. In the
verum conditions, current was applied for 20min. Stimulation
was applied for only 30 s during sham. In the anodal condition,
the anode was placed over F7, in accordance with the 10–
20 international system, and the cathode was placed over the
right supraorbital. This placement was reversed in the cathodal
condition.

The F7-RSO montage was chosen because current modeling
(HDExplore Software, v2.3, SOTERIX) suggested it would
maximize current through DLPFC sites found to be active during
instructed reinforcement learning conditions (Li et al., 2011;
Fouragnan et al., 2013). Stimulation at F7 has been shown to
modulate prefrontally-mediated cognitive control across a range
of tasks (Lupyan et al., 2012; Chrysikou et al., 2013; Nozari et al.,
2014). The procedure for each subject is outlined in Table 1.
Stimulation began 180 s prior to the start of the first trial while
subjects were presented with a fixation cross. Stimulation has
not been shown to produce after-effects at 1.0mA unless applied
for at least 3min, and thus this period gives stimulation time to
take full effect (Nitsche and Paulus, 2000). Additionally, though
stimulation ended after the training phase, after-effects have been
reported up to an hour after stimulation lasting 9–13min, so
it is possible tDCS could directly affect performance at test in
addition to its indirect effect through modifying performance
during training (Nitsche and Paulus, 2001; Nitsche et al., 2003).

Data Analysis
Statistical analyses were conducted in R (R Core Team, 2018)
using logistic mixed models implemented in the lme4 package
(Bates et al., 2015). By modeling both fixed and random effects,
these models controlled for the non-independence inherent in
within-subjects data. All models included random intercepts for
subjects and random slopes for within-subjects variables and
their interactions (Schielzeth and Forstmeier, 2009; Barr et al.,
2013). When making between group comparisons of factors
with more than two levels without planned comparisons, the
significance of main effects and interactions were computed
using the car package (Fox and Weisberg, 2011). Post-
hoc comparisons were computed using the lsmeans package

(Lenth, 2016). Significance levels for post-hoc comparisons were
corrected using the Bonferroni-Holm method (Holm, 1979).
Permutation tests were conducted via Monte Carlo sampling
(1.0e6−1 permutations) using the perm package (Fay and Shaw,
2010).

Computational Modeling
Reinforcement learning models were fit to each subject’s data
in order to evaluate hypotheses regarding the mechanisms
of instructional bias. Models were fit by maximizing the log
likelihood of the data using MATLAB’s fmincon (Mathworks,
MA, USA). To avoid local minima, eachmodel fit was repeated 25
times from different random starting points, using RMSEARCH.
All models were fit to both training and test phase data. For the
training phase, fits were optimized to account for subjects’ trial-
wise choices; for the test phase, they were optimized to result
in learned Q-values after training that best account for choices
during test (Frank et al., 2007).

Standard Model
This model implements a standard Q-learning model with
separate learning rates for gains and losses (Frank et al., 2007).
The value of each stimulus is updated according to the following
learning rule:

Qt+1(s) = Qt(s)+
[

αg ∗ δt
]

+
+ [αl ∗ δt]−

δt = rt − Qt(s)

where Qt(s) is the action value of stimulus s at trial t, rt is the
reward (0 for losses, 1 for gains), and δt is the reward prediction
error. The learning rate αg applies only to gain trials, while the
learning rate αl applies only to loss trials.

Choice in the standard model and subsequently described
models was implemented via a softmax function:

Pt(s1) =
exp

(

Qt(s1)
β

)

exp
(

Qt(s1)
β

)

+ exp
(

Qt(s2)
β

)

where Pt(s1) is the probability of choosing symbol s1 over symbol
s2, and β is a temperature parameter determining the extent to
which choice is deterministic vs. random.

For this model and subsequent models, we placed the
following bounds on the parameters: α ∈ [0.002, 1] ; β ∈

[0.06, 20]. The temperature parameter was additionally
constrained by an empirical prior (Gershman, 2016):
1
β

∼ Gamma(5.09, 0.83). Q-values for all stimuli were

initialized at 0.5.

Learning Bias Model (Doll et al., 2011)
The learning bias model is identical to the standard model in
all respects except that when symbol D is chosen, the baseline
learning rate is distorted as follows:

Qt+1(D) = Qt(D)+
[

αg ∗ αbg ∗ δt
]

+
+

[

αl

αbl
∗ δt

]

−
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where αbg increases the learning rate for instruction-consistent
feedback (gains), αbl diminishes the learning rate for instruction-
inconsistent feedback (losses), and αb· ∈ [1, 10]1.

Bayesian Hypothesis Testing Model (Doll et al., 2011)
This model accounts for the possibility that the bias lies not
in learning the value of the instructed stimulus D but in the
decision to choose D. In this case, the choice bias requires that
learners achieve a certain level of confidence that D is rewarded
below chance before they abandon it. This model implements
a Bayesian Q-learner with Qt(s) ∼ Beta[αt(s), βt(s)]. After
reward feedback, posterior Q-value distributions are updated as:

Qt+1(s) ∼ Beta[αt(s)+ rt , βt(s)+ (1− rt)]

which increments α by 1 after gains and β by 1 after losses.
Additionally, after every trial the α and β counts decay toward
uniform, controlled by free parameters γα and γβ ; γ· ∈ [0, 1]
(0 is full decay and 1 is no decay). Choice is implemented by
submitting the mean of each symbol’s beta distribution to the
softmax function above. Crucially, when the instructed stimulus
is encountered, a decision bias is implemented as follows:

Pt(salt) =
exp

(

0.5
β

)

exp
(

0.5
β

)

+ exp
(

µt(D) + φ ∗ σt(D)
β

)

with φ ∈ [0, 20] and Pt(D) = 1 − Pt(salt). This decision rule
dictates that themean value of Dmust be> φ standard deviations
of D below chance before it is more probable that the alternative
symbol, salt, is chosen. Thus, the more certain the learner is of the
value of D, the lower the bias.

Decision Bias Model
Though the Bayesian hypothesis testing model has provided
a reasonable fit to some subjects’ training data and has been
shown to be sensitive to individual differences, it has not overall
outperformed the standard model in explaining training phase
performance (Doll et al., 2009, 2011). It also compares the
value of D to chance instead of to the value of the alternative
stimulus, making it less effective as a possible model of test
phase performance. Furthermore, interpretation of this model in
comparison to the standard uninstructed model is complicated
by the fact that they are not nested models. Therefore, we also
implemented a novel decision bias model. This model uses the
standard Q-learner described above, but the softmax decision
rule is modified for choices involving the instructed stimulus in a
manner similar to the Bayesian hypothesis testing model:

Pt(salt) =
exp

(

Qt(salt)
β

)

exp
(

Qt(salt)
β

)

+ exp
(

Qt(D) + ρ
β

)

with ρ ∈ [0, 1]. The free parameter ρ determines how much
greater the value of the alternative symbol must be before it

1In order to prevent learning rates exceeding 1.0, the learning bias parameters were

also constrained such that αb· ≤ α−1
. (Doll et al., 2009).

is more probable that it is chosen over D. Therefore, unlike
the Bayesian model, this model: (a) assumes a fixed bias; (b)
compares the value of D to the alternative symbol, making it more
appropriate as a model of test phase choice; and (c) contains the
standard model as a special case (ρ = 0), ensuring differences
in fit will be attributable to the presence of the bias and not to
differences in the learner.

Model Comparison
Goodness of fit was assessed using Akaike information criteria
(AIC). We additionally submitted the AIC values to a Bayesian
random effects analysis, which assumes there is a distribution of
models in the population and attempts to identify which model
is most prevalent. The quantity resulting from this analysis is a
protected exceedance probability (PEP), which is the probability
that a given model is the most frequent in the population,
above and beyond chance (Rigoux et al., 2014). PEPs were
computed using the VBA toolbox (Daunizeau et al., 2014). Model
comparison was then made on the basis of both AIC and PEPs.

RESULTS

We begin by reviewing general performance across the sample.
We then examine genotypic differences in instructional bias.
To this end, we first attempt to replicate the effect of COMT
genotype. We then extend the investigation of the influence
of dopaminergic genes on instructional bias to the DAT1
gene. In brief, we partially replicated the effect of COMT
and found effects of DAT1 on instructional bias as well.
Motivated by these findings, we next ask whether a dopamine
composite variable constructed from the COMT and DAT
variables captures additional aspects of performance. These
analyses demonstrated an overall graded effect of the dopamine
composite on performance and also uncovered a small group
of subjects who demonstrated more extreme bias. We then ask
if we can causally manipulate instructional bias with tDCS,
finding that anodal stimulation had a small but significant effect
on performance during training. Finally, we fit computational
models to test potential mechanisms underlying instructional
bias, finding evidence in favor of a model incorporating a bias
on the decision to choose the instructed stimulus, rather than a
bias on the learned value of the instructed stimulus.

General Performance: Training Phase
Instructed Learning
We first conducted analyses of choice behavior during training.
In all analyses, accuracy was binary coded (incorrect: 0, correct:
1), where correct is defined as choosing the stimulus with
the higher probability of reward, regardless of whether it was
rewarded on that trial. Trial Type was treatment coded (CD:
0, EF: 1). This coding allows direct assessment of how much
instruction biased learning. Block was reverse Helmert coded
in order to capture learning-related changes in the mean level
of responding across training (i.e., Block 2 was compared to
Block 1, Block 3 was compared to the mean of Blocks 1
and 2, and Block 4 was compared to the mean of all prior
blocks). We assessed the effects of genotype and stimulation
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both by examining performance on the CD trials alone, and
by contrasting performance on CD with the equally rewarded
but uninstructed EF pair. Given our between-subjects design,
this latter contrast serves to account for additional variance in
learning unrelated to instructional control. Therefore, instructed
training models included all two-way and three-way interactions
of genotype or tDCS condition, Trial Type, and Block.

Subjects were below chance on the CD pair (β = −0.27, z
= −2.86, p = 0.004). Performance was significantly better on
the EF pair (β = 0.93, z = 6.96, p < 0.0001), validating the
success of the instructional manipulation. Despite poor overall
performance on the CD pair, subjects continued to learn away
from the instructions throughout training, as demonstrated by
the significance of all three Block regressors (Block 2 vs. 1: β =

0.32, z = 2.81, p = 0.005; Block 3 vs. (1, 2): β = 0.24, z = 2.34, p
= 0.02; Block 4 vs. (1,2,3): β = 0.31, z = 3.13, p= 0.002).

Uninstructed Learning
Variable coding in uninstructed training models was the same as
above, except Trial Type was effect coded (AB: 1, EF: −1). The
three-way interactions were not included in these models as there
were no hypotheses relevant to these contrasts.

Subjects performed significantly above chance on
uninstructed trials (β = 1.12, z = 14.67, p < 0.0001). There
was an effect of Trial Type (β = 0.46, z = 10.55, p < 0.0001),
indicating that subjects performed significantly better on the
AB pair over the EF pair, in line with the relative difficulty of
the two discriminations. Subjects continued to learn throughout
training, though the magnitude of this effect was numerically
smaller in later blocks (Block 2 vs. 1: β = 0.40, z = 4.79, p
< 0.0001; Block 3 vs. (1, 2): β = 0.22, z = 2.74, p = 0.006;
Block 4 vs. (1, 2, 3): β = 0.18, z = 2.17, p = 0.03). There
was additionally a Trial Type x Block 2 vs. 1 interaction (β
= 0.31, z = 3.97, p < 0.0001), indicating a steeper learning
trajectory for AB over EF during the initial blocks of the task,
which again is unsurprising given the relative ease of the AB
discrimination.

General Performance: Test Phase
The training and test phases are purported to represent
different processes subserved by different neural systems (Frank
et al., 2007). While the training phase is supposed to reflect
hippocampally- and frontally-mediated memory and hypothesis-
testing processes, the test phase is designed to give a “purer”
measure of striatally-learned reinforcement values. The standard
approach to assessing performance at test is to examine
performance on trials in which a stimulus of interest is included
in novel pairings, giving an estimate of how well underlying
reward values were learned during training.

Twomeasures from the literature were used to assess the effect
of instruction on test phase performance (Doll et al., 2014). The
first analysis compared performance on Avoid-D (AD, DE) vs.
performance on Avoid-F (AF, CF). For both measures, the target
stimulus should not be chosen, as it has been paired with stimuli
that had a higher probability of reward during training. Given
that D and F had identical reward probabilities during training,
subjects should perform equally well on bothmeasures. However,
if instruction biased the ultimate reward values subjects learned,

or if subjects’ choices continue to be biased at test, they should
avoid D at a lower rate than they avoid F.

Choice Type was entered as an effect-coded factor (Avoid-
D: 1, Avoid-F: −1) in a logistic mixed effects model of choice
performance. The intercept was significant (β = 0.73, z = 5.53, p
< 0.0001), indicating that subjects’ overall avoidance of D and F
was above chance. There was also a main effect of Choice Type (β
= −0.61, z = −5.43, p < 0.0001). As expected, subjects showed
a confirmation bias effect, avoiding D significantly less than they
avoided the equally rewarded symbol F.

The second analysis of instructed learning examined
performance on DF trials in order to directly compare the
relative subjective value of the two stimuli. A greater effect
of instruction on learning, and thus a greater bias, should be
associated with an increased tendency to choose D over F.

In this model, choice on DF trials was the dependent variable
(D: 1, F: 0). The intercept was significant (β = 1.58, z = 5.86,
p < 0.0001). Subjects demonstrated a strong bias—they were
almost five times more likely to choose D, as indicated by an odds
ratio (OR) of 4.86. In sum, our training and test results replicate
previous investigations (Doll et al., 2009, 2011, 2014) and confirm
that the instructional manipulation was successful.

COMT: Training Phase
Instructed Learning
We next sought to replicate the effect of the COMTMet allele on
adherence to the instructions during training (Doll et al., 2011).
COMT genotype was effect coded. All other variables were coded
as above.

There was a significant COMT x Trial Type interaction
(χ2

(2) = 13.94, p = 0.0009). Met homozygotes were
significantly worse overall on the instructed pair (Figure 2A,
Supplementary Table 7), as compared to both heterozygotes (β
= −0.98, z = −3.70, pcorrected = 0.001) and Val homozygotes
(β = −0.92, z = −3.26, pcorrected = 0.006). Met homozygotes
also demonstrated better performance at a trend level on the
uninstructed EF pair compared to Val/Met subjects, but this did
not survive correction for multiple comparisons (β = 0.41, z =
1.87, p = 0.06, pcorrected = 0.25). Notably, no other comparisons
reached significance, including the comparison of instructed
performance between Val/Met and Val/Val subjects (all ps >

0.2), indicating impaired performance was specific to Met
homozygotes.

Because ourMet/Met groupwas somewhat small (N= 15) due
to the low frequency of this genotype in the general population
(Auton et al., 2015), we took a number of additional steps
to ensure these results were not spurious. First, we reran our
analyses comparing Val homozygotes to Met carriers (Metc),
which was also the analysis performed by Doll et al. (2011). In
this case, we failed to replicate the effect of Met-carrier status
on instructed learning. The Metc x Trial Type interaction was
not significant (χ2

(1) = 0.16, p = 0.69), nor were there any
other significant effects of Met carrier status (all ps > 0.42). We
then asked whether the full COMT model or the Metc model
provided a better fit to the data, finding that the COMT model
was a modestly better fit, despite including additional parameters
(AICCOMT = 19966, AICMetc = 19969). Finally, we conducted
permutation tests on CD trials, averaged across all blocks, to
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further guard against the possibility that our Met homozygote
results could have arisen under the null. Confirming our results,
Met homozygotes’ performance was reliably below the mean on
CD trials (p= 0.004), and this group performed worse than both
Val homozygotes (pcorrected = 0.006) and heterozygotes (pcorrected
= 0.001). We therefore utilize the full breakdown of COMT
genotype for the remainder of the results.

Uninstructed Learning
In contrast to instructed learning, we found no effects of COMT
genotype on uninstructed learning (all ps > 0.2; Figure 2A,
Supplementary Table 8).

COMT: Test Phase
Instructed test phase performance demonstrated evidence of
a gene-dose effect (Figures 3A,D). COMT status significantly
predicted performance on DF trials (χ2

(2) = 9.06, p = 0.01). Val
homozygotes were less likely to choose D on DF trials compared
to heterozygotes (β = −1.11, z = −2.09, pcorrected = 0.07) and to
Met homozygotes (β =−2.28, z=−2.82, pcorrected = 0.01). There
was no significant difference between Val/Met and Met/Met
groups, but Met/Met subjects were numerically more likely to
choose D (β = 1.18, z = 1.53, pcorrected = 0.13). Supporting
this pattern, an exploratory gene-dose analysis demonstrated a
significant linear effect of the number of Met alleles on choosing
D over F (β = 1.60, z = 3.01, p= 0.003).

There were no significant effects of COMT genotype on the
Avoid-D/Avoid-F measure (all ps > 0.17), but quantitatively,
differences were indicative of a similar gene-dose relationship
on Avoid-D. An exploratory gene-dose analysis demonstrated a
trend-level Met x Trial Type interaction (β = −0.44, z = −1.86,
p = 0.06). While increasing Met alleles negatively predicted
performance on Avoid-D (β = −0.90, z = −2.09, pcorrected =

0.07), there was no relationship with uninstructed Avoid-F (β =

−0.02, z =−0.05, pcorrected = 0.96).
The above results refine, but only partially replicate, the

effect of COMT genotype on instructed RL. While Doll
et al. (2011) found that Met carriers demonstrate greater
instructional bias relative to Val homozygotes during training,
we found increased bias exclusively for Met homozygotes.
Our COMT test phase results provide novel evidence for a
gene-dose effect, though differences on the Avoid-instructed
measure were not as robust as reported previously. The
prior report included a somewhat greater percentage of
Met homozygotes out of all Met carriers (28.3%) than the
present study (22.1%), which could have impacted the results
given that instructional bias appears to be strongest in the
former group. Additionally, a number of methodological
differences could have contributed to these discrepancies. These
differences aside, as COMT is thought to be particularly
and differentially important to the regulation of prefrontal
dopamine levels (Durstewitz and Seamans, 2008; Tunbridge,
2010), the present findings further implicate prefrontal cortex
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FIGURE 3 | Test phase performance by genotype. (Top) Accuracy avoiding D (instructed) and F (uninstructed) when paired with stimuli at test that had a higher reward

probability during training for (A) COMT, (B) DAT, (C) DAC. (Bottom) Proportion by which D was chosen over F at test for (D) COMT, (E) DAT, (F) DAC.

in biasing responding to instructed stimuli at both training
and test.

DAT: Training Phase
Expanding the investigation of the effect of dopaminergic genes
on instructional bias, we next examined the effect of DAT1
genotype. In our regression models, DAT was simple coded with
10/10 homozygotes as the reference (9c: 0.5, 10/10:−0.5).

As compared to 10-repeat homozygotes, 9-repeat carriers
were significantly worse on the instructed pair (β = −0.43, z =
−2.17, p = 0.03; Figure 2B, Supplementary Table 9). There was
also a trend-level DAT x Trial Type interaction (β = 0.53, z =

1.91, p = 0.056). While 9-repeat carriers were worse on the CD
pair, there was no difference between genotypes on the EF pair
(p > 0.5). There were no interactions between DAT and Block,
indicating similar learning trajectories in both groups (all ps >

0.4). Nor were there any effects of DAT on uninstructed learning
(all ps > 0.4; Figure 2B, Supplementary Table 10).

DAT: Test Phase
There was no effect of DAT on DF trials (p = 0.74; Figure 3E).
There was a main effect of DAT on Avoid-D/Avoid-F (β =−0.66,
z = −2.40, p = 0.02; Figure 3B) in the absence of a significant
interaction (p > 0.17), suggesting that 9-repeat carriers were
significantly worse overall on these measures. However, the effect

seems to be driven primarily by worse performance on Avoid-D
(Avoid-D: β = −0.49, z = −2.30, pcorrected = 0.04; Avoid-F: β =

−0.17, z =−1.18, p= 0.24).
Remarkably, though DAT plays little role in cortical DA

clearance (Sulzer et al., 2016), it appears to be equally if not more
predictive of training than test phase performance, the former of
which is putatively more reliant on prefrontal function (Frank
et al., 2007). This result is surprising, given that investigations
assessing other striatal genes have found that striatal genotypic
effects in both instructed and uninstructed learning are confined
to the test phase only (Frank et al., 2007; Doll et al., 2011).
Previous work has indicated that there is a reciprocal relationship
between prefrontal and striatal DA, with more prefrontal DA
leading to more cognitive stability, while more striatal DA
leads to more cognitive flexibility (Cools and D’Esposito, 2009).
Motivated by this and by prior studies in which composites of
multiple DA genes have shown better predictive power than
single genes (Nikolova et al., 2011; Kohno et al., 2016), we next
asked whether a composite DA variable would better predict
instructional bias.

DA Composite: Training Phase
To produce the DA composite (DAC), we recoded the COMT
and DAT variables according to putative prefrontal-striatal DA
balance (COMT: Val/Val = 0, Val/Met = 1, Met/Met = 2; DAT:
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10/10 = 0, 9c = 1), and then summed the two variables. The
resulting composite ranged between 0 (low frontal DA, high
striatal DA) and 3 (high frontal DA, low striatal DA).

Reexamining training phase performance (Figure 2C,
Supplementary Table 11), we found a significant effect of DAC
(χ2

(3) = 11.02, p = 0.01), superseded by a significant DAC x
Trial Type interaction (χ2

(3) = 29.56, p < 0.0001). Post-hoc
comparisons revealed that the DAC3 group was significantly
and uniquely impaired in learning away from the instructions
compared to the other three groups (DAC3 vs. DAC 0: β =

−2.03, z = −5.52, pcorrected < 0.0001; DAC3 vs. DAC 1: β =

−1.96, z = −5.56, pcorrected < 0.0001; DAC3 vs. DAC 2: β =

−1.99, z=−5.46, pcorrected < 0.0001). In contrast, DAC3 subjects
demonstrated better performance on EF, though this did not
survive correction for multiple comparisons: (DAC3 vs. DAC 0:
β = 0.62, z = 1.94, p = 0.053, pcorrected = 0.42; DAC3 vs. DAC
1: β = 0.58, z = 1.92, p = 0.056, pcorrected = 0.42; DAC3 vs.
DAC 2: β = 0.68, z = 2.14, p = 0.03, pcorrected = 0.29). No other
comparisons between DAC groups were significant (all ps > 0.6).
The DAC x Trial Type interaction was already present in the first
block of training, suggesting it was not the result of extensive
learning (χ2

(3) = 15.89, p = 0.001). Nor was it ameliorated by
additional training, as the DAC3 group was the only group to
show no evidence of learning away on CD from the first block
to the last (DAC 0: β = 0.53, z = 2.00, pcorrected = 0.09; DAC 1:
β = 0.57, z = 2.83, pcorrected = 0.01; DAC 2: β = 0.80, z = 3.11,
pcorrected = 0.008; DAC 3: β = –0.59, z =−1.03, pcorrected = 0.30).

There were no significant differences between DAC groups in
the analysis of uninstructed learning (all ps > 0.3), though as
with EF, the DAC3 group’s performance was quantitatively better
on AB (Figure 2C, Supplementary Table 12). These differences
in uninstructed learning are intriguing given that they are in
the opposite direction of the instructed effect, but given the
small sample size of the DAC3 group (N = 7) due to the lower
prevalence of both the COMTMet allele (Auton et al., 2015) and
the DAT 9-repeat variant (Vandenbergh et al., 1992; Doucette-
Stamm et al., 1995) in the general population, this study may not
have had the statistical power to determine whether such small
effects are reliable.

As with the COMT Met/Met results, because of the small
sample size of the DAC3 group, we again took efforts to ensure
these results did not arise by chance. First, we repeated the
analysis with a modified DA composite created by summing the
Metc and DAT variables (Metc: Val/Val = 0, Met carrier = 1;
DAT: 10/10 = 0, 9c = 1), producing three DACmetc groups Ns
= 25:51:26 (0:1:2). Repeating our analysis of instructed learning,
we failed to find any effects of DACmetc (all ps> 0.21). However,
the full DACmodel provided a much better fit to the data, despite
including additional parameters (AICDAC = 19958, AICDACmetc

= 19974), and also provided a better fit than both the COMT and
DAT instructed learning models (AICCOMT = 19966, AICDAT =

19961). Permutation tests on the average performance on CD
trials across training also support the results of the regression
analysis. DAC3 subjects were reliably below the mean on CD
trials (p < 0.0001), and this group performed worse than all
other DAC groups (DAC3 vs. DAC0: pcorrected = 0.0001, DAC3 vs.
DAC1: pcorrected < 0.0001, DAC3 vs. DAC2: pcorrected = 0.0001).

Given that it is highly unlikely that seven randomly chosen
subjects would have performance at the level of the DAC3 group,
we utilize the full DAC composite for the remainder of the results.

DA Composite: Test Phase
While there was only a marginal main effect of DAC on Avoid-
D/Avoid-F (χ2

(3) = 6.62, p = 0.085), a gene-dose analysis
revealed a significant linear effect of DAC (β = −0.86, z =

−2.56, p = 0.01) qualified by a DAC x Choice Type interaction
(β = −0.62, z = −2.16, p = 0.03). DAC status was negatively
associated with avoiding D; it showed no relationship to avoiding
F (Avoid-D: β = −1.47, z = −2.88, pcorrected = 0.008; Avoid-F:
β = −0.24, z = −0.68, pcorrected = 0.50; Figure 3C). DF trials
revealed a similar pattern; though there was no main effect of
DAC (χ2

(3) = 1.12, p = 0.77), there was a significant gene-
dose effect, with increasing choice of the instructed stimulus with
increasing DAC status (β = 1.72, z = 2.53, p = 0.01). This effect
appears to be driven primarily by the DAC3 group, all seven of
whom remarkably chose D over F 100% of the time (Figure 3F).

In sum, there was graded effect of DAC on test phase
performance, with increasing frontal (decreasing striatal) DA
predicting greater adherence to the instructions. This graded
relationship was punctuated by the performance of the DAC3
group, who, as during training, demonstrated substantially
greater instructional bias.

Taken together, the genotyping results implicate prefrontal
cortex, and in particular the balance between prefrontal and
striatal dopamine, in modulating instructed RL. This pattern
motivates asking our next question: Does experimentally
manipulating prefrontal function via tDCS alter the magnitude
of instructional bias?

tDCS: Training Phase
Instructed Learning
To examine the main hypotheses of the study—that anodal
stimulation will increase confirmation bias, while cathodal
stimulation may decrease it—our focal analyses concerned the
contrasts of Anodal vs. Sham stimulation and Cathodal vs.
Sham stimulation. These contrasts include Condition, or the
overall effect of stimulation compared to Sham on instructed
choice, and Condition x Trial Type, which allows for the same
assessment while controlling for performance on EF. For a more
fine-grained investigation of the time course of learning, we
additionally examined the Condition x Block interactions, which
indicate whether stimulation altered the extent to which subjects
learned away from the instructions across training blocks, and
the Condition x Trial Type x Block interactions, which allow for
the same assessment while controlling for performance on EF.
Condition was simple coded with sham as the reference (Anodal:
2/3−1/3, Cathodal:−1/3 2/3, Sham:−1/3−1/3).

We first examined the contrasts between anodal and sham
stimulation. Supporting our hypothesis, there was a significant
Anodal vs. Sham x Trial Type x Block 2 vs. 1 interaction (β =

0.76, z = 2.22, p = 0.03). When controlling for performance
on EF, the sham group demonstrated significant learning away
from the instructions from Block 1 to Block 2 on CD, while the
anodal group did not (Sham: β = 0.63, z = 2.60, pcorrected =
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FIGURE 4 | Performance at training (top) and test (bottom) by tDCS stimulation condition. (A) Training phase performance by trial type. (B) The effect of anodal

stimulation on instructed reinforcement learning. Points are predicted odds ratios for the CD/EF contrast by block and condition. This contrast reflects performance on

CD controlling for performance on EF, giving a purer measure of the effect of instructions on choice. Lines represent the two-way Trial Type x Block interactions within

each condition. Error bars are standard errors of the parameter estimates. While the sham group demonstrated significant learning away from the instructions from

Block 1 to Block 2, the anodal group did not, and this interaction was significant (see section tDCS: Training Phase: Instructed Learning). (C) Avoid-D/Avoid-F.

(D) DF trials.

0.046; Anodal: β = −0.13, z = −0.53, pcorrected = 1.00). The
sham group nearly doubled their performance (OR = 1.88), but
the anodal group demonstrated essentially no learning (OR =

0.88; Figures 4A,B and Table 2). Examining performance on CD
without adjusting for EF, the Anodal vs. Sham x Block 2 vs. 1
interaction was at trend (β = −0.45, z = −1.59, p = 0.11). As
above, the sham group showed significant learning from Block
1 to Block 2, while the anodal group did not (Sham: β = 0.53,
z = 2.68, pcorrected = 0.04; Anodal: β = 0.08, z = 0.42, pcorrected
= 1.00). In contrast, neither group demonstrated significant
learning from Block 1 to Block 2 on EF (Sham: β = −0.10, z =
−0.64, pcorrected = 1.00; Anodal: β = 0.21, z = 1.33, pcorrected =

0.74).
We also sought to ensure that the effect of anodal stimulation

early in learning was not driven by the presence of DAC3 subjects.
Controlling for DAC, the Anodal vs. Sham x Trial Type x Block
2 vs. 1 interaction remained significant (β = 0.86, z = 2.45, p =

0.01) and the Anodal vs. Sham x Block 2 vs. 1 interaction for CD
remained at trend (β = −0.49, z = −1.74, p = 0.08), confirming
that the effect was not driven by genotypic differences between
stimulation conditions.

Taken together, these results indicate that anodal stimulation
significantly impeded learning away from the instructions during
the initial blocks. No other Anodal vs. Sham contrasts were
significant (Table 2), including the overall effect of anodal
stimulation (p = 0.97) and the Anodal vs. Sham x Trial Type
interaction (p = 0.88), suggesting that anodal stimulation only
weakly and transiently affected performance. In contrast to the
anodal condition, there were no significant effects of cathodal
stimulation (all ps > 0.14).

Uninstructed Learning
We also explored the effect of stimulation on accuracy during
training for the uninstructed symbol pairs (AB, EF). Quantifying
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TABLE 2 | Mixed effects logistic regression model of the effect of instruction (CD

vs. EF) and tDCS on training phase performance.

Predictor β ORa z p

Intercept −0.27 0.76 −2.86 0.004

Anodal vs. Sham −0.01 0.99 −0.04 0.97

Cathodal vs. Sham 0.09 1.10 0.40 0.69

Trial Type 0.93 2.53 6.96 <0.0001

Block 2 vs. 1 0.32 1.38 2.81 0.005

Block 3 vs. (1, 2) 0.24 1.27 2.35 0.02

Block 4 vs. (1, 2, 3) 0.31 1.36 3.13 0.002

Anodal vs. Sham x Trial Type −0.05 0.95 −0.15 0.88

Cathodal vs. Sham x Trial Type −0.17 0.84 −0.54 0.59

Anodal vs. Sham x Block 2 vs. 1 −0.45 0.64 −1.59 0.11

Anodal vs. Sham x Block 3 vs. (1, 2) 0.18 1.20 0.73 0.47

Anodal vs. Sham x Block 4 vs. (1, 2,

3)

0.08 1.07 0.31 0.75

Cathodal vs. Sham x Block 2 vs. 1 −0.19 0.83 −0.69 0.49

Cathodal vs. Sham x Block 3 vs. (1, 2) −0.10 0.91 −0.41 0.68

Cathodal vs. Sham x Block 4 vs. (1,

2, 3)

−0.17 0.85 −0.70 0.48

Trial Type x Block 2 vs. 1 −0.22 0.80 −1.58 0.11

Trial Type x Block 3 vs. (1, 2) −0.03 0.97 −0.22 0.82

Trial Type x Block 4 vs. (1, 2, 3) −0.16 0.85 −1.11 0.27

Anodal vs. Sham x Trial Type x

Block 2 vs. 1

0.76 2.15 2.22 0.03

Anodal vs. Sham x Trial Type x Block

3 vs. (1, 2)

−0.25 0.78 −0.75 0.46

Anodal vs. Sham x Trial Type x Block

4 vs. (1, 2, 3)

0.06 1.06 0.17 0.86

Cathodal vs. Sham x Trial Type x

Block 2 vs. 1

0.47 1.60 1.41 0.16

Cathodal vs. Sham x Trial Type x

Block 3 vs. (1, 2)

−0.12 0.89 −0.37 0.71

Cathodal vs. Sham x Trial Type x

Block 4 vs. (1, 2, 3)

0.50 1.65 1.46 0.14

Boldfaced text indicates p < 0.05. aOR: Odds Ratio.

the effect of stimulation on uninstructed learning is important
in order to show that effects on instruction are not in some way
due to generally altered learning, especially given a prior report
of altered performance on the AB pair under anodal stimulation
(Turi et al., 2015).

Though there were no significant effects of stimulation
condition at the p < 0.05 level, there was a trend-level Anodal
vs. Sham x Trial Type interaction (β = 0.16, z = 1.66, p = 0.097;
Figure 4A, Supplementary Table 13), reflecting somewhat better
average performance on the AB pair by the anodal group. This
difference is intriguing given increasing evidence that working
memory processes contribute to RL performance (Collins and
Frank, 2012; Collins et al., 2017), and anodal stimulation
has been shown to improve working memory (Fregni et al.,
2005; Zaehle et al., 2011; Nozari and Thompson-Schill, 2013).
However, in light of the marginal nature of this unhypothesized
effect, we do not interpret it further. As with instructed
learning, there were no significant effects of cathodal stimulation
(all ps > 0.12).

tDCS: Test Phase
In contrast to the training phase, there were no significant effects
of stimulation on either Avoid-D/Avoid-F or DF trials at test
(all ps > 0.19; Figures 4C,D). This suggests that unlike COMT
genotype, to the extent that tDCS modulated instructed learning,
it biased choice during training without impacting the learned
value of the instructed stimulus.

Computational Modeling
While the behavioral analyses above confirm the existence of
instructional bias, they are only weakly informative with respect
to the underlying mechanisms. Two classes of models have been
suggested to account for instructional bias on the PST: models
in which instructions bias striatal reward learning (learning bias
models), and those in which instructions affect choice rather
than learning (choice bias models; Doll et al., 2009). Prior work
has provided weak evidence for a choice bias operating during
training, while test phase performance has been best explained by
a learning bias mechanism (Doll et al., 2009, 2011). Two results
from the present study bear on this question. First, the early-
developing, persistent bias of the DAC3 group during training,
coupled with their exclusive choice of D over F at test, would
seem to be more consistent with a choice bias during both
phases. However, these effects could also plausibly arise from a
very strong learning bias, making this interpretation far from
definitive. Second, the unaltered performance by the anodal
group at test also appears more consistent with tDCS influencing
a choice bias early in training, though caution is warranted in
interpreting a null result.

We therefore fit computational models to subjects’ data—
one learning bias model and two choice bias models—each
of which encapsulates a different hypothesis about the nature
of instructional control (see section Methods: Computational
Modeling). Briefly, the learning bias model (Doll et al., 2009)
assumes instructional bias arises from an increase in learning
rate for gains and a decrease in learning rate for losses when
the instructed symbol D is selected. The Bayesian hypothesis
testing model (Doll et al., 2009) assumes that subjects veridically
learn the reward value of D in a Bayesian fashion, but must
have a certain level of confidence that the value of D is below
chance before they reliably stop choosing it. We additionally
implemented a novel choice bias model, the decision bias model,
which assumes a standard RL learner with a fixed bias added to
the value of D during choice. Finally, we fit a standard RL model,
which tests the null hypothesis of no bias.

Contrary to prior work, both the training and test phase were
best explained by the decision bias model (Table 3). However,
while AIC strongly supported this model at both training
and test, the protected exceedance probabilities and estimated
model frequencies did not provide strong evidence that this
model was more frequent in the population for the training
phase than the Bayesian hypothesis testing model. We therefore
examined the correlation between each model’s bias parameter
and performance on CD trials across training, in order to
ascertain whether one or the other model better accounted for
behavior on instructed learning trials. The φ parameter of the
Bayesian hypothesis testing model was significantly correlated
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TABLE 3 | Model comparison of reinforcement learning model fits to subject data.

Model FP −LL AIC PEP EF

TRAINING

Standard 3 13543.8 27705.7 0.007 0.239

Learning bias 5 13298.2 27626.4 5.081e-05 0.003

Bayes HT 4 13402.9 27629.8 0.339 0.362

Decision bias 4 13284.2 27392.4 0.654 0.397

TEST

Standard 3 4755.4 10128.8 3.816e-16 0.164

Learning bias 5 4362.8 9755.7 3.816e-16 0.002

Bayes HT 4 4748.4 10320.8 3.816e-16 0.015

Decision bias 4 4304.6 9433.3 1.000 0.818

FP: number of free parameters; −LL: negative log-likelihood; AIC: Akaike information

criteria; PEP: protected exceedance probability, the probability that a given model is

the most frequent in the population, above and beyond chance; EF: estimated model

frequency, the frequency of the model in the population as estimated by the Bayesian

random-effects analysis.

with performance on CD trials (r(101) = −0.23, p = 0.02).
However, the correlation between the ρ parameter of the decision
bias model and CD performance was much stronger (r(101) =
−0.66, p < 0.0001), and the difference between the correlations
was significant (Steiger’s Z = −3.82, p = 0.0001). In accordance
with our tentative hypothesis based on the behavioral results, we
conclude that both training and test phase performance can be
parsimoniously accounted for by a single choice bias mechanism.

We also reexamined genotypic and stimulation group
differences with respect to the ρ parameter of the decision
bias model. These results are reported fully in section 2 of the
Supplementary Material and average parameter estimates are
reported in Supplementary Tables 1 and 2. Briefly, we found
effects of COMT and DAC on ρ at both training and test, in
the same direction as the behavioral results. For DAT, 9-repeat
carriers were fit with a higher ρ parameter during training, but
test phase differences were best explained by the 9-repeat carrier
group being fit with a lower learning rate for losses as compared
to 10/10 group. We were, however, unable to confirm the anodal
tDCS behavioral effect in the parameters of the decision bias
model. While this does not invalidate the effect, it does warrant
additional caution in interpreting the result.

DISCUSSION

There is mounting evidence that reward learning is far more
complex and dynamic than can be accounted for by simple
model-free theories of reinforcement. This complexity has been
explored with respect to goal-directed planning processes (i.e.,
model-based RL; Dolan and Dayan, 2013) and instructional
control (Wolfensteller and Ruge, 2012), among others. Both
model-based RL and instructional control have been associated
with cognitive control and frontostriatal function (Daw et al.,
2005; Doll et al., 2009, 2011, 2014; Li et al., 2011; Wolfensteller
and Ruge, 2012; Fouragnan et al., 2013; Smittenaar et al., 2013;
Otto et al., 2015). While the importance of cognitive control
to healthy cognitive functioning is indisputable, top-down

control can be detrimental to learning and cognitive flexibility
(Chrysikou et al., 2014; Gopnik et al., 2015).

In the case of instructed reinforcement learning, increased
top-down control can be detrimental in that it leads to greater
instructional bias toward inaccurate instructions. This study
expands on the finding that instructional bias is associated with
dopaminergic genes affecting PFC and striatal function (Doll
et al., 2011), suggesting that the balance between PFC DA
(COMT) and striatal DA (DAT1) modulates instructed learning.
We further establish a causal link between PFC and biases
found in instructed RL. In accord with our hypothesis, anodal
subjects demonstrated more protracted learning away from the
instructions during the early blocks of training, complementing
the genetic evidence that individual differences associated with
PFC function are linked to individual differences in instructional
control of RL.

A Dopamine Genetic Composite Is
Associated With Instructed Learning
While both COMT Met/Met genotype and DAT1 9-repeat
carrier genotype were individually significant predictors of
greater instructional control during training, the DA composite
revealed that this effect was selective toMet/Met:9-repeat carriers
(DAC3). This greater bias emerged early in training and persisted
throughout the training phase, unaffected by feedback. During
test, a gene-dose effect, confirmed both within each gene and
with the composite, demonstrated greater bias with increasing
Met alleles and decreasing DAT1 repeats. These results are
consistent with the known reciprocal relationship between PFC
and striatal DA (Kolachana et al., 1995; King et al., 1997; Meyer-
Lindenberg et al., 2005). It has been hypothesized that the balance
between cognitive stability and cognitive flexibility is mediated
via corticostriatal interactions and the differential modulation
of prefrontal and striatal circuits by DA. While increases in
prefrontal relative to striatal DA have been linked to cognitive
stability, increases in striatal relative to prefrontal DA have been
linked to cognitive flexibility (Cools and D’Esposito, 2009). We
propose that increasing PFC DA, indexed by increasing Met
alleles, coupled with decreasing tonic striatal DA, indexed by
decreasing DAT1 repeats, shifts the balance away from bottom-
up striatal learning based on reward prediction errors and toward
PFC-mediated top-down control of RL.

While extracellular DA is primarily recycled via reuptake
by DAT in striatal regions, there is little DAT expression in
PFC, where levels of DA are controlled by reuptake via the
norepinephrine transporter (NET) and enzymatic breakdown via
COMT (Seamans and Yang, 2004; Sulzer et al., 2016).With regard
to COMT, PFC DA plays a critical role in stabilizing working
memory representations (Durstewitz and Seamans, 2008), which
are thought to facilitate top-down control (Miller and Cohen,
2001). Notably, carriers of the Met allele of the Val158Met
genetic polymorphism have diminished COMT enzyme activity
and concomitantly higher levels of prefrontal dopamine (see
Tunbridge, 2010 for review). Elevated DA in PFC may then
cause increased D1 receptor stimulation, which further drives
activity in PFC afferents such as the striatum (Bilder et al.,
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2004). Indeed, frontostriatal functional connectivity varies with
COMT genotype (Tan et al., 2007; Krugel et al., 2009; Tunbridge
et al., 2013). Behaviorally, the Met allele has been associated with
enhanced working memory and cognitive control (see Witte and
Flöel, 2012 for review). Carriers of the Val allele have more rapid
breakdown of prefrontal dopamine and thus somewhat weaker
working memory, but potentially greater cognitive flexibility
(Krugel et al., 2009; Witte and Flöel, 2012). Replicating previous
findings (Doll et al., 2011), the Met allele in our study was
associated with greater instructional bias and therefore indicative
of greater top-down control.

In the case of the DAT1/SLC6A3 VNTR, our behavioral
results are consistent with increased DAT expression with the
9-repeat allele (Faraone et al., 2014) leading to reductions in
tonic DA concentrations in the striatum. Reduced tonic DA
in striatum has been shown to facilitate PFC input (Goto
and Grace, 2005), which would in turn allow for greater
biasing of RL. Furthermore, human imaging studies have
demonstrated that DAT1 and COMT affect activity in prefrontal
and striatal regions during reward anticipation. While the
results of these studies are not entirely consistent, anticipatory
activity in striatum is generally greater for DAT1 9-repeat
carriers and is modulated by COMT genotype (Dreher et al.,
2009; Aarts et al., 2010; cf. Yacubian et al., 2007), with one
study finding the highest activity in both lateral PFC and
ventral striatum for Met/Met:9-repeat carriers (Dreher et al.,
2009).

However, this interpretation must be qualified by the
considerable uncertainty surrounding the effect of the
DAT1/SLC6A3 VNTR on dopaminergic function. Both in
vivo and in vitro studies have produced conflicting results,
with some supporting greater DAT expression for the 9-repeat
allele compared to the 10-repeat allele, while others report
the opposite, or no relationship (Costa et al., 2011; Faraone
et al., 2014). A recent meta-analysis of human imaging studies
supports the first possibility when restricting the analysis
to normal controls (Faraone et al., 2014). Disease status,
development, and ancestry may all play a role in the functional
consequences of DAT1 (Franke et al., 2010; Shumay et al., 2011;
Faraone et al., 2014). Even in the absence of changes in overall
DAT expression, heterogeneities in DAT density and variations
in neuronal morphology can substantially affect dopamine
reuptake, which could contribute to the diversity of findings
(Kaya et al., 2018).

It is also unclear the extent to which variation in DAT
expression should be expected to influence tonic vs. phasic DA.
Phasic DA bursts are associated with salient stimuli and have been
shown to be associated with learning via reward prediction errors
(Schultz et al., 1997; Berridge, 2012). Various roles have been
ascribed to tonic DA, including modulation of response vigor
(Niv et al., 2007), exploration (Beeler et al., 2010), and the relative
weighting of effort costs (Salamone et al., 2007). DAT has a clear
role in maintaining tonic DA concentrations (Efimova et al.,
2016; Sulzer et al., 2016). Accordingly, DAT has been attributed
a major role in synaptic DA clearance after phasic release
(Bilder et al., 2004), and pharmacological blockade of DAT
alters DA transients and leads to long lasting increases in tonic

DA (Floresco et al., 2003; Ford et al., 2010). However, detailed
biophysical modeling suggests that diffusion is responsible for
synaptic clearance of DA, with DAT having a (potentially limited)
role in shaping the radius and duration at which DA bursts could
activate receptors via volume transmission (Cragg and Rice,
2004; Arbuthnott and Wickens, 2007; Rice and Cragg, 2008).
Notably, increasing burst firing of DA neurons in the ventral
tegmental area does not cause tonic increases in extracellular
DA in the nucleus accumbens without DAT blockade (Floresco
et al., 2003). Tonic DA may also indirectly influence phasic
activity, though the direction of this influence is complicated to
determine; elevated tonic DA due to increased tonic DA neuron
firing may augment the peak and duration of DA bursts (Dreyer
et al., 2010), but tonic concentrations may also inhibit phasic DA
via autoreceptor feedback mechanisms (Bilder et al., 2004).

The performance of patients with schizophrenia provides an
interesting counterpoint to the combined effect of COMT and
DAT. Opposite to the Met/Met:9-repeat carrier genotype, the
pathology of schizophrenia includes hyperdopaminergic tone in
striatum and hypodopaminergic tone in PFC (Weinberger et al.,
1992; da Silva Alves et al., 2008; Brisch et al., 2014; Slifstein
et al., 2015; Grace and Gomes, 2018). Notably, patients with
schizophrenia demonstrate reduced instructional bias on the PST
(Doll et al., 2014). They also seem to rely less on putatively PFC-
mediated processes in uninstructed learning, including reduced
use of win-stay, lose-shift strategies and poorer performance on
the easiest AB pair, potentially indicative of a reduced tendency
to maximize or otherwise use rule-based strategies (Waltz et al.,
2007, 2011; Doll et al., 2014). Though the elevated performance
on AB in the Met/Met:9-repeat carrier group in the present
study was not significant, it provides further evidence of opposite
behavioral effects of opposite dopaminergic profiles.

Our findings of reduced flexibility with increasing ratio of
PFC to striatal DA are also in accord with the effects of COMT
and DAT1 on reversal learning. Compared to Met homozygotes,
Val homozygotes show greater learning-rate adaptation around
reversals, leading to improved performance (Krugel et al., 2009).
Notably, Val homozygotes have more differentiated prediction
error signals in striatal regions and greater learning-rate-
dependent modulation of frontostriatal connectivity, suggestive
of more adaptive prefrontal modulation of striatal RL (Krugel
et al., 2009). On the other hand, the DAT1 9-repeat allele is
associated with greater perseveration after a reversal (den Ouden
et al., 2013). It is interesting to note that this perseveration effect
was explained by the 9-repeat allele conferring a more rapidly
decreasing learning rate with increasing experience, which may
be related to the decreased learning rate modulation of COMT
Met homozygotes. Direct comparison is difficult, however, as
different computational models were used in the two studies.
Importantly, while den Ouden and colleagues attributed their
findings to more robust striatal learning of the previous reward
contingencies, in the case of Met/Met:9-repeat carriers in the
present study, their performance in the training phase cannot be
due to greater ingraining of previous experience; the bias in the
present case was due to instruction, not experience, was robustly
evident in the first training block, and persisted throughout
training.
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Stimulation Weakly Increased Instructional
Bias
In contrast to the genetic effects, the effect of tDCS on
performance was far more limited. In accord with our hypothesis,
anodal subjects demonstrated modestly more protracted learning
away from the instructions during the early blocks of training.
However, there was no effect of cathodal stimulation, and no
effect of either stimulation condition during the test phase.

While the isolation of the effect to the training phase makes
sense in light of the postulated division between frontal and
striatal systems during training and test (Frank et al., 2007), it
is at odds with the finding of increased bias at test associated
with the COMT Met allele. It may be the case that genotypic
effects on frontostriatal DA balance or frontostriatal connectivity
(discussed above) allow for greater biasing of striatum by PFC
than is possible with single-session tDCS.

Mechanisms of Instructional Bias
The mechanisms underlying instructional bias are under debate.
Proposals include models in which instructions bias striatal
reward learning (learning bias models; Biele et al., 2009; Doll
et al., 2009) or those in which instructions affect choice rather
than learning (choice bias models; Doll et al., 2009). Evidence
in favor of each of these classes of models has been mixed.
Past computational modeling has tended to support learning
bias models (Biele et al., 2009, 2011; Doll et al., 2009, 2011) but
does not unequivocally rule out choice bias models (Doll et al.,
2009, 2011). A number of neuroimaging studies have favored
neither class of models, finding blunted activation in basal
ganglia structures during instructed/prior knowledge conditions,
suggesting a suppression of RL (Delgado et al., 2005; Biele et al.,
2011; Li et al., 2011; Fouragnan et al., 2013). However, one study
found overall decreased activity in reward structures but activity
consistent with a learning bias in the form of an “outcome bonus”
for choosing the instructed stimulus (Biele et al., 2011).

Adding to this debate, we find that our training phase results
can be explained by a novel choice bias model—the decision
bias model—containing a fixed bias for choosing the instructed
symbol. This is in contrast to past work, which has found that
a standard RL model without instructional bias best fits training
phase performance, despite clear behavioral effects of instruction
during training (Doll et al., 2009, 2011). Our model also better
predicted behavioral performance on CD trials compared to
the Bayesian hypothesis testing model, a choice bias model
previously shown to provide a reasonable fit to some subjects’
training data and to be sensitive to effects of COMT (Doll et al.,
2009, 2011). These results thus provide stronger evidence for the
existence of a choice bias mechanism during training.

The decision bias and Bayesian hypothesis testing
models differ in a number of regards (see section Methods:
Computational Modeling), with the most prominent differences
being in the type of learner (standard Q-learning vs. Bayesian
Q-learning) and in the nature of the bias (fixed vs. variable). We
cannot say with certainty which of these factors most contributes
to the superior performance of the decision bias model, though
comparing our pattern of results to past work suggests that the
Bayesian learner detracted from the performance of the model;
all else equal, a variable bias should presumably better capture

the behavior of a putative fixed bias agent than no bias. That
said, an important direction for future work is to introduce
a variable bias into the standard Q-learning framework and
compare this to a fixed bias. This poses a challenge, since the
uncertainty information used to implement adaptivity in the
Bayesian framework is not present in the standard framework.

Again contrary to prior results, the decision bias model also
best explained performance at test. While model comparison and
striatal dopaminergic genetic effects have been previously taken
as evidence of a learning bias mechanism at test (Doll et al., 2009,
2011), the supposition that the test phase primarily measures
learning free of choice effects has recently come into question
(Shiner et al., 2012; Smittenaar et al., 2012), in keeping with a
broader role of DA in modulating motivation and learned value
representations (Cagniard et al., 2006; Berridge, 2012; Medic
et al., 2014). Further supporting our finding, a recent reevaluation
of test phase performance using an alternative model redescribed
the learning bias for one striatal genotype as a choice bias (Collins
and Frank, 2014). These discrepancies highlight the fact that
model comparison results are dependent on the models tested.
Additionally, in light of the evidence from other studies, there
is no reason to think choice bias and learning bias mechanisms
are mutually exclusive. However, the complexity of a model
implementing both forms of bias would likely pose identifiability
issues. We suggest that along with continued refinements to
computational models, novel experimental designs capable of
teasing apart these different possibilities will be necessary to
advance our understanding of the mechanisms of instructional
control.

Specificity of the Effects and Limitations
While there is good evidence that the expression of COMT
and DAT1 are regionally specific, caution must be taken in
interpreting the results of stimulation, as the lack of focality
of tDCS prevents strong claims about effects on specific brain
regions. Stimulation could have altered the function of other
brain areas involved in RL, including orbitofrontal cortex
(O’Doherty, 2004). Neuroimaging and current modeling have
even shown tDCS effects in subcortical structures, including the
basal ganglia (Sadleir et al., 2010; Weber et al., 2014). However,
the lack of stimulation effects on uninstructed learning and test
phase performance somewhat militates against these possibilities.

Importantly, while our sample size was large for a tDCS study
(Minarik et al., 2016) and was larger than the original report
of the effects of COMT on instructed RL (Doll et al., 2011),
these results should be replicated, particularly in light of the
weakness of the tDCS effects and the small sample size of some
genotypes. In the latter case, the low frequencies of the COMT
Met and DAT1 9-repeat alleles in the population make collecting
adequate samples of these groups challenging (Vandenbergh
et al., 1992; Doucette-Stamm et al., 1995; Auton et al., 2015).
Because access to such samples is difficult outside of large cohort
studies, we took statistical steps within our sample to ensure the
robustness of our genetic results. Given the known interaction
of COMT and task on the effects of prefrontal stimulation
(Plewnia et al., 2013; Nieratschker et al., 2015), larger samples
would also permit an examination of genotype x stimulation
interactions. Though a between-subjects design was necessary
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in this study due to the use of deception, future examinations
of this topic could also be improved by the development of
within-subjects designs. Finally, it is conceivable that there
is more opportunity to decrease bias than increase it, given
the overwhelming feedback subjects receive in contradiction to
the instructions. Unfortunately, cathodal tDCS, which could in
principle be used to test this hypothesis, failed to elicit an effect
in the present case and is demonstrably unreliable (Jacobson
et al., 2012; Nozari et al., 2014). Future studies using theta-
burst transcranial magnetic stimulation may be an appropriate
alternative.

Conclusion
In sum, the present study provides further evidence for the role
of PFC in biasing instructed RL, and additionally highlights
the importance of frontostriatal DA balance in modulating top-
down inputs. Such top-down regulation of learning by PFC is
consistent with increased cognitive control leading to both costs
and benefits (Chrysikou et al., 2014). Understanding the interplay
of cognitive control and learning is thus key to establishing
what level of control is most adaptive in a given situation.
This endeavor will ultimately require delineating the relationship
between computational and neurocognitive factors in learning
and choice.
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