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The study of the healthy brain in elders, especially age-associated alterations in cognition,

is important to understand the deficits created by Alzheimer’s disease (AD), which

imposes a tremendous burden on individuals, families, and society. Although, the

changes in synaptic connectivity and reorganization of brain networks that accompany

aging are gradually becoming understood, little is known about how normal aging affects

brain inter-regional synchronization and functional networks when items are held in

working memory (WM). According to the classic Sternberg WM paradigm, we recorded

multichannel electroencephalography (EEG) from healthy adults (young and senior) in

three different conditions, i.e., the resting state, 0-back (control) task, and 2-back task.

The phase lag index (PLI) between EEG channels was computed and then weighted and

undirected network was constructed based on the PLI matrix. The effects of aging on

network topology were examined using a brain connectivity toolbox. The results showed

that age-related alteration was more prominent when the 2-back task was engaged,

especially in the theta band. For the younger adults, the WM task evoked a significant

increase in the clustering coefficient of the beta-band functional connectivity network,

which was absent in the older adults. Furthermore, significant correlations were observed

between the behavioral performance of WM and EEG metrics in the theta and gamma

bands, suggesting the potential use of those measures as biomarkers for the evaluation

of cognitive training, for instance. Taken together, our findings shed further light on the

underlying mechanism of WM in physiological aging and suggest that different EEG

frequencies appear to have distinct functional correlates in cognitive aging. Analysis of

inter-regional synchronization and topological characteristics based on graph theory is

thus an appropriate way to explore natural age-related changes in the human brain.
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INTRODUCTION

Memory decline is typically the first symptom noticed in patients
with Alzheimer’s disease (AD). More than 35 million people

worldwide have been diagnosed with AD, making it the most
common form of dementia and a tremendous burden on
individuals, families, and society (Querfurth and Laferla, 2010).
The principal risk factor for AD is age, with incidence doubling
every 5 years after the age of 65 years (Querfurth and Laferla,
2010). The study of the healthy brain aging, especially age-related
changes inmemory, is vitally important to understand the deficits

created by AD.
Working memory (WM) involves the ability to maintain and

manipulate information over short periods of time. It can be
subdivided into two parts: the initial encoding of information,
and maintenance and retrieval of WM items (Roux and Uhlhaas,
2014). Much larger age differences are seen for WM tasks than
for short-term memory tasks that require only storage and
maintenance of information (Bopp and Verhaeghen, 2009). One
of the most popular experimental paradigms for WM studies
has been the n-back task. In this task, participants are asked to
monitor the identity or location of a series of verbal or non-
verbal stimuli, and to indicate whether the currently presented
stimulus is the same as the one presented previously (Owen
et al., 2005). Much effort has been made to elucidate the age-
related alterations of brain characteristics during n-back tasks
and to uncover their underlying mechanisms using functional
neuroimaging techniques such as functional magnetic resonance
imaging (fMRI) (Lamar et al., 2004; Mattay et al., 2006; Schulze
et al., 2011; Heinzel et al., 2014; Li et al., 2015; Dev et al.,
2017; Jacobs et al., 2017) and electroencephalography (EEG)
(Missonnier et al., 2004, 2011; Pesonen et al., 2007; Ho et al., 2012;
Saliasi et al., 2013; Barr et al., 2014; Gajewski and Falkenstein,
2014; Dong et al., 2015; Padgaonkar et al., 2017).

Among these techniques, EEG has the advantages of easy
accessibility and excellent temporal resolution. It is also a more
sensitive approach for rapid cognitive processes such as those
involved in WM, in which changes occur on a time scale
of several 100ms. Analysis of EEG results allows researchers
to obtain information on brain functioning during different
behavioral and cognitive states. In addition, neural oscillations
at specific frequencies have been shown to be related to certain
cognitive processes (Roux andUhlhaas, 2014). For example, there
is considerable evidence that theta-band activity is associated
with the processes involved in memory, and increased theta
activity in frontal areas is a common EEG alteration in studies
of WM (Jensen and Tesche, 2010). However, the functional role
of distinct EEG oscillations, typically involving theta, alpha, beta,
and gamma activity, and their relationship to WM processes in
aging has remained unclear (Roux and Uhlhaas, 2014).

Apart from the conventional spectral analysis, the effect of
age on WM has often been investigated by the analysis of
event-related potential (ERP) or across-trials phase-locking. ERP
analysis is based on averaging the EEG profile across multiple
trials to obtain a scalp measurable activity (Murray et al.,
2008), while across-trials phase-locking focuses on the phase
difference between trials. The latter is based on the observation
that stimulation can result in a (partial) phase-resetting of the

ongoing background EEG, leading to higher phase-locking across
trials (Jansen et al., 2003). However, accumulating evidence
suggests that the inter-regional synchronization of neuronal
activity has an important role in memory formation (Jutras and
Buffalo, 2010), and that cognition is a result of interactions
among various brain regions that may be spatially separated but
functionally linked (Dai et al., 2017). Analysis of inter-regional
synchronization of EEG oscillation, which can be considered
as indicative of brain functional connectivity, may thus provide
additional information to supplement traditional ERP or across-
trials analysis.

Furthermore, the association between advanced age and
progressive limitations in WM might be due to difficulty
in activating the corresponding neural networks (Missonnier
et al., 2011). Computational frameworks based on graph
theory that model the brain as a complex network have the
potential to provide more comprehensive insight into the
mechanisms of aging-related cognitive dysfunction. Numerous
studies have demonstrated the use of network analysis in
identifying and tracking changes in the human brain during
normal development and aging, as well as in various neurological
and neurodegenerative dementias such as AD (He and Evans,
2010; Sun et al., 2012; Dennis and Thompson, 2014; Sala-Llonch
et al., 2015; O’Reilly et al., 2017; Vecchio et al., 2017). Recently,
several studies have investigated the topological reorganization of
the EEG network in healthy aging (Vecchio et al., 2014; Knyazev
et al., 2015; Miraglia et al., 2016); these reports indicate that
graph theory can be of use in the analysis of connectivity patterns
from EEG, thus facilitating the study of aging-related features
of functional connectivity networks in the physiological brain
(Vecchio et al., 2014). More interestingly, Dai et al. employed
graph theory to characterize the topological properties of brain
functional networks during WM tasks, with some meaningful
findings (Dai et al., 2017). However, to our best knowledge,
network analysis of EEG has never been used to investigate age-
related alterations in WM, which are important for uncovering
the underlying mechanism of cognitive aging.

Therefore, the aim of the present study was to investigate age-
related differences in EEG synchronization and network topology
with or without memory load. Two groups of volunteers, one
consisting of young students (age: 19–29 years) and the other
of older adults (age: 58–70 years), were recruited for a cross-
sectional comparison. For each subject, multi-channel EEG was
recorded under three conditions, i.e., resting state, 0-back task
(control task), and 2-back task (WM task). The EEG signals were
filtered into different frequency bands and the phase lag index
(PLI) between different EEG channels was used to quantify the
inter-regional synchronization. We then explored the topology
of the brain functional network constructed with the PLI matrix.
Finally, age-related alterations in EEG synchronization and
network topology were investigated in different frequency bands
and under different conditions.

MATERIALS AND METHODS

Participants
Fifteen undergraduate or graduate students and 13 older adults
were recruited. All participants gave their written informed
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consent before the experiment, and were financially compensated
for the experiment regardless of their performance. The
experimental protocols were approved by the institutional Ethical
Committee of China Pharmaceutical University, and complied
with the Declaration of Helsinki.

All participants were healthy right-handed individuals who
had normal or corrected-to-normal visual acuity, no history
of brain disease, no history of drug, or alcohol abuse, and
had not taken any medication in the 2 weeks before the
experiment. They declared that they had slept normally the night
before the experiment. We performed a baseline assessment of
cognitive ability using a Chinese version of theMini-Mental State
Examination (MMSE) (Folstein et al., 1975) for each participant.

All the participants were capable to perform the WM task
on an acceptable level. However, data derived from three older
adults, who have low quality of EEG recordings due to head
moving or frequently eye blinking, were excluded. We thus
finally included 15 young (young group; eight females; age: 19–29
years) and 10 older (senior group; five females; age: 58–70 years)
participants in this study. The demographics of the included
participants are listed in Table 1. Notably, there was a significant
difference between the education levels of the two groups and
the senior group had a greater standard derivation of education
years, compared with the younger participants. No significant
difference was found in MMSE scores between the two groups
(t-test, p > 0.05).

The n-Back WM Task
The classic Sternberg WM task was adopted in the current study.
Participants are instructed to watch and respond to a continuous
stimuli of symbol “∗” or Chinese characters (font: Arial, font-size:
58) on a computer screen. Twenty-Five Chinese characters were
included according to the following criteria: (1) only nouns; (2)
between 4 and 7 strokes; (3) only commonwords according to the
Table of General Standard Chinese Characters, which is issued by
theMinistry of Education of the People’s Republic of China on 18
June 2013.

Two different cognitive loads were engaged. One is a
control task designed based on the 0-back paradigm, in which
participants were required to press the “Yes” button when a
Chinese Character emerges; and press the “No” button when

TABLE 1 | Demographics of the participants.

Young Senior P

N 15 10

Age (years) 23.1 ± 2.0 64.0 ± 3.3 0.001

Gender (f/m) 8/7 5/5 n.s.

BMI (kg/m2) 20.3 ± 2.1 24.2 ± 3.6 0.002

Education (years) 16.1 ± 1.9 9.3 ± 3.0 0.001

MMSE 29.7 ± 0.9 28.9 ± 3.0 n.s.

Values are means ± standard derivations, except for Gender. p-values of Student’s t-test

are listed in the last column, where n.s. represents that there is no significant difference

between the two groups.

there is a symbol “∗” (Figure 1A). The other one is a demanding
2-back task with stimuli constituted of Chinese characters. As
shown in Figure 1A, in a 2-back task, the participants were
asked to press “Yes” if the current stimulus matches the one 2-
time preceded; otherwise press “No.” To eliminate the impact of
handedness on the statistical analysis, for half of the participants
in both groups, the “Yes” button was defined as the “A” key on
a keyboard and “No” button corresponded to the “L” key; while
for the others, “Yes” was the “L” key and “No” was the “A” Key.
Moreover, participants were suggested to press “A” with their left
hands and “L” with their right hands. Note that the other keys on
the keyboard were removed.

There were three trial sequences in each n-back task, adding
up to 120 trials (including 39 matches). As shown in Figure 1B,
in each trial, a 500-ms stimulus was preceded by a 500-ms fixation
cross and followed by a 4,000-ms blank screen. Reaction time
and accuracy were systematically recorded with E-prime (version
2.0, Psychology Software Tools Inc., Sharpsburg, PA, USA). We
did not provide performance feedback. Participants were asked
to rest quietly with eyes open for 5min before the beginning of
the n-back task.

EEG Recording and Preprocessing
EEG signals were recorded using a Brain Vision Recorder
(Brain Products Inc., GmbH, Munich, Germany) with 61 surface
electrodes placed according to the extended 10–20 system
(Nuwer, 1998), a sampling rate of 500Hz, an online lower
cut-off of 0.016Hz, and an upper cut-off of 70Hz. Vertical
and horizontal electrooculograms were recorded simultaneously
from electrodes located above the right eye and the outer
canthus of the left eye, respectively. The impedance between
each electrode and the skin was kept below 10 K�. The online
reference was the tip of the nose, which was converted to the left
and right mastoids (TP9 and TP10) during offline preprocessing.
Thus, 59 EEG channels were available for further analysis.

Ocular artifacts were corrected and trials with EEG maximal
amplitude exceeding±60µVwere eliminated using Brain Vision
Analyzer (version 2.0, Brain Products Inc.). For EEG signals
at rest, an expert examined each continuous 3.5-s segment of
artifact-free EEG. For those from the n-back tasks, 3.5-s segments
were extracted from each trial beginning with stimulus onset.
Then, the theta band (4–8Hz), alpha band (8–13Hz), beta
band (13–30Hz), and gamma band (30–45Hz) were extracted
from each segment with finite impulse response filters provided
by MATLAB (Mathworks Inc., Natick, MA, USA). This filter
processes EEG signals forwards and backwards, yielding EEG
waves with zero phase distortion. After discarding both the first
and the last 0.5 s of each wave, we prepared 2.5-s segments in the
theta, alpha, beta, and gamma bands for the following analysis.

Network Computation and Metrics
For each participant, after preprocessing and regardless of the
conditions, the network construction and computation were
performed on each 2.5-s EEG segment in the theta, alpha, beta,
and gamma bands. When using graph theory to construct a
network of brain functional connectivity, the brain regions are
commonly considered as network nodes and the functional
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FIGURE 1 | The n-back task. (A) Definition of response in the n-back tasks. In the 0-back task, participants were required to press the “Yes” button when a Chinese

character arose, otherwise they were to press the “No” button. In the 2-back task, participants were asked to press “Yes” only when the current stimulus matched one

of the previous two. Here, the third stimulus was a match as it was identical to the first stimulus. (B) Time course of a trial. Each trial began with presentation of a

fixation cross (500ms), followed by a stimulus (500ms), and then a blank screen (4,000ms).

connections as edges (Rubinov and Sporns, 2010). In the present
study, for each 2.5-s multi-channel EEG segment, we took all
the EEG channels as the network nodes, and then used the PLI
between nodes to construct the connectivitymatrix. As the choice
of the threshold may have a strong effect on the estimation of the
network metrics (Bullmore and Bassett, 2011), a fully connected,
weighted, and undirected network (WUN) was built directly
from the PLI matrix. Recently, such aWUN framework was used
in various studies (Xue et al., 2014; Vecchio et al., 2015, 2016;
Gong et al., 2017). The networks were then analyzed in terms
of their node-to-node connectivity and their local and global
network characteristics. The network metrics were obtained with
the MATLAB Brain Connectivity Toolbox (Rubinov and Sporns,
2010; Whitfield-Gabrieli and Nieto-Castanon, 2012), which is
widely used in graph theoretical analysis of the brain (Hong et al.,
2016; McKenna et al., 2016; Soman et al., 2016).

Inter-Regional Functional Connectivity
PLI was used as a measure of inter-regional functional
connectivity in this study. The major aim of using PLI is
to obtain reliable estimates of phase synchronization that are
invariant against the presence of common sources, such as
volume conduction and/or active reference electrodes in the case
of EEG (Stam et al., 2007; Hardmeier et al., 2014).

In short, PLI is an index of the asymmetry in the distribution
of phase differences calculated from the instantaneous phases of

two time series. For a real-valued signal s(t), one can define its
Hilbert transform and analytic signal as shown in Equations (1,
2), respectively.

ŝ (t) =

∫ +∞

−∞

s (τ ) h (t − τ )dτ =
1

π

∫ +∞

−∞

s (τ )

t − τ

dτ (1)

z (t) = s (t) + i× ŝ (t) = A (t) ei∅(t) (2)

Here, A (t) and ∅ (t) are the instantaneous amplitude and
phase (IP) of s(t), respectively. Considering two simultaneously
recorded time series p(t) and q(t), their IP difference 1ϕpq(t) can
be defined as in Equation (3).

1ϕpq (t) = ∅p (t) − ∅q (t) (3)

Then, the PLI of the two time series p(t) and q(t) can be obtained
as shown in Equation (4):

PLI = | < sign[sin(1ϕpq (t))] > | (4)

where sign and sin stand for signum and sinusoidal function,
respectively, and < > and | | denote the mean and the absolute
value, respectively. The value of PLI ranges between 0 and 1,
with 0 indicating a total absence of synchronization, and its
maximal value of 1 corresponds to a perfect non-zero phase
locking (Stam et al., 2007; Hardmeier et al., 2014). By taking each
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EEG-channel signal as a real-valued time series, node-to-node
PLI values were calculated and formed a 59 × 59 connectivity
matrix. Additionally, the average PLI over all the node pairs was
computed and used as a global EEG synchronization measure.

Clustering Coefficient
The clustering coefficient, a classic metric in graph theory, is an
index of local structure. Locally, the Ci of a node i corresponds
to the fraction of triangles around itself in a binary graph.
This concept was generalized to weighted complex networks by
Onnela et al. (2004). In the present study, it was calculated using
Equation (5).

Ci =

∑n
j=1,h=1 (PLIijPLIihPLIjh)

1
3

∑n
j=1,j6=i PLIij

(

∑n
j=1,j6=i PLIij − 1

) (5)

Here, n represents the number of nodes in the analyzed
WUN. Hence, the average clustering coefficient for the network
(denoted as C in the following) reflects, on average, the
prevalence of clustered connectivity around individual nodes.
It is generally used an indicator of the functional segregation
in the brain (Rubinov and Sporns, 2010; Whitfield-Gabrieli and
Nieto-Castanon, 2012).

Characteristic Path Length
The characteristic path length, defined as the mean of
the geodesic lengths over all couples of nodes, is another
fundamental metric of networks. It is also the most commonly
used measure of functional integration (Rubinov and Sporns,
2010). In the present study, it was denoted as L and calculated
according to Equation (6):

L =
1

n (n− 1)

∑n

i=1

∑n

j=1, j6=i

∑

PLIuv∈g(i↔j)
f (PLIuv) (6)

where n is the number of nodes in the analyzed WUN, f is a map
(here, an inverse function) from weight to length, and g

(

i ↔ j
)

represents the shortest weighted path between nodes i and j.

Small-World Coefficient
Functional segregation in the brain relates to the ability to
perform specialized processing, while functional integration is
the ability to rapidly combine specialized information from
distributed brain regions. There is a plausible hypothesis that an
optimal balance between functional segregation and integration
should lead to more efficient processing of information (Sporns
and Honey, 2006). Therefore, a measure called the small-
world coefficient (SW) has been proposed to quantify this
balance by comparing the normalized clustering coefficient and
characteristic path length of a network. First, a large set of
randomized networks should be generated, based on the original
network. The next step is to calculate the average clustering
coefficient and characteristic path length of the randomized
networks, denoted Crand and Lrand, respectively. Finally, the SW
can be obtained as in Equation (7):

SW =
C/Crand

L/Lrand
(7)

where C and L are the clustering coefficient and characteristic
path length, respectively, of the original network.

Statistical Analysis
Age-related and task-evoked changes in the inter-regional
functional connectivity, as well as the global and local network
metrics described above, were analyzed usingMATLAB. For each
frequency band, all network metrics were obtained by averaging
the results obtained from all segments for a given condition. The
statistical analysis was performed on those average values.

Non-parametric methods were used for statistical evaluations
because the data did not meet the assumptions for normality or
homogeneity. In order to investigate the aging effect, an analysis
of partial correlation was conducted between EEG measures
and group (young or senior) by controlling educational level,
as there were substantial differences in years of education.
Meanwhile, task-evoked differences in EEG measures among the
three conditions were assessed using Friedman’s non-parametric
test; if the difference was significant (p < 0.05), post-hoc analyses
were performed using pair-sample Wilcoxon sign rank (WSR)
tests with Tukey-Kramer adjustment.

Moreover, a Mann-Whitney non-parametric U (MWU) test
was used to assess the age-related difference of behavioral
performance (response accuracy and reaction time) in each
n-back task. For each age group, paired-sample WSR tests
were used to check whether there was any difference in
behavioral performance when different n-back tasks were
engaged. Furthermore, the association between the network
metrics and the behavioral performance in the WM task, was
examined by a partial correlation analysis, controlling age and
education.

The false discovery rate (FDR) was controlled at a significance
level of 0.05 (Benjamini and Hochberg, 1995) in cases involving
multiple comparisons, i.e., in the analyses of node-to-node PLIs
and local clustering coefficients.

RESULTS

Behavioral Results
The senior group exhibited significantly lower response accuracy
and longer reaction time compared with the younger group
(MWU test, p < 0.05) on both the 0-back and 2-back tasks,
indicating worsening behavioral performance in cognitive tasks
with aging (Table 2). Moreover, although both groups showed
significantly increased reaction time during the 2-back task (in
which WM was engaged) compared with the 0-back task, there
were no significant differences in response accuracy for either
group (paired-sample WSR tests, p > 0.05).

Inter-Regional Functional Connectivity
PLI matrices of 59× 59 nodes were used to study the age-related
and task-evoked changes in inter-regional connectivity. No
significant alterations in node-to-node connectivity were found
when controlling the FDR. Nevertheless, when the significance
level was set to 0.001 without any correction, in the alpha
band, 12 pairs of nodes showed significant age-related changes
(all decreasing with aging) in connectivity under the 2-back
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TABLE 2 | Response accuracy (%) and reaction time (mean ± SD) for both

groups on the 0-back and 2-back tasks.

Response accuracy (%) Reaction time (ms)

Young Senior MWU Young Senior MWU

0-back 0.95 ± 0.03 0.88 ± 0.10 0.03 497 ± 109 660 ± 127 <0.01

2-back 0.96 ± 0.03 0.73 ± 0.20 <0.01 743 ± 244** 1092 ± 527** 0.03

**p < 0.01 for the paired-sample WSR test between the performances of 2-back task and

the control task. MWU represent for the Mann-Whitney non-parametric U test to assess

the age-related difference of behavioral performance in each n-back task.

condition. Furthermore, 11 pairs exhibited significant task-
evoked alterations in both n-back tasks (all decreasing with the
memory load), but only for the younger adults. Those edges
are illustrated in the graph representation of the brain shown
in Figure 2. As can be seen in Figure 2A, for the 2-back task,
age-related decreases in alpha-band functional connections were
mainly concentrated in the left hemisphere, starting and ending
in the left parietal nodes (in particular, the P7 node). In other
frequency bands, no more than five pairs of nodes retained their
connectivity, regardless of whether age-related or task-evoked
changes were being investigated, when the significance level was
set to 0.001 without any correction.

However, a significant correlation (p = 0.003, partial
correlation, controlling education) between age group and
average PLI was observed in the theta band during the 2-back
task, but not for any other frequencies or conditions. That is, the
senior group had a higher average PLI (0.223± 0.012) compared
with the young group (0.205 ± 0.005), indicating an age-related
increase in inter-regional synchronization of EEG theta activity
in WM. Moreover, for the young participants, we found a
significant task-related effect on the average PLI of EEG beta
activity (p= 0.03, Friedman’s non-parametric test). According to
post-hoc analysis, the young participants showed enhanced global
synchronization of EEG beta activity when performing the 2-
back task (0.117± 0.002), compared with at rest (0.109± 0.003).
Note that PLI values are presented here asmean± standard error.

Age-Related Differences in Network
Metrics
During the 2-back task, age group was significantly correlated
with C of the theta network (p= 0.002), L of the theta network (p
= 0.003), and SW of the alpha network (p = 0.009). As shown
in Figures 3A–C, the main alterations in network topology
observed in WM with aging were a prominent increase in C and
decrease in L of the theta network, and a significant decrease in
SW of the alpha band.

Moreover, as shown in Figures 3C–D, compared with the
young group, the senior group exhibited significant declines in
SW in the alpha band during the 0-back task (p = 0.01) and in
the gamma band during resting state (p= 0.006).

Furthermore, analysis was conducted to investigate the
correlation between the age group and nodal C, as shown in
Figure 3E. A significant aging effect (p < 0.05, partial correlation
and FDR corrected) was found only in the theta network
during the 2-back task. When WM was engaged, widespread

aging-related increases in nodal C in the theta network were
found across multiple locations, in particular, in the prefrontal
regions.

Task-Evoked Alteration in Network Metrics
Task-evoked alterations in network metrics were observed in the
fast EEG bands, i.e., the beta band and the gamma band, as shown
in Figure 4. Compared with the resting state, the older subjects
exhibited a significant increase in SW of the beta network and a
decline in SW of the gamma network during the 0-back task. For
the younger subjects, the only significant increase was in C of the
beta network during the 2-back task.

Moreover, as shown in Figure 4D, task-induced alteration of
nodal C was observed only in the beta band and only for the
younger adults. During the 2-back task, the younger participants
exhibited significantly increased nodal C compared with the
resting state in many regions, especially in the right parietal-
occipital areas.

Correlation Between WM Performance and
EEG Measures
We investigated the associations between EEG metrics and
behavioral performance during aWM task, i.e., the 2-back task in
the current study, across all participants while controlling age and
education. As shown in Table 3, response accuracy was positively
correlated with the average PLI of EEG gamma activity and C of
the gamma network, and negatively correlated with SW of the
theta network and SW of the gamma network. The average PLI
and C in the theta band showed positive correlation with reaction
time, whereas L in the theta band exhibited a negative correlation.

When the nodal C was considered, we found a significant
positive correlation between reaction time in the 2-back task
and nodal C (partial correlation analysis with FDR corrected,
controlling age and education years), as shown in Figures 5A,B,
especially in the right posterior parietal lobe. This phenomenon
became more prominent when only the older subjects were
included in the correlation analysis. As shown in Figures 5C,D,
for the older individuals, a larger C in the P6 node was
corresponding to a longer time consumed in the WM task.

DISCUSSION

In this study, we analyzed age-related and task-evoked variations
in EEG inter-regional synchronization and network topology.
Typical cross-sectional comparisons between young and old
adults were designed, and multi-channel EEGs were recorded
and analyzed for subjects at rest and while performing n-back
tasks. The key findings were as follows. (1) Age-related alterations
were more prominent during the 2-back task, especially in the
theta band. (2) For the young group, task-induced changes
were observed in the beta band between the 2-back and resting
conditions; while for the senior group, the 0-back task evoked
significant alterations in network topology in both the beta and
gamma band. (3) During the 2-back task, the EEG metrics
in the theta and gamma bands showed significant correlations
with behavioral performance. Overall, our results suggest that
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FIGURE 2 | Graph presentation of node-to-node connections in the alpha band. In (A), each shown connection has a significant decline in PLI with aging under

2-back condition. In (B), illustrated connections have significant larger values of PLI under 0-back condition than those under 2-back task, for the young adults. The

brain map was drawn using the BrainNet Viewer toolbox (version 1.61, Beijing Normal University, China) (Xia et al., 2013).

different EEG frequencies have different functional correlates in
cognitive aging, as discussed below.

Theta Oscillations Reflect a Compensatory
Mechanism in Cognitive Aging
WM comprises a large number of cognitive processes, with
different neural correlates involving different brain areas, which
need to be coordinated to monitor and control complex WM
tasks. Theta activity is generally considered to be responsible
for the control of WM functions and has been proposed as an
underlyingmechanism for this integration inWM (Sauseng et al.,
2010).

In the current study, compared with the younger adults, the
senior group exhibited stronger inter-regional synchronization
of EEG theta activities. The theta-band functional connectivity
network became more globally integrated and also showed
widespread enhanced ability for specialized processing, especially
in the prefrontal area. Moreover, the EEG metrics in the
theta band showed significant correlations with behavioral
performance in the 2-back task, when WM was engaged. For
the older individuals, the nodal clustering coefficient of the theta
network in the right parietal area was positively correlated with
reaction time in the 2-back task, consistent with previous reports
(Sala-Llonch et al., 2014; Dai et al., 2017). These findings support
the integrative role of the theta band inWM tasks, which could be
attributed to compensatory activation, a characteristic of normal
aging (Phillips and Andres, 2010).

Evidence from positron emission tomography and fMRI
studies have shown that, as well as task-related “under-activation”
in older adults relative to younger adults in some regions
(e.g., the hippocampus), “over-activation” can be observed in

many other regions, particularly the frontal-parietal regions,
whose involvement in WM is well-documented (Cappell et al.,
2010; Kennedy et al., 2015). According to the compensation-
related utilization of neural circuits hypothesis (Reuter-Lorenz
and Cappell, 2008), over-activation might occur because more
neural resources are engaged by aging brains to accomplish
computational goals that would be completed with fewer
resources by younger brains (Cappell et al., 2010). In the
present study, compared with the 0-back task, in which sustained
attention but no WM engagement is required, both groups had
longer response times in the 2-back task. However, response
accuracy was stable in the younger adults, whereas it had a
decreasing trend in the senior group (p = 0.07, paired-sample
WSR test). Accordingly, we speculated that the memory load in
the 2-back task might be within the capacity of WM for young
adults but beyond that of the elders; the latter are more likely
to require the allocation of additional neural resources, leading
to a widespread increase in the nodal clustering coefficient, and
improved synchronization of inter-regional EEG theta activity
and functional integration of the theta network. Meanwhile, the
older individuals, especially those with longer reaction times
in the 2-back task, might have made greater efforts than the
young to utilize the engaged resources in the frontal and parietal-
occipital areas.

Role of Alpha Activity in Attentional Control
A central role has been proposed for alpha activity as an
attentional suppressionmechanism, including inWM (Klimesch,
2012; Roux and Uhlhaas, 2014). That is, alpha oscillation
underlies the suppression of spurious brain activities and the
inhibition of irrelevant information in cognitive tasks (Dai et al.,
2017; Guevara et al., 2018). As the desynchronization of this band
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FIGURE 3 | Age-related differences in network metrics. Values (mean ± standard error) are shown for (A) average clustering coefficient in the theta band,

(B) characteristic path length in the theta band, (C) small-world coefficient in the alpha band, and (D) small-world coefficient in the gamma band. The symbol “*”

above a condition represents a significant correlation between age group and metrics (p < 0.05, partial correlation) during this condition. In (E), the distribution of

differences in nodal clustering coefficients in the theta network between the senior and young group (senior minus young) during the 2-back condition is shown. The

symbol “*” indicates a significant correlation between age group and nodal C (partial correlation analysis with FDR controlled). The EEG map was drawn using the

Topoplot toolbox in MATLAB.
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FIGURE 4 | Task-evoked alterations in network metrics. In (A–C), values (mean ± standard error) indicate significant task-evoked alterations in (A) average clustering

coefficient in the beta band, (B) small-world coefficient in the beta band, and (C) small-world coefficient in the gamma band. The symbol “*” above a horizontal line

corresponds to a between-condition difference for a certain group (p < 0.05, Friedman’s non-parametric test). Part (D) shows the distribution of the differences in

nodal clustering coefficients of the beta network between the 2-back task and resting state for the young group (2-back minus resting). The symbol “*” indicates a

significance difference (WSR test) that remained after FDR controlling. The EEG map was drawn using the Topoplot toolbox in MATLAB.

TABLE 3 | Correlation coefficients between EEG measures and behavioral

performance during 2-back task.

Response accuracy (%) Reaction time (ms)

Theta Alpha Beta Gamma Theta Alpha Beta Gamma

Average PLI −0.114 0.062 0.006 0.438* 0.522* 0.261 −0.129 0.235

L 0.096 0.054 0.033 −0.387 −0.494* −0.371 0.226 −0.225

C −0.103 0.061 −0.010 0.426* 0.501* 0.261 −0.107 0.239

SW −0.512*−0.265−0.270 −0.416* 0.395 0.051 0.017 −0.107

*p < 0.05.

is considered to be associated with enhanced attention (Sauseng
et al., 2005; Guevara et al., 2018), the results shown in Figure 3A

suggest that, with normal aging, the left parietal region might
participate more in attentional control in WM.

Furthermore, in the present study, significant age-related
topological reorganizations of the EEG alpha-band network
were found during both n-back task conditions, but not in
the resting state, which might reflect the role of alpha activity
in attention control. Compared with the young group, the

senior group exhibited a decline in the small-world coefficient,
which has been proposed as a measure for the balance between
functional integration and segregation (Sporns and Honey,
2006). This suggests a possible association between degraded
network architecture in the alpha-band network and aging-
related changes in attention. However, further confirmation of
this association is required, as the small-worldness measure was
seldom applied to fully connected and weighted networks. Small-
world networks usually have a small-world coefficient far >1
(Rubinov and Sporns, 2010), while in the current study, as well as
in similar studies (Miraglia et al., 2016, 2017; Vecchio et al., 2016),
the obtained small-world coefficients were very close to 1. In this
study, we thus illustrated the results relating to the small-world
coefficient with limited discussion.

Absence of Task-Evoked Beta Response in
Aging
The beta band has been shown to have a role in inter-neuronal
communication of inhibitory networks and high executive
demands (Guevara et al., 2018). Synchronization in the beta band
has been correlated with sensory processing (Singer, 1993) and
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FIGURE 5 | Correlation between nodal clustering coefficient and reaction time in 2-back task. The left column shows distributions of the correlation coefficients, and

the right column shows scatter plots of the correlations in electrode P6. The top row, (A) and (B), shows results for all participants (controlling age and education),

while the bottom row, (C) and (D), shows results for the senior group only (controlling education). The symbol “*” represents a significant correlation after FDR

correction. The EEG map was drawn using the Topoplot toolbox in MATLAB.

increased attentiveness (Makeig and Jung, 1996). Sarnthein et al.
made the interesting observation that beta synchronization (19–
32Hz) increased during both perception and retention intervals
in WM tasks (Sarnthein et al., 1998).

In the present study, no significant age-related changes were
found in the beta band, whereas task-evoked alterations were
prominent in this band. For the younger adults, with respect to
the resting state, increases in the local density of connections
were observed in many regions, indicating a significantly
greater potential for functional segregation in the WM network.
However, this response seemed to be absent in WM in the senior
group. Our results suggest that the inhibition-related processes
inWM are more demanding and require greater specialization in
the beta band functional connectivity network, and that the aging
brain might fail to respond to this requirement.

Correlation Between Gamma Oscillation
and Memory Performance
Synchronization of gamma oscillations is thought to be
generically involved in the maintenance of WM information
(Roux and Uhlhaas, 2014; Lundqvist et al., 2018). The greater
synchronization of the fast bands, especially within the gamma
range, could indicate a greater active maintenance of information

that is necessary for the evocation of perceived stimuli (Guevara
et al., 2018). This seems to be a plausible interpretation of our
observation that enhanced synchronous activity in the gamma
band was correlated with increased response accuracy in the
2-back task.

One of most interesting findings of this study was the
observation that the significant correlation between behavioral
performance and EEG metrics existed only in the theta
and gamma bands. This might support the idea of gamma
oscillations being nested in theta cycles during WM. According
to this model, individual items to be held in WM are
represented by single gamma periods, and these gamma cycles
are nested into a theta period. The phase relation between
gamma and theta oscillations can thus code the sequence of
items. Such modulation in rhythmic synchronization in the
gamma- and theta-bands has shown to be related to memory
performance, and interesting relationships have been described
between these oscillations, suggesting a mechanism for inter-
areal coupling (Jutras and Buffalo, 2010). However, further
work is required to determine why the opposite relationship
between memory performance and EEG metrics, except for the
small-world coefficient, was observed in these two frequency
bands.
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Limitations
In this study, frequency band-dependent alterations in EEG
synchronization and network topology during cognitive aging
were investigated. This study had some limitations. First, the
sample size was small and the two groups used for the
cross-sectional comparison had imbalanced educational levels.
Although, we included years of education as a covariate in
the statistical analysis, the results might have been influenced
by the small sample size together with the relatively large
number of variables in the statistical models. Another limitation
relates to the insufficient evaluation of cognition, which
was based only on MMSE without imaging to check for
potential brain atrophy. Use of structural MRI is suggested
for future work. In spite of these limitations, our findings
contribute to the understanding of age-associated changes in
memory and the role of EEG oscillations in WM. Future
studies are encouraged to incorporate with larger samples and

further types of work (for example, 1-back and 3-back tasks).
Moreover, this proposed approach is expected to work/associate
together with conventional spectral, ERP and across-trials
analysis, and to provide in-depth investigation for the cognitive
aging.
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