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Response conflicts hamper goal-directed behavior and may be evoked by both
consciously and subliminally (unconsciously) processed information. Yet, not much is
known about the mechanisms and brain regions driving the size of subliminally induced
conflicts. We hence combined a response conflict paradigm featuring subliminal primes
and conscious flankers with in-depth neurophysiological (EEG) analyses, including
source localization in a sample of N = 243 healthy subjects. Intra-individual differences
in the size of subliminal conflicts were reflected both during early attentional stimulus
processing (prime-associated N1 and target-associated P1 and N1 amplitudes) and
conflict monitoring (N2 amplitudes). On the neuroanatomical level, this was reflected by
activity modulations in the TPJ (BA39, BA40) and V2 (BA18), which are known to be
involved in attentional stimulus processing and task set maintenance. In addition to a
“standard” analysis of event-related potentials, we also conducted a purely data-driven
machine learning approach using support vector machines (SVM) in order to identify
neurophysiological features which do not only reflect the size of subliminal conflict, but
actually allow to classify/predict it. This showed that only extremely early information
processing (about 65 ms after the onset of the prime) was predictive of subliminal conflict
size. Importantly, this predictive feature occurred before target information could even
be processed and was reflected by activity in the left middle frontal gyrus (BA6) and
insula (BA13). We conclude that differences in task set maintenance and potentially also
in subliminal attentional processing of task-relevant features, but not conflict monitoring,
determine the size of subliminally induced response conflicts.

Keywords: attention, frontoparietal network, machine learning, subliminal priming, task set

INTRODUCTION

Exerting cognitive control over one’s actions is expedient to living a self-serving and successful
life. An important aspect of cognitive control is the ability to select a required response among
competing alternatives. Yet, response selection is known to be quite error-prone, as processes
required for the correct response can often not be sufficiently shielded from irrelevant information
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and/or competing (incorrect) response tendencies (Goschke and
Dreisbach, 2008; Keye et al., 2013; Beste et al., 2017; Stock et al.,
2017b). Such response conflicts increase error rates and delay
correct responses (Goschke and Dreisbach, 2008), so that the size
of a response conflict is usually quantified by assessing how much
the behavioral performance worsens when a conflict is induced.

Importantly, response selection may not only be hampered by
consciously perceived input, but also by subliminally perceived
information (Eimer and Schlaghecken, 2003; Schlaghecken and
Eimer, 2004; McBride et al., 2012; Parkinson and Haggard,
2014; Ulrich et al., 2015; Gohil et al., 2017). Subliminal and
consciously perceived distractors are known to evoke different
kinds of response conflicts (e.g., Boy et al., 2010b; Stock et al.,
2016a; Bensmann et al., 2018). These two kinds of conflicts differ
from each other as consciously perceived distractors/conflicts
may trigger consciously initiated top-down control processes
(Dehaene and Naccache, 2001; Kiefer et al., 2011; Stock
et al., 2016a) and modulate brain activity in “classical” conflict
monitoring regions such as the anterior cingulate cortex (ACC)
(Desender and Van den Bussche, 2012) while this does not
seem to hold true for subliminally perceived conflicts (Dehaene
et al., 2003; Boy et al., 2010b). Overall, the modulation of
conflict monitoring, effort and response selection has been rather
well investigated in consciously triggered response conflicts
(Botvinick et al., 2004; Botvinick, 2007; Chmielewski et al.,
2014; Larson et al., 2014; Mückschel and Beste, 2015; Stock
et al., 2016a), but only little is known about how subliminally
triggered response conflicts arise and which factors determine
their size (Desender and Van den Bussche, 2012; Huber-Huber
and Ansorge, 2017, 2018). It has, however, already been shown
even that conflict awareness is neither required for subliminal
priming, nor for and conflict sequence effects thereon (Huber-
Huber and Ansorge, 2017, 2018).

In the recent past, several authors have started to study
subliminal priming in the context of supraliminal response
conflicts to investigate how the two kinds of conflict interact (e.g.,
Boy et al., 2010b; Stock et al., 2016a; Gohil et al., 2017; Bensmann
et al., 2018). However, the results were far from straightforward,
showing non-additive influences of subliminal and supraliminal
conflict. In our view, a complex experimental condition, such
as the interaction of supra- and subliminal conflict, cannot be
understood by using behavioral outcomes alone. Instead, this
situation requires further physiological measures and invites less
assuming approaches that are more open to unanticipated results,
such as applying relatively unassuming machine learning to the
temporally highly resolved human electroencephalogram (EEG).
In the current study, we took this approach with a focus on the
less well-researched, subliminally induced response conflicts and
how they relate to consciously perceived conflicts.

In order to investigate potential determinants of subliminal
response conflict size (and its potential interaction with conscious
conflicts), we applied a paradigm that allows to investigate
both consciously and subliminally induced response conflicts
by combining response-relevant targets with two different kinds
of distractors (i.e., subliminal primes and consciously perceived
flankers) (Stock et al., 2016a). In order to assess subliminal
response conflicts, we quantified the positive compatibility effect

(PCE), which is characterized by faster responses in case the
primed automatic response tendency is compatible with the
required response to the target (Eimer and Schlaghecken, 2003).
We then chose to contrast subjects with large and small PCEs
as this allows to investigate which factors determine the size of
a subliminal response conflict (i.e., the PCE).

Importantly, taking a relatively unassuming machine learning
approach does, however, not mean that we had no hypotheses
at all. Behavioral hypotheses may be deduced from findings and
models about how subliminal information modulates behavior
in general. It has been suggested that “instructed facts would
be organized into a task set; a temporary coding scheme
that proactively tunes sensorimotor pathways according to
instructions to enable highly efficient ‘reflex-like’ performance”
(Muhle-Karbe et al., 2017; see also Neumann and Klotz, 1994;
Kunde et al., 2003; Ansorge and Neumann, 2005). Active task
sets are commonly thought to be represented in frontoparietal
areas and to regulate the responsiveness to task-relevant stimulus
features in both primary sensory areas and sensory association
cortices (Kiefer, 2008; Kiefer et al., 2011; Muhle-Karbe et al.,
2017). Based on this mechanism and because processing of
task-relevant features does not necessarily require any form of
conscious processing (van Boxtel et al., 2010; van Gaal et al., 2012;
Muhle-Karbe et al., 2017), subliminal priming may bias early
information accumulation and activation in decision circuits
(Leuthold and Kopp, 1998; Vorberg et al., 2003; Parkinson
and Haggard, 2014), which ultimately results in an automatic
response tendency (Eimer and Schlaghecken, 1998, 2003; Eimer,
1999; Schlaghecken and Eimer, 2000). Depending on whether
this automatic response tendency converges or conflicts with a
consciously initiated, top-down response, it may either facilitate
or hamper behavioral performance, which gives evidence for
a subliminal priming effect (Eimer and Schlaghecken, 1998,
2003; Eimer, 1999; Schlaghecken and Eimer, 2000). It hence
seems likely that the size of subliminally triggered response
conflicts might be determined by differences in the strength of
task set representations, which likely determine how much task-
irrelevant information is attended, processed and subsequently
converted into automatic response tendencies. This implies that
the size of (subliminally) triggered conflicts might be determined
by differences in the efficiency of task set representations and/or
early attentional stimulus processing, rather than by differences
in conflict monitoring or response selection processes.

In order to dissociate different cognitive sub-processes, we
recorded an EEG during task performance, as ERPs are well-
suited to distinguish attentional and control-related processes.
Since it has been suggested that subliminal priming may bias
early information accumulation (Scharlau and Ansorge, 2003),
we assessed early attentional stimulus processing by quantifying
the prime- and target-associated P1 and N1 components (Luck
et al., 2000). For ERP quantification and labeling, we determined
the association with prime or target on the basis of temporal
proximity. This means that prime-associated components occur
shortly after the onset of the prime, while target-associated
components occur shortly after the onset of the target. It
should, however, be noted that despite this labeling, especially
the latter ones may reflect aspects of both prime and target
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processing. Importantly, researchers found that without attention
being successfully directed to the target and, hence, also to
the subliminal primes, congruence effects based on prime-
target motor conflict were much weaker (Naccache et al.,
2002). This nicely matches our initial hypothesis, that the
size of subliminal conflicts may be driven by the intensity of
initial stimulus processing. Therefore, we expected larger prime-
associated P1 and N1 amplitudes in individuals with larger
subliminal conflict/PCEs. Given that conflicting stimulus input
may increase P1 and N1 amplitudes (Ernst et al., 2013), we
further expected larger target-associated P1 and N1 amplitudes
whenever primes and/or flankers are not compatible with the
target. As already stated above, this should be mostly reflected in
attentional networks (Vossel et al., 2014). Yet, cognitive conflicts
and associated control mechanisms are still often assumed to
mainly unfold during later processing stages (Botvinick et al.,
2001; Bocanegra and Hommel, 2014; Ulrich et al., 2015; Stock
et al., 2017a) We hence also quantified the N2 component,
which is known to increase in case of conflicts (Botvinick et al.,
2004; Folstein and Van Petten, 2007; Willemssen et al., 2009;
Beste et al., 2010; Chmielewski et al., 2014; Petruo et al., 2016).
Based on this, we expected the modulation of N2 amplitudes
to reflect conflict size, with larger amplitude (increases) being
related to larger subliminal conflicts/PCEs as well as conscious
(flanker) conflicts (i.e., N2 amplitudes should be smallest in
case of compatible primes paired with congruent flankers, larger
in case of either incompatible primes or incongruent flankers
and the largest in case of incompatible primes paired with
incongruent flankers). Lastly, we quantified the parietal P3
amplitude, which is commonly thought to reflect stimulus–
response mapping (Verleger et al., 2005, 2015). Given that
prepared reflexes are thought to be driven by stimulus–response
associations (Hommel, 2009; Muhle-Karbe et al., 2017), we
expected to find larger P3 amplitudes in individuals with larger
PCEs and/or flanker effects.

With respect to brain regions may be functionally associated
with the expected effects and may be identified from the
EEG signal, we expected to find differences in frontoparietal
networks. The reasoning behind this assumption is that task
set representation has most commonly been attributed to
frontoparietal networks, including the lateral prefrontal cortex
(PFC) and middle frontal gyrus (MFG) and/or the parietal
cortex including the temporo-parietal junction (TPJ) (Crone
et al., 2006; Bengtsson et al., 2009; Kiefer et al., 2011; Loose
et al., 2017; Muhle-Karbe et al., 2017). Regions that reflect
differences in attentional processing (of subliminal stimuli)
partly overlap with these networks and comprise visual and
frontoparietal areas including the TPJ and supplementary motor
area (SMA) (Naccache and Dehaene, 2001; Boy et al., 2010a;
D’Ostilio et al., 2012; Vossel et al., 2014; Ulrich and Kiefer, 2016).
As both subliminal and conscious conflicts are often detected
and investigated with the N2 ERP (Larson et al., 2014), we
furthermore expected to find differences in N2-associated brain
regions. For the N2, it has repeatedly been demonstrated that
consciously processed conflicts reliably modulate mid-frontal
structures like the ACC (Botvinick et al., 1999, 2004). For
subliminal primes, the picture is, however, less clear: While some

EEG studies have found evidence that masked primes modulate
the ACC (Desender et al., 2016), fMRI studies using masked
primes do typically not find prime-associated ACC modulations
(Dehaene et al., 2003). Thus, we rather expected differences in
frontoparietal networks to underlie effects of subliminal priming
(Desender and Van den Bussche, 2012) than the ACC.

One major strength of ERP analyses is that they are well-
known to correlate with behavioral performance in a wide range
of different tasks. Using ERPs, we can determine cognitive sub-
processes which may contribute to task performance with a
high temporal resolution and draw on a wealth of literature
to interpret our findings. However, it has remained largely
unclear whether classical ERPs are truly the best reflection of
variations in behavior. It is even less certain that ERPs (i.e.,
defined minima and maxima, which result from combination
of different, not necessarily synchronous source activations)
can properly reflect the neuronal activity underlying behavioral
variations. The reason for this is that classical ERP analyses
are only correlative in nature and often limited to a small
number of neurophysiologic features (i.e., a few minima and
maxima at predefined electrodes and time windows), so that
potentially meaningful differences in other electrodes or time
domains may easily be missed. This bias is especially dramatic
given that any given EEG signal is composed of different signals,
which do not only vary in latency, but also stem from different
neuronal generators within the human brain (Huster et al.,
2013; Keil et al., 2014). In order to overcome those limitations,
many recent studies have applied complex signal decomposition
approaches (e.g., Brunner et al., 2013; Huster et al., 2013). Yet
still, even those approaches usually limit themselves to minima
and maxima of the different identified components and have
likewise remained correlational. Fortunately, the recent rise in
machine learning approaches and methods has equipped us with
a new and powerful tool that can expediently and objectively
identify differences in the entire EEG signal and may furthermore
allow to identify neurophysiological features that allow to classify
(“predict”) behavioral performance, instead of just correlating
with it1. Thus, to identify the cognitive sub-processes that allow
to classify/predict inter-individual (i.e., relative, not absolute
or categorical) differences in the size of subliminally induced
response conflicts, we applied a purely data-driven machine
learning approach in combination with a support vector machine
(SVM) on the neurophysiological data in order to complement
the classical ERP quantification approach and be able to identify
potential predictive features “outside” of the typically analyzed
ERPs. As the data-driven feature selection draws on all available
electrodes and time windows, these additional analyses gave the
opportunity to test the relevance of different neurophysiological
features. In combination with source localization of the obtained
relevant features, it furthermore allows to identify the functional
neuroanatomical structures which likely classify/predict (and not
just correlate with) differences in subliminal conflict size. To
investigate the potential determinants of subliminal response

1Please note that throughout the entire manuscript, the term “prediction” will be
strictly used in the context provided by machine learning approaches. This is, how
well can individuals with “good” or “bad” behavioral performance be distinguished
with the help of a given neurophysiological feature.

Frontiers in Human Neuroscience | www.frontiersin.org 3 February 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00053 February 18, 2019 Time: 17:59 # 4

Bensmann et al. Determinants of Subliminal Conflict Size

conflict size (and its potential interaction with conscious
conflicts), we examined which features in the time domain (i.e.,
ERPs) best classify/predict performance/the size of subliminal
response conflicts as operationalized by PCE group membership
(see “Materials and Methods” section for details). In line with our
main hypothesis, we expected predictive ERP features to be most
likely occurring during early attentional stimulus processing,
i.e., temporally close to stimulus onset. As we hypothesized
that differences in subliminal conflict size should be rooted
in task set representation and/or the early stimulus processing
influenced thereby, we expected our predictive features to be
based on activation differences in frontoparietal networks and
sensory cortices (e.g., Vossel et al., 2014; Muhle-Karbe et al.,
2017). Given that subliminally induced conflicts may interact
with consciously perceived ones (Boy et al., 2010a; Stock et al.,
2016a), we further hypothesized that inter-individual differences
in the size of subliminal conflicts might modulate the size of
consciously perceived ones.

In short, the main objective of this study is to identify cognitive
sub-processes and associated neuroanatomical structures that
allow to classify/predict inter-individual differences in the size
of subliminal response conflicts, instead of just correlating with
them. For this purpose, we formed performance groups based
on PCE magnitude and used a data-driven machine learning
approach to complement/extend regular ERP analyses. We
expected to find an ERP feature reflecting task set representation
and/or early attentional stimulus processing (as defined by
temporal proximity to stimulus onset) to be the most likely
predictor/classifier of subliminal response conflict size.

MATERIALS AND METHODS

Participants
A group of N = 251 healthy young subjects participated in the
study, which was part of a larger data collection, the results of
which have so far not been published anywhere. The large sample
was necessary because a sufficient set of training data sets is
pivotal for an adequate prediction with SVM. While there are
no clear-cut recommendations comparable to a regular power
estimation or the like, we would strongly advise to try to collect at
least 200 data sets (i.e., have at least 100 subjects per group) when
trying to predict a non-clinical/behavioral group membership on
the basis of EEG data.

N = 8 participants were excluded from analysis due to poor
performance (mean accuracy ≤ 75%) or noisy EEG signal (when
artifacts could not be sufficiently removed with the help of an
ICA), so that data analysis was performed with n = 243 subjects
(170 females; mean age 23.86; SD 3.20; range 18–32 years).
All participants had normal or corrected-to-normal vision, and
had been recruited using flyers and online ads at the local
University (TU Dresden, Germany). Participants had no history
of neurological or mental illness, gave written informed consent
before starting the experiment and were reimbursed with 10 €
after their participation. The study was approved by the ethics
committee of the Faculty of Medicine of the TU Dresden and
conducted in accordance with the Declaration of Helsinki.

Task
The task was based on an experimental paradigm by Boy et al.
(2010b) and identical to the paradigm used in a previous study of
our group (Stock et al., 2016a). By combining the target stimulus
with a subliminal prime as well as with flankers, this task allows to
investigate both consciously and subliminally induced response
(selection) conflicts.

Subjects were seated at a distance of 57 cm from a 17 inch CRT
monitor and were asked to respond using the two “Ctrl” buttons
on a Cherry keyboard. Participants had to rest their fingers on the
response buttons during the entire experiment. “Presentation”
software (Version 17.1 by Neurobehavioral Systems, Inc.) was
used to present stimuli, record the behavioral responses and
synchronize with the EEG. Before the start of the experiment,
subjects completed a supervised task practice until they were able
to comply with the task. During the practice, feedback about
the accuracy of the response was provided. The experiment/data
collection did not comprise response feedback. Each trial started
with the central presentation of a white fixation cross on black
background for 100 ms (see Figure 1). It was followed by the
subliminal prime (a centrally presented horizontal white arrow
pointing either to the right or left) for 30 ms, a mask (an
array of randomly distributed white lines) for 30 ms and the
combination of a target (a centrally presented horizontal white
arrow pointing either to the right or left) and two flankers (white
arrows located above and below the target) for 100 ms. All arrows
had the same size. Participants were asked to focus on the target
and ignore the flankers. They were instructed to indicate the
pointing direction of the target arrow by pressing the right Ctrl
button with the right index or middle finger in case the target
arrow pointed to the right and the left Ctrl button with the left
index or middle finger in case the target pointed to the left.
Each trial ended with the first given response or after 2,000 ms

FIGURE 1 | Experimental paradigm. Each trial started with a 100 ms
presentation of a fixation cross, which was followed by a 30 ms presentation
of a prime (middle arrow) and 30 ms presentation of a mask (array). The target
(middle arrow) plus flankers were then simultaneously presented for 100 ms.
After the presentation of the target, the screen turned black. Primes pointing
in the same direction as the target were classified as compatible while flankers
that pointed in the same direction as the target were classified as congruent.

Frontiers in Human Neuroscience | www.frontiersin.org 4 February 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00053 February 18, 2019 Time: 17:59 # 5

Bensmann et al. Determinants of Subliminal Conflict Size

had elapsed (in this case, the trial was coded as a “miss”). The
response–stimulus interval between the participants’ response
and the onset of the following trial varied randomly between
1,000 and 1,200 ms. In case the prime and target arrows pointed
into the same direction, the trial was classified as compatible
(and as incompatible in case of opposite pointing directions).
Whenever flankers and target pointed in the same direction,
trials were rated as congruent (and as incongruent in case of
pointing in the other direction). Each participant completed
384 trials that were subdivided into four blocks. All possible
combinations of prime compatibility, flanker congruency and
target pointing direction occurred with equal frequency and their
order was randomized within each block. In total, the experiment
took approximately 15 min to complete. After completing the
task, the participants were asked whether they had consciously
perceived the prime stimulus (i.e., whether they had consciously
perceived any visual stimulus preceding the mask, which we
termed “scrambled lines” for the sake of better understanding).
This was denied by all of them and matches the reports by Boy
et al. (2010b) who reported forced choice identification rates
between 46.5 and 51.9% and thus no conscious perception of
the prime at a SOA of 70 ms (i.e., even 10 ms longer than in
our study). Even though we did not conduct a forced choice
test ourselves, we hence deem it very unlikely that participants
were able to consciously perceive the trials. Prior to working
on the task described in this publication, the participants spent
30 min performing another, unrelated control task (Bocanegra
and Hommel, 2014; Stock et al., 2016b), the results of which have
not been published so far.

EEG Recording and Standard ERP
Analysis
EEG data were recorded from 60 Ag-AgCl electrodes at standard
equidistant scalp positions against a reference electrode at
position Fpz using a QuickAmp amplifier (Brain Products, Inc).
During recording, electrode impedances were kept below 5 k�,
and a sampling rate of 500 Hz was employed. Brain Vision
Analyzer 2.1 was used for offline data pre-processing and ERP
data analyses. During this process, data were down-sampled
to 256 Hz and a band-pass filter ranging from 0.5 to 20 Hz
with a slope of 48 db/oct each was applied. The EEG data was
average-referenced and a manual raw data inspection was used
to eliminate rare technical or muscular artifacts. Subsequently,
an automatic independent component analysis (ICA; infomax
algorithm) was run to remove periodically recurring artifacts
such as eye blinks, saccades or pulse for all participants. Lastly,
another raw data inspection was conducted to remove any
residual artifacts.

In the next step, EEG data were segmented in a target-
locked fashion. All epochs started 2,000 ms before and ended
2,000 ms after target stimulus onset (set to time point zero). Only
correctly answered trials were included in analysis. By applying
an automated artifact rejection, segments with amplitudes below
−100 and above 100 µV were excluded and the maximally
allowed value difference in a 200 ms interval was 200 µV.
Additionally, the lowest acceptable amplitude difference in a

100 ms time span was set to 0.5 µV. The reference potential was
eliminated using a current source density (CSD) transformation.
The CSD operates as a spatial filter and thus helps to identify
the electrodes that best reflect activity related to the respective
ERP (Perrin et al., 1989; Nunez and Pilgreen, 1991; Kayser
and Tenke, 2015). Next, a baseline correction from −500 to
−200 ms before target onset was performed (i.e., the baseline
was set before the onset of the prime stimulus). Averaging of
the different factor combinations/experimental conditions was
separately conducted for each participant. Based on this, the
P1, N1, N2, and parietal P3 ERPs were quantified. Electrodes
were chosen based on visual inspection of the scalp topography,
which was validated and confirmed by a procedure described
in Mückschel et al. (2014): The mean amplitudes of the
ERP components in the corresponding search intervals were
extracted at all electrode positions at the single subject level.
Subsequently, each electrode was compared to the average of
all other electrodes using Bonferroni-correction for multiple
comparisons. Only electrodes that showed significantly larger
mean amplitudes than the average were chosen. The amplitudes
of the prime- and target-associated visual P1 and N1 were
quantified at electrodes P7 and P8 (prime P1: 55–70 ms after
target onset; prime N1: 95–110 ms after target onset; target
P1: 155–170 ms after target onset) and at electrodes P9 and
P10 (target N1: 240–255 ms after target onset). The N2 was
quantified at electrode FCz (300–320 ms after target onset
for incongruent flankers and 290–310 ms after target onset
for congruent flankers) while the parietal P3 was quantified
at electrodes PO1 and PO2 (285–305 ms after target onset).
All averaged ERP components were quantified relative to the
pre-stimulus baseline. The amplitudes of all these ERP peaks
were quantified as mean amplitude values, which were averaged
over their respective time windows. All ERP components
were quantified on the single-subject level. For statistical
analyses, amplitudes were averaged over all quantified electrodes
whenever the quantification of a given peak took place at more
than one electrode.

Data-Driven Feature Extraction
Procedure and Support Vector Machine
(SVM) Analysis
Based on a median split of the prime compatibility effect (PCE) as
our main behavioral performance parameter (i.e., RT difference
between trials with compatible vs. incompatible primes), two
groups of subjects were created: a “large PCE” group and a
“small PCE” group. Importantly, this division of the sample
helps us to determine which factors contribute to the size of
the prime-induced conflict. Based on this, a machine learning
approach was employed to classify/predict group membership on
the basis of the neurophysiological data from correct trials, i.e.,
trials with correct responses between 100 and 1,000 ms. While
it is well-known that a median split lowers experimental power
and increases the risk of type I errors (Wicherts and Scholten,
2013), it is important to consider that a binary classification is
a mandatory requirement for our machine learning approach
(Kleinbaum et al., 2014). For classification, machine learning
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algorithms require a strict and objective criterion (Kleinbaum
et al., 2014) like classifying individuals as either low or
high performers. Given that psychological research on inter-
individual performance differences can usually not provide fixed
or objective cutoffs for classifying human behavior in a strictly
categorical fashion, behavioral performance can only be judged
as “good” or “bad” in relation to the performance of others.
Thus, performance ratings in this field have to depend on what
comparable individuals are capable of, resulting in an enforced
categorization, e.g., by means of a median split.

Given a set of training data, each marked as belonging to the
small or large PCE group, the SVM training algorithm builds
a model that predicts whether a distinct feature falls into one
category or the other. For an adequate prediction, therefore, a
sufficient set of training data is pivotal. While there are no clear-
cut recommendations comparable to a regular power estimation
or the like, we would strongly advise to try to collect at least 200
data sets (i.e., have at least 100 subjects per group) when trying to
predict a non-clinical/behavioral group membership on the basis
of EEG data.

All time points from time point zero (target onset) to
1.5 s were extracted as possible features with the resolution of
256 Hz for each of the 60 channels and for every subject to
determine the time-domain features (i.e., ERPs). Next, all features
were normalized into a z-score. This was done to increase the
convergence speed of feature detection algorithms (Theodoridis
and Koutroumbas, 2011) and because features may bias the
feature detection algorithm in case they have different value
ranges because z-transformation makes all features have a mean
of zero and a standard deviation equal to one, z-transformation
circumvents this problem (Raschka, 2015). Next, we applied
feature selection methods to eliminate surplus/irrelevant features.
This is done to reduce the problem of having a ‘small’ data set
relative to the size of the possible feature set, which could reduce
classifier performance. In the feature selection stage, we selected
an optimal subset of features from the original feature set. The
feature selection algorithms can be roughly divided into two
categories: “filter” and “wrapper” methods (Guyon and Eliseff,
2003). The filter methods select a subset of features according to
general characteristics of the data, independently of the chosen
classifier. To discriminate between classes, wrapper methods
require a predetermined classifier and evaluate features according
to their performance (Guyon and Eliseff, 2003). Because the
selected features are based on classifier performance, wrapper
methods usually lead to better results (Saeys et al., 2007), but
are computationally slower than filter methods. To overcome
this problem, we combined filter and wrapper methods using
MATLAB 2017a (MathWorks Inc.): In a first step, filter methods
are applied to select some features, which are then used as input
for wrapper methods in a subsequent second step. In particular,
t-test and sequential floating forward selection (SFFS) methods
were employed as a filter and wrapper method, respectively (Saeys
et al., 2007): First, a t-test was calculated to assess differences
between the two PCE groups using the median split procedure
for each time point (i.e., feature). A time point (feature) was
selected (the precise p-values are given in Table 1 in the “Results”
section) when the p-value was below 0.01. These selected

features were then used as input for the SFFS algorithm. SFFS
combines two separate algorithms (Chandrashekar and Sahin,
2014; Khazaee et al., 2016); i.e., sequential forward selection
(SFS) and sequential backward selection (SBS). SFS starts from
an empty set of features and sequentially adds features that
result in the highest classifier accuracy when being combined
with the features that have already been selected. SBS works
in the opposite direction. In SFFS, each feature selection step
includes both SFS and SBS (Chandrashekar and Sahin, 2014;
Khazaee et al., 2016), which were implemented in MATLAB
2017a (MathWorks Inc.). Following SFFS, the selected features
were fed to a SVM employing a radial basis function (RBF)
kernel using MATLAB 2017a (MathWorks Inc.) and the LIBSVM
toolbox. Importantly, the result of the SVM method was cross-
validated in this study using the k-fold cross-validation procedure
(Arlot and Celisse, 2010; Lee and Verri, 2002). Using the k-fold
method data were randomly divided into k portions in which
the k − 1 portion is considered as training data and the residual
data is considered as testing data. By continuing this k-times,
all subjects in the data set are alternately part of the testing and
training set. The resulting classification accuracy is the average
of all k-folds (Arlot and Celisse, 2010). Usually, the value of k is
between 5 and 10 in machine learning. In this study, we used
k = 10. Hence, there were 10 estimations of the predictability
of behavioral performance for each extracted feature. Using
these ten different estimations, the 99% confidence bounds were
calculated for each feature using the data from the k = 10
estimations. These confidence bounds were then used to examine
in how far the different features provided a significant increase
in the predictability of behavioral performance. When there is
no overlap between the calculated 99% confidence bounds we
have a significant difference. While there is still a small risk
for false positive features to survive feature selection and enter
the machine learning approach, the subsequent k-fold validation
procedure minimizes the risk of any false positive being selected
as a predictive feature because it mixes and recombines the
sample many times.

Source Localization Analysis
For each of the time-domain (ERP) features that were shown to
be predictive for behavioral performance in the SVM analysis (see
“Results” section) a source localization analysis was conducted.
For this analysis, sLORETA (standardized low resolution brain
electromagnetic tomography; Pascual-Marqui, 2002) was used.
This procedure provides a unique solution to the inverse problem
(Pascual-Marqui, 2002; Marco-Pallarés et al., 2005). For cortical
origin sources sLoreta reveals high convergence with fMRI data
and neuronavigated EEG/TMS studies, which underlines the
validity of the estimated sources (Hoffmann et al., 2014; Dippel
and Beste, 2015). For sLORETA, the intracerebral volume is
partitioned into 6,239 voxels at 5 mm spatial resolution. The
standardized current density at each voxel is calculated in a
realistic head model (Fuchs et al., 2002) using the MNI152
template (Mazziotta et al., 2001). The voxel-based sLORETA
images were compared between groups using the sLORETA-
built-in voxel-wise randomization tests with 2,000 permutations,
based on statistical non-parametric mapping (SnPM). Significant
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TABLE 1 | Summary of the extracted features showing feature number, electrode site, time point in ms of the extracted feature after prime and target presentation, the
mean predictability in percent and the significance as provided from the t-tests used as a filter method in the feature selection step.

(A) Compatible ERP features

Feature Electrode Time point (ms after Time point (ms after Mean predictability (%) Significance

number prime onset) target onset)

1 TP10 63.9 3.9 62.78 0.00287

2 P12 450.6 390.6 66.53 0.00382

3 P4 306.1 246.1 69.44 0.04199

4 P10 251.4 191.4 69.89 0.02550

5 CP2 1517.0 1457.0 69.52 0.02182

6 F1 520.9 460.9 71.16 0.04783

7 F2 634.2 574.2 72.06 0.04025

8 CP4 1302.2 1242.2 73.69 0.02863

9 Fz 1462.3 1402.3 74.83 0.02027

10 P12 392.0 332.0 75.24 0.02130

11 P12 399.8 339.8 76.13 0.01541

12 P12 478.0 418.0 76.06 0.00919

13 CP3 1552.2 1492.2 76.09 0.02404

14 P10 243.6 183.6 76.09 0.01357

15 PO2 1356.9 1296.9 76.09 0.01885

16 CP4 1298.3 1238.3 77.34 0.03583

17 P12 497.5 437.5 77.78 0.00501

18 P12 376.4 316.4 77.36 0.02401

19 P7 75.6 15.6 76.98 0.04157

20 FT9 806.1 746.1 78.23 0.01155

(B) Incompatible ERP features

1 PO2 67.8 7.8 64.56 0.00287

2 Fp1 1505.3 1445.3 67.36 0.00382

3 CP5 829.5 769.5 70.68 0.04199

4 PO1 1517.0 1457.0 74.36 0.02550

5 PO1 44.4 −15.6 73.98 0.02182

6 P9 1505.3 1445.3 74.01 0.04783

7 PO1 36.6 −23.4 74.02 0.04025

8 P9 1509.2 1449.2 74.02 0.02863

9 P10 56.1 −3.9 74.42 0.02027

10 O2 192.8 132.8 74.36 0.02130

11 P9 419.4 359.4 74.79 0.01541

12 O2 1106.9 1046.9 74.36 0.00919

13 AF4 1040.5 980.5 76.84 0.02404

14 CP5 1380.3 1320.3 76.86 0.01357

15 TP10 454.5 394.5 78.11 0.01885

16 CP5 1376.4 1316.4 78.09 0.03583

17 PO2 63.9 3.9 78.93 0.00501

18 O10 259.2 199.2 78.09 0.02401

19 P10 333.4 273.4 78.96 0.04157

20 PO1 52.2 −7.8 78.58 0.01155

voxels (p < 0.01, corrected for multiple comparisons) were
located in the MNI-brain.

Statistics
For the behavioral and neurophysiologic analyses, only correct
trials with RTs between 100 and 1,000 ms were included in order
to exclude trials with premature responses and to reduce the effect

of outliers on mean hit RTs. Separate repeated measures ANOVAs
were performed to analyze behavioral and neurophysiological
data. All ANOVAs used prime compatibility (compatible
vs. incompatible) and flanker congruency (congruent vs.
incongruent) as within-subject factors as well as the between-
subject factor “PCE group” (large vs. small PCE). While the SVM
does imperatively depend on this group dichotomization, we do

Frontiers in Human Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00053 February 18, 2019 Time: 17:59 # 8

Bensmann et al. Determinants of Subliminal Conflict Size

recognize that the classical ERPs could also be analyzed by means
of correlation/regression analyses. For the sake of completeness,
we therefore provide those analyses as an add-on in the
supplement for all interactions with the group factor. The degrees
of freedom were adjusted using Greenhouse–Geisser correction
and results were Bonferroni-corrected, whenever necessary. For
all descriptive statistics, the mean value and standard error of the
mean (SEM) are given as a measure of variability.

RESULTS

Behavioral Data
PCE Groups
Before we split the data into two different PCE groups,
we confirmed significant PCE effects (i.e., significantly
faster responses in trials with compatible primes than in
trials with incompatible primes) for the entire sample
[t(242) = 24.412, p > 0.001; incompatible = 448 ms ± 0.30;
compatible = 410 ms ± 2]. On average, the PCE (i.e., the hit
RT difference between compatible and incompatible trials)
was 38 ms ± 2. Independent-samples t-tests confirmed that
the PCE groups (which were split at the median value of
35 ms) significantly differed in PCE magnitude [t(242) = 19.04,
p < 0.001]: While the large PCE group had a condition difference
of 57 ms (±2), the small PCE group had a mean condition
difference of 19 ms (±1). There was no significant sex difference
between groups (χ2 = 0.550; p = 0.458), with 82 females and
39 males in the large PCE group and 88 females and 34 males
in the small PCE group. Also, there was no significant age
difference between groups (χ2 = 3.703; p = 0.997). Given that
the main focus of this study was the size of subliminally induced
conflicts (which we operationalized via the PCE groups, we
chose to only report the most relevant data (i.e., behavioral
and neurophysiological measures showing relevant main effects
and interactions involving the group factor) in the main
manuscript. All other findings and results can be found in the
Supplementary Material.

Speed–Accuracy Ratio
For the analysis of behavioral performance, we formed an
efficiency score by dividing accuracy by mean hit RTs. Statistical
analyses of this efficiency score revealed a main effect of prime
compatibility [F(1,241) = 802.03, p < 0.001, η2

p = 0.769] with
better performance in compatible (0.244 ± 0.001) than in
incompatible (0.213 ± 0.001) trials. A main effect of flanker
congruency [F(1,241) = 572.37, p < 0.001, η2

p = 0.704] indicated
better performance in congruent trials (0.236 ± 0.001) than
in incongruent trials (0.222 ± 0.001). An interaction of prime
compatibility × PCE group was also found [F(1,241) = 183.74,
p < 0.001, η2

p = 0.433] (see Figure 2). Post hoc t-tests revealed
that there were compatibility effects in both the small PCE
group [t(121) = 16.28; p < 0.001; incompatible = 0.216 ± 0.001
vs. compatible = 0.233 ± 0.001] and the large PCE group
[t(120) = 23.41; p < 0.001; incompatible = 0.209 ± 0.001
vs. compatible = 0.255 ± 0.001]. Also, groups significantly
differed in both compatible trials [t(241) = −8.08; p < 0.001]

and incompatible trials [t(241) = 3.80; p < 0.001]. However,
the PCE effect (compatible minus incompatible) was more
pronounced in the large PCE group (0.045 ± 0.001) than in
the small PCE group (0.016 ± 0.001) [t(177.98) = −13.52;
p < 0.001]. Another significant interaction was found for
flanker congruency × PCE group [F(1,241) = 9.55, p = 0.002,
η2

p = 0.038] (see Figure 2). Post hoc t-tests demonstrated that
there were congruency effects in both the small PCE group
[t(121) = 17.353; p < 0.001; incongruent = 0.217 ± 0.001
vs. congruent = 0.232 ± 0.001] and the large PCE group
[t(120) = 16.63; p < 0.001; incongruent = 0.226 ± 0.001 vs.
congruent = 0.238 ± 0.001]. When separately compared,
groups differed in performance in both congruent trials
[t(241) = 2.53; p = 0.012] and incongruent trials [t(241) = 4.70;
p < 0.001]. Furthermore, the flanker effect (congruent
minus incongruent) was more pronounced in the small
PCE group (0.015 ± 0.001) than in the large PCE group
(0.011 ± 0.001) [t(230.83) = −3.095; p < 0.002]. Further
investigating the interaction of flanker congruency × PCE
group, we found that behavioral PCE size and flanker effect
were negatively correlated [r = −0.192, p = 0.003]. All other
main effects and interactions of the speed–accuracy ratio
analyses involving the PCE group were not significant (all
F ≤ 2.99; p ≥ 0.085).

Summary of Behavioral Data
In summary, the behavioral data showed a PCE in the efficiency
score, which could also be observed in both accuracy and hit RTs,
when separately analyzed (see Supplementary Material). Most
importantly, there was an interaction of prime compatibility
and PCE group in all three types of behavioral measures. This
interaction was driven by the fact that the overall performance
(and not just RTs) showed a larger priming effect/difference in
the large PCE group as compared to the small PCE group.

FIGURE 2 | Behavioral data. There was a positive compatibility effect (PCE)
for the efficiency score. It showed a main effect of prime compatibility (higher
efficiency scores in case of compatible primes). Additionally, the efficiency
score also showed an interaction of prime compatibility and PCE group as
there was a larger priming effect/difference in the large PCE group compared
to the small PCE group. Significant results (p ≤ 0.05) are denoted with an
asterisk.
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Neurophysiological Data
Prime N1
The prime- and target-associated P1 and N1 ERPs are illustrated
in Figure 3.

The repeated-measures ANOVA for the prime-associated N1
(95–110 ms after target onset; pooled across electrodes P7 and
P8) revealed a significant main effect of prime compatibility
[F(1,241) = 59.13, p < 0.001, η2

p = 0.197] with smaller
amplitudes in incompatible (23.99 µV/m2

± 1.36) than in
compatible (22.31 µV/m2

± 1.34) trials. A main effect of flanker
congruency [F(1,241) = 4.02, p = 0.046, η2

p = 0.016] indicated
smaller amplitudes in incongruent (23.35 µV/m2

± 1.33)
than in congruent (22.95 µV/m2

± 1.37) trials. Also, an
interaction of prime compatibility × PCE group [F(1,241) = 5.15,
p = 0.024, η2

p = 0.021] was found. Post hoc t-tests revealed
significant compatibility effects in both the small PCE group
[t(121) = −4.30; p < 0.001; incompatible = 23.38 µV/m2

± 1.93
vs. compatible = 22.20 µV/m2

± 1.92] and the large PCE group
[t(120) = −6.40; p < 0.001; incompatible = 24.60 µV/m2

± 1.92
vs. compatible = 22.43 µV/m2

± 1.87]. Additionally, groups
did not differ in amplitude in compatible or incompatible trials
(both p > 0.656). However, amplitude differences (compatible
minus incompatible) were more pronounced in the large PCE
group (2.17 µV/m2

± 0.33) than in the small PCE group
(1.18 µV/m2

± 0.27) [t(230.69) = 2.26; p = 0.024]. Source
localization via sLORETA revealed that this group difference in
the magnitude of condition effects was associated with activation
differences in the left BA 40 (inferior parietal lobule/TPJ).
In this context, please note that the prime-associated N1
values were above zero due to the temporal location of the
baseline interval. As a consequence, larger absolute values
may still constitute smaller amplitude. Further investigating
the interaction of prime compatibility × PCE group, we
found a negative correlation between behavioral PCE size and
the priming effect (i.e., prime condition difference) on the
prime-N1 [r = 0.369, p < 0.001]. All other main effects and
interactions were not significant for prime N1 amplitudes (all
F ≤ 1.19; p ≥ 0.275).

Target P1 and Target N1
For the target-associated P1 (155–170 ms after target onset;
pooled across electrodes P7 and P8), there was a significant
main effect of prime compatibility [F(1,241) = 14.56, p < 0.001,
η2

p = 0.057] with larger amplitudes in incompatible (27.79
µV/m2

± 1.53) than in compatible (26.90 µV/m2
± 1.50)

trials. There was also a significant main effect of flanker
congruency [F(1,241) = 126.66, p < 0.001, η2

p = 0.345] with
larger amplitudes in incongruent (28.63 µV/m2

± 1.53) than in
congruent (26.07 µV/m2

± 1.50) trials. There was an interaction
of prime compatibility × PCE group [F(1,241) = 11.31,
p = 0.001, η2

p = 0.045]. Source localization via sLORETA
revealed that group differences in the magnitude of condition
effects were associated with activation differences in the left
BA 18 (inferior occipital gyrus/V2). Furthermore, there was an
interaction of prime compatibility × flanker congruency × PCE
group [F(1,241) = 6.58, p = 0.011, η2

p = 0.027]. We further

investigated the latter by conducting separate analyzes for the
small and large PCE group. In the small PCE group, there
was an interaction of prime compatibility × flanker congruency
[F(1,121) = 13.83, p < 0.001, η2

p = 0.103]. Further analyses
revealed significant differences for all possible contrasts in the
small PCE group (all p < 0.001). Yet, the PCE (i.e., incompatible–
compatible) was smaller in trials with incongruent flankers
(−0.97 µV/m2

± 0.39) than in trials with congruent flankers
(1.18 µV/m2

± 0.45) [t(242) = 3.71; p < 0.001]. Likewise,
the flanker congruency effect (i.e., incongruent–congruent) was
smaller in incompatible primes (1.68 µV/m2

± 0.42) than
in compatible primes (3.84 µV/m2

± 0.42) [t(242) = 3.71;
p < 0.001]. In the large PCE group, there was no such
interaction of prime compatibility × flanker congruency
[F(1,120) = 0.075, p = 0.785, η2

p = 0.001]. All other main effects
and interactions were not significant for target P1 amplitudes (all
F ≤ 3.53; p ≥ 0.061).

The analysis of the target-associated N1 (240–255 ms
after target onset; pooled across electrodes P9 and P10)
revealed a significant main effect of prime compatibility
[F(1,241) = 87.38, p < 0.001, η2

p = 0.266] with larger
amplitudes in incompatible (−20.88 µV/m2

± 1.38) than
in compatible (−17.87 µV/m2

± 1.36) trials. A main
effect of flanker congruency [F(1,241) = 91.52, p < 0.001,
η2

p = 0.275] indicated larger amplitudes in incongruent (−20.84
µV/m2

± 1.38) than in congruent (−17.91 µV/m2
± 1.36)

trials. Moreover, an interaction of prime compatibility × PCE
group [F(1,241) = 31.82, p = 0.001, η2

p = 0.117] was found.
Post hoc t-tests revealed that there were compatibility effects
in both the small PCE group [t(121) = −3.45; p = 0.001;
incompatible = −18.29 µV/m2

± 1.83 vs. compatible = −17.10
µV/m2

± 1.81] and the large PCE group [t(120) = −8.86;
p < 0.001; incompatible = −23.47 µV/m2

± 2.07 vs.
compatible = −18.64 µV/m2

± 2.04]. When directly compared,
groups did not differ in amplitude in compatible or incompatible
trials (both p > 0.063). Yet, the PCE (compatible minus
incompatible) was more pronounced in the large PCE
group (4.82 µV/m2

± 0.54) than in the small PCE group
(1.19 µV/m2

± 0.34) [t(203.57) = −5.63; p = 0.001]. Source
localization via sLORETA revealed that this group difference in
the magnitude of condition effects was associated with activation
differences in the left BA 39 (middle temporal gyrus/angular
gyrus/TPJ). Further investigating the interaction of prime
compatibility × PCE group, we found a positive correlation
between behavioral PCE size and the target-N1 priming effect
[r = 0.398, p < 0.001]. All other main effects and interactions
involving the PCE group were not significant for target N1
amplitudes (all F ≤ 0.417; p ≥ 0.519).

N2
For the fronto-central N2 amplitude (300–320 ms after target
onset for incongruent flankers and 290–310 ms after target onset
for congruent flankers) at electrode FCz (see Figure 4), there was
a main effect of prime compatibility [F(1,241) = 155.87; p < 0.001;
η2

p = 0.393] with larger amplitudes in incompatible (−14.86
µV/m2

± 0.91) than in compatible (−11.17 µV/m2
± 0.88)
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FIGURE 3 | Early attentional ERPs. (A) Prime-locked P1 and N1 ERPs elicited by the prime stimulus (onset at time point zero) and target stimulus (onset at 60 ms) at
electrodes P7 and P8 (pooled) for the prime P1, prime N1 and target P1 and at electrodes P9 and P10 (pooled) for the target N1. The dashed vertical line in the plot
shows the target onset. In the left and middle column, each combination of prime compatibility and flanker congruency is depicted separately for each group (small
vs. large PCE effect) (blue denotes incompatible primes and green denotes compatible primes while lighter shades of the respective color denote incongruent
flankers and darker shades denote congruent flankers). Topography maps of the peaks are depicted right next to the respective peak names. In the right column,
data from the large and small PCE groups are displayed together with waveforms pooled across flanker conditions (gray denotes the small PCE group and red the
large PCE group while lighter shades of the respective color denote compatible primes and darker shades denote incompatible primes). Please note that amplitudes
are given in µV/m2 due to the CSD interpolation (cf. “Materials and Methods” section). (B) The sLORETA plots (corrected for multiple comparisons using SnPM)
show the source of group difference in the magnitude of condition effects which was based on activation differences within the left BA40 (inferior parietal lobule/TPJ)
at the time point of the prime-N1, left BA18 (inferior occipital gyrus/V2) at the time point of the target-P1, and left BA39 (middle temporal gyrus/angular gyrus/TPJ) at
the time point of the target-N1.

trials. There was also a significant main effect of flanker
congruency [F(1,241) = 173.88; p < 0.001; η2

p = 0.419] with
larger amplitudes in incongruent (−15.06 µV/m2

± 0.92) than
in congruent (−10.97 µV/m2

± 0.87) trials. Also, an interaction
of prime compatibility × PCE group [F(1,241) = 43.71;
p < 0.001; η2

p = 0.154] was found. Post hoc t-tests showed that
there were compatibility effects in both the small PCE group
[t(121) = −4.90; p < 0.001; incompatible = −13.00 µV/m2

± 1.12
vs. compatible = −11.27 µV/m2

± 1.09] and the large PCE
group [t(120) = −11.90; p < 0.001; incompatible = −16.73
µV/m2

± 1.43 vs. compatible = −11.08 µV/m2
± 1.38]. When

separately compared, groups did not differ in amplitude in
compatible or incompatible trials (both p > 0.430). Yet, the

PCE (compatible minus incompatible) was more pronounced
in the larger PCE group (5.64 µV/m2

± 0.47) than in the
small PCE group (1.73 µV/m2

± 0.35) [t(222.621) = −6.60;
p < 0.001]. Further investigating the interaction of prime
compatibility × PCE group, we found a positive correlation
between behavioral PCE size and the N2 priming effect [r = 0.369,
p < 0.001]. Source localization via sLORETA revealed that
this group difference in the magnitude of condition effects was
associated with activation differences in the left BA 40 (inferior
parietal lobule/TPJ).

All other main effects and interactions involving the
PCE group were not significant for N2 amplitudes (all
F ≤ 1.98; p ≥ 0.160).
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FIGURE 4 | Fronto-central N2. The graphs separately depict the N2 peak for each group (small vs. large PCE effect) at electrode FCz. The dashed vertical line in the
plot shows the target onset. The topography maps of the PCE effect differences (i.e., the difference between compatible and incompatible trials at the N2 peak of
each group) are depicted in the respective graphs. In the left and middle column, each combination of prime compatibility and flanker congruency (blue denotes
incompatible primes and green denotes compatible primes while lighter shades of the respective color denote incongruent flankers and darker shades denote
congruent flankers) is depicted for both groups. In the right column, data from large and small PCE groups are displayed together with waveforms pooled across
flanker conditions (gray denotes the small PCE group and red the large PCE group while lighter shades of the respective color denote compatible primes and darker
shades denote incompatible primes). Please note that amplitudes are given in µV/m2 due to the CSD interpolation (refer “Materials and Methods” section). The
sLORETA plots (corrected for multiple comparisons using SnPM) show the source of group difference in the magnitude of condition effects which was based on
activation differences within the left BA40 (inferior parietal lobule/TPJ).

P3
For the parietal P3 amplitude (285–305 ms after target onset;
pooled across electrodes PO1 and PO2), none of the investigated
factors or interactions reached significance (all F ≤ 1.04,
p ≥ 0.307) (see Supplementary Figure S2).

Summary of Neurophysiological Data
With respect to the interaction of PCE group and priming effects
observed at the behavioral level, we found corresponding effects
for several ERP amplitudes. Amplitude differences (compatible
minus incompatible) were more pronounced in the large PCE
group than in the small PCE group for the prime-N1, target-
N1 and N2.

Machine Learning Analysis
As outlined in the “Materials and Methods” section, the k-fold
method (k = 10) was used to evaluate the predictability of
behavioral performance using ERP data. For each extracted
feature, there were 10 varying estimations of the predictability
of behavioral performance. Using the data from these k = 10
estimations, 99% confidence bounds were calculated for each
feature. A significant difference is indicated by no overlap
between the calculated 99% confidence bounds of two features.
The results of the analysis using ERP data are shown in
Figure 5. Error bars represent the 99% confidence bounds.
Importantly, group difference were separately assessed for the
ERPs in the prime compatible and incompatible conditions due
to the constraints of the applied method. Table 1 shows a
detailed summary of the ERP-features selected by the feature
extraction approach.

In prime compatible trials, there was one ERP feature
which significantly increased predictability of behavioral
performance (i.e., PCE group membership). This ERP

feature (3 ms after target onset at electrode TP10) led
to a classification/prediction accuracy of ∼63%, which is
significantly different from chance level as indicated by the
99% confidence bounds. Adding more features still led to a
numerical increase in classification/prediction accuracy (see
Figure 5 and Table 1), but this increase was not statistically
significant, as the 99% confidence bounds largely overlapped
with the classification/prediction accuracy obtained after adding
the second feature. An sLORETA analysis shows that PCE group
differences in the compatible condition were located in the left
insula (BA13) at the time point of the predictive feature.

For the prime incompatible trials, the first ERP feature
(7.8 ms after target onset at electrode PO2) provided a
predictability of ∼64% (see Figure 5 and Table 1). As can be
seen in Figure 5, the addition of further features numerically
increased predictability, but this was not significant given
the overlap of the 99% confidence bounds for each of the
following added features. The sLORETA analysis revealed
that PCE group differences were located in the MFG (BA6),
between the SMA and FEF and in the left inferior parietal
gyrus/TPJ (BA 40), at the time point of the predictive feature.
A second peak was observed in the left inferior parietal
gyrus/TPJ (BA 40). To confirm the relevance of our selected
features, we also determined the predictability of the regular
ERP components which we identified to distinguish attentional
and control-related processes (prime-P1and N1, target-P1 and
N1, N2 and P3) at the pre-defined electrodes and time
windows (see previous results on classical ERPs). For the prime
compatible trials, ERP components had a predictability of
∼56%, and for incompatible trials ERP components led to a
classification/prediction accuracy of∼61%. This means that both
classical ERP components had a lower predictability than the
feature selected by SVM.
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FIGURE 5 | SVM data using time domain ERP data. (A) The mean predictability is given depending on the number of features. The curves show the mean
predictability (blue for incompatible, green for compatible) and the 99% confidence level bounds (error bars). For the first feature, the prime-locked ERP curve is also
shown (blue for incompatible, green for compatible). The dashed vertical line in the plot shows time points of features at electrodes PO2 (incompatible) and TP10
(compatible). The scalp topography plots reveal the distribution of voltages for this feature. (B) The sLORETA plots (corrected for multiple comparisons using SnPM)
show the source of the signal at the time point of the feature in the incompatible prime condition, which was based on activation differences within BA6 (middle
frontal gyrus) and BA40 (left inferior parietal gyrus/TPJ) (incompatible). (C) The sLORETA plots (corrected for multiple comparisons using SnPM) show the source of
the signal at the time point of the feature in the compatible prime condition, which was based on activation differences within BA13 (left insula) (compatible).

DISCUSSION

Subliminally perceived information evokes a different kind of
response conflict than consciously processed information (Boy
et al., 2010b). Yet still, only very little is known about how
subliminally triggered response conflicts emerge, which factors
contribute to the size of this kind of conflict (i.e., how well
someone is able to control/inhibit incorrect automatic response
tendencies), and whether this inter-individual variability also
relates to differences in the size of consciously perceived conflicts.
We assessed conflict size as an individual feature using a
modified response conflict paradigm (Stock et al., 2016a) and
quantified attentional processes, conflict monitoring, and S–
R mapping with the help of ERP analyses. As classical ERP
analyses are often limited to a small number of neurophysiologic
features and are only correlative in nature, they, however, do
not allow to reasonably classify/predict behavioral performance,
including the size of conflicts. In order to overcome those
limitations and identify the cognitive sub-processes that best
classify/predict the size of subliminally induced response
conflicts, we additionally applied a purely data-driven machine
learning approach on the neurophysiological data, which
accounts for all electrodes and time points, irrespective of

whether or not they represent a “classical” ERP. In combination
with source localization techniques, this approach allows to
derive new, testable hypotheses about which cognitive sub-
processes and brain regions likely classify/predict (and thus
potentially cause) differences in the size of subliminally triggered
response conflicts.

Behavioral Data and Standard ERP Data
In line with previous studies, we found that both consciously and
subliminally induced conflicts produced significant behavioral
performance impairments, which worsened in a non-additive
way when the respective other kind of conflict was also present
(Stock et al., 2016a) (for a discussion of this interaction please
refer the Supplementary Material). Most importantly, however,
we found that the size of subliminally induced response conflicts
(as operationalized by the large and small PCE group) was
not limited to the domain of response times, which had been
used to form the two groups. Instead, the PCE seemed to
be a general modulator of performance, as reflected by our
behavioral efficiency score. This even extended to the consciously
perceived conflicts, albeit in a rather unexpected direction:
Individuals who showed a larger behavioral modulation by
subliminal primes (i.e., a larger PCE) also showed a smaller
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behavioral modulation by the consciously perceived distractors
(i.e., a smaller Flanker effect). This suggests that even though
the PCE is a rather specific measure, it probably reflects
a general tendency for processing task-irrelevant information
differently. This interpretation is well in line with previous
studies which stated that active task sets may tune sensorimotor
pathways to enable a strongly automated processing of task
relevant cues, even if those are only subliminally presented
(Muhle-Karbe et al., 2017). Subliminal input may hence bias
early information accumulation and activation in decision
circuits (Leuthold and Kopp, 1998; Vorberg et al., 2003;
Parkinson and Haggard, 2014), which leads to the automatic
activation of response tendencies that may ultimately facilitate
(correct) responses in case of compatible primes (Eimer and
Schlaghecken, 1998, 2003; Eimer, 1999; Schlaghecken and Eimer,
2000) (Further discussion of the reproduction of the general
interaction between primes and flankers on the behavioral level
can be found in the Supplementary Material). Given that we
also found the size of subliminally triggered response conflicts
to be related to that of consciously processed ones, it seems
possible that our two performance groups might reflect general
inherent differences in the strength of task sets, which determine
how much task-irrelevant information is attended/processed and
subsequently converted into automatic response tendencies. Yet,
it seems that the tendency to attend and process subliminal
information more thoroughly may increase subliminal conflicts (as
operationalized by PCE groups), and at the same time diminish
conflict size when the distractor is consciously perceived. While
this finding is indeed very interesting, we could not find any
theoretical framework that suggests a comprehensible explanation
for this observation.

In order to separate and identify the cognitive-
neurophysiological sub-processes that might explain the size of
subliminal response conflicts, we analyzed neurophysiological
data using both “traditional” ERP analyses and a data-driven
machine learning approach. In this context, we decided to
primarily focus on the interaction of prime compatibility and
PCE group as the size of priming effects across groups clearly
distinguishes the two performance groups and best reflects
the magnitude of subliminally induced response conflicts. As
subliminal priming may bias early information accumulation
(Leuthold and Kopp, 1998; Vorberg et al., 2003; Parkinson
and Haggard, 2014), we assessed early attentional stimulus
processing by quantifying the prime- and target-associated
P1 and N1 components (Luck et al., 2000). We found that
the size of behavioral subliminal response conflicts was
reflected by the size of condition differences in the initial
processing of both subliminally and consciously perceived
stimuli. Additionally, early attentional processing of subliminal
information, as reflected by the prime-associated N1 amplitude,
was enhanced in compatible trials. This nicely matches the
hypothesis that individuals, who show a more pronounced
priming effect, benefit from enhanced attentional processing of
the compatible subliminal primes (Luck et al., 2000; Herrmann
and Knight, 2001; Mahé et al., 2014; Nicholls et al., 2015).
It is furthermore in line with the notion that the intensity
of early attention allocation and attentional processing of

the target and comparable distractor stimuli determines the
size of subliminal response conflicts (Naccache et al., 2002).
On the neuroanatomical level, we found this effect to be
reflected in the activity of the inferior parietal cortex/TPJ.
This finding nicely matches the available literature as this
brain area is an integral part of frontoparietal networks that
contribute to both attentional stimulus processing and task
set representation (Kiefer, 2008; Kiefer et al., 2011; Vossel
et al., 2014; Muhle-Karbe et al., 2017): With respect to task
sets, this brain region has been shown to be involved in the
processing of task rules/S–R mappings and to contribute to the
selective tuning of sensory regions according to task demands
(Crone et al., 2006; Loose et al., 2017; Muhle-Karbe et al., 2017).
Regarding attentional processing, the TPJ has been shown to
reflect attentional re-orienting as well as feature-based attention
and has been suspected to potentially hamper goal-directed
behavior, when not properly suppressed (Liu et al., 2011;
Vossel et al., 2014).

In contrast to the prime-associated N1, we found the
amplitudes of target-associated P1 and N1 components to
be increased in case of subliminal conflicts. These two ERP
components have been suggested to reflect early attentional
processing of stimulus features (Luck et al., 2000) and may
therefore also reflect priming (Buckner et al., 1998), as attentional
processing of the prime seems to be the determining factor
thereof. Importantly, our findings of (relatively) smaller target-
associated P1 and N1 amplitudes match studies which report
that primed or repeated features elicit smaller, more adapted
neuronal responses (Schacter et al., 2007). Additionally, it could
also be argued that enhanced processing of consciously perceived
information after incompatible subliminal input reflects a first,
compensatory strategy in order to deal with incompatible
automatic response tendencies. Still, further studies will be
needed to substantiate this claim. On the neuroanatomical level,
we found the effects in the target-P1, which also reflected
group dependent differences in flanker effect size, and the
N1 to be reflected by the left V2 and the left angular
gyrus, respectively. V2 is a secondary visual cortex/visual
association area and one of the “starting points” of attention
networks (Vossel et al., 2014). It is typically concerned with
processing different visual properties of stimuli, including the
orientation of stimuli (which was the task-relevant stimulus
property in our paradigm) (Anzai et al., 2007) and may
help to filter out relevant stimuli among various visual
input (Shipp et al., 2009). V2 may furthermore have been
modulated/biased by top-down activity from frontoparietal areas,
likely including task sets (Vossel et al., 2014). The angular
gyrus is adjacent to the inferior parietal cortex and known
to play a key role for spatial cognition and attention, left-
right orientation, and orientation toward salient or task-relevant
features (Seghier, 2013).

Lastly, we also found the behavioral differences in subliminal
response conflicts to be reflected by fronto-central N2
amplitudes, which are known to reflect cognitive conflict
and the effort associated with a given task (Botvinick et al.,
2004; Folstein and Van Petten, 2007). We did not only find the
typical enhancement N2 amplitudes, which signals enhanced
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control and effort in case of response conflicts, but we also
found the size of subliminal response conflicts to be reflected
by the size of modulation in this process/ERP (i.e., we found
more pronounced condition differences in the large PCE group
than in the small PCE group). This underlines the notion that
subliminal response conflicts may still modulate the degree
of response conflict and cognitive effort (Botvinick et al.,
2004; Folstein and Van Petten, 2007). We did not find the
source of prime-related N2 differences in the ACC, which
is most commonly identified as the source of differences in
conscious, conflict monitoring (Botvinick et al., 2004; Larson
et al., 2014). This, however, matches previous studies that
have already shown that masked subliminal primes do not
seem to modulate ACC activity, even when eliciting significant
effects (Desender and Van den Bussche, 2012). Instead, our
effect was again based on activation differences in the left
inferior parietal cortex/TPJ, which reflects both task set
activation and attentional processing of task-related features
(Vossel et al., 2014; Muhle-Karbe et al., 2017). We, however,
found no modulation as the level of response selection and
stimulus–response mapping, as reflected by the P3 component
(Verleger et al., 2015).

Machine Learning Data
In the context of machine learning, the terms of classification
and prediction are used to describe how well an algorithm is
able to correctly allocate individual datasets to distinct categories,
based on the variation found within those datasets. In the context
of our study, this translates to the prediction or classification
of our median-split groups (small vs. large PCEs) on the basis
of the available neurophysiological data, where each data point
is treated as a distinct feature. When we applied the data-
driven machine learning approach to our neurophysiological
data, we found that in each priming condition, there was only one
feature that significantly predicted inter-individual behavioral
performance differences in the size of the subliminally triggered
response conflict (i.e., group membership) with 63 to 64%
accuracy. Importantly, both predictive ERP features were found
in the time range of very early attentional processing (∼63–67 ms
after prime onset and ∼3–7 ms after target onset). Given
that it is impossible to sufficiently process target information
within 3 to 7 ms, it can be safely concluded that the size of
subliminal response conflicts between prime and target is driven
by how much attention was devoted to the prime. This prime
processing then drove the resulting conflict between prime- and
target-associated response tendencies, i.e., the mismatch and
subsequent conflict between response tendencies that were driven
by subliminal vs. conscious stimulus processing. This also implies
that intra-individual variations in the size of subliminal conflicts
cannot be (mainly) due to differences in how well a person can
perform response selection or shield task goals (Goschke and
Dreisbach, 2008; Beste et al., 2017). This means variations in
timing (i.e., selectively attending the target, but not the prime
that precedes it), or an increase in shielding upon the detection
of a conflict cannot explain the observed priming effects. Instead,
the size of subliminal response conflicts most likely arises from
how strongly top-down task set representations bias/enhance the

automatic processing of task-relevant stimulus features. In other
words, it seem to be the allocation of cognitive resources like
attention to initial stimulus processing, which determines conflict
size (Naccache and Dehaene, 2001). Source localization of the
predictive features showed that individuals with larger subliminal
response conflicts showed increased activation in the left insula
(LI), the MFG and, albeit to a lesser degree, the inferior parietal
cortex/TPJ. The insula is connected to both subcortical and
cortical regions and has been suggested to be “a key brain region
for the integration of conscious and non-conscious processing”
(Meneguzzo et al., 2014). The insula has furthermore been
shown to reflect task set representation (Crone et al., 2006). The
involvement of MFG matches this picture as it is involved in the
interruption of ongoing endogenous attentional processes and
helps to reorient attention to an exogenous stimulus (Japee et al.,
2015). Hence, this region likely plays a key role in determining
how much subliminal information is attended. This further
matches the finding that MFG activity was strongest in between
the SMA and FEF. The SMA may increase coupling between
visuomotor brain regions, thus reflecting a higher efficiency
of unconscious processing (Ulrich and Kiefer, 2016) and has
repeatedly been demonstrated to reflect effects of subliminal
priming (Boy et al., 2010a; D’Ostilio et al., 2012). The FEF, on
the other hand, is an integral part of the dorsal attention system,
which has been suggested to modulate activity in visual areas and
which plays a role in feature-based attention (Vossel et al., 2014).
Lastly, we again also found a minor activation in the left inferior
parietal cortex/TPJ, which plays a pivotal role in feature-based
attention reorienting, as well as task set representations (Crone
et al., 2006; Vossel et al., 2014; Loose et al., 2017; Muhle-Karbe
et al., 2017). Taken together, the identified activity differences
in those brain regions further underpin the notion that the size
of subliminal response conflicts might reflect a general tendency
of how much subliminal information is attended, based on the
strength of top-down task sets. This is well in line with the notion
of prepared reflexes, according to which top-down processes
increase responsiveness to task-relevant stimulus features in
both primary sensory areas and sensory association cortices and
thus enable an unconscious, rather automatic feature processing
(Kiefer, 2008; Kiefer et al., 2011; Muhle-Karbe et al., 2017).
This early information accumulation is followed by activation
in decision circuits (Leuthold and Kopp, 1998; Vorberg et al.,
2003; Parkinson and Haggard, 2014), which ultimately results in
an automatic response tendency (Eimer and Schlaghecken, 1998,
2003; Eimer, 1999; Schlaghecken and Eimer, 2000).

At first glance, the findings of our SVM approach might be
considered to be at odds with the “classical” ERP results as well as
other studies that have repeatedly identified fronto-central ERP
components as the most reliable correlate of cognitive control,
conflict and effort (Larson et al., 2014). Yet, it must be considered
that we set out to identify predictors/classifiers, not correlates
of subliminal response conflicts. This means that even though
the size of a subliminal response conflicts is reflected by the
N2 component and other ERPs, differences in the degree of
conflict or monitoring capacities are not what initially seems to
give rise to the observed behavioral differences. Instead, it seems
that all observed ERP differences are (at least partly) caused by
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differences in a preceding event, namely the degree of initial
feature processing, which is independent of conflicts between
response options and instead depends on the modulation by
top-down task sets.

Limitations
A potential limitation of our study is that we used identical
positions for masked primes and visible targets, but different
positions for visible flankers in combination with a successive
presentation of masked prime and visible targets in contrast to the
concomitant presentation of visible flankers and primes. While
we used a well-established paradigm with stably reproducible
effects, this might have potentially had an influence on attentional
and perceptual processes.

Related to this, is should be mentioned that the close
temporal proximity between prime and target has likely
produced some overlapping of prime- and target-associated
cognitive sub-processes, even though both stimuli produced
temporally distinct attentional ERPs (i.e., P1 and N1) and we
furthermore found differential effects on those components. The
traditional labeling of quantified ERP components (especially
the target-associated P1 and N1) may therefore be criticized
as somewhat oversimplified. In this context, it is, however,
also important to note that all conditions had the same
temporal setup, so that they may be compared with each
other even in case of temporal ERP component overlap
(for a more detailed discussion of this issue, please see
Zink et al., 2019).

Lastly, there are currently only few studies investigating the
interaction of subliminally and consciously triggered conflicts.
In this context, the scarcity of other available paradigms
demonstrating the interaction of subliminally and consciously
perceived distractors in general demands for further research.

Outlook
Our study focused on the question of how the size of response
conflicts triggered by subliminal primes comes about, but it
may be interesting to also use SVM to investigate whether the
mechanism underlying consciously processed flanker conflicts
is similar, or even comparable. Given that we found the
two PCE groups to also differ with respect to flanker effect
size, it could be conceivable that at least some aspects of
this conflict have the same origin, namely increased attention
to task-relevant features in all stimuli, including distractors.
The finding that individuals in the larger PCE group did,
however, show smaller flanker effects, and not larger ones,
does not quite match this simple explanation: If both kinds
of conflicts (prime- and flanker-induced) were merely due to
attention allocation to task-relevant stimulus properties, we
should have seen larger flanker effects in the large PCE groups
(and not vice versa). The finding of a negative correlation
between prime and flanker conflict size suggests that the conflict
induced by consciously perceived flankers cannot be solely
driven by the same factors as the conflict induced by subliminal
primes. This could potentially be due to the fact that the

flankers are consciously processed and conflicts may therefore
be detected, thus triggering additional top-down processing. Yet,
the difference between prime and flanker conflict size could also
be associated with stimulus location (see “Limitations” section).
Investigating all of those speculations will, however, require
further research.

CONCLUSION

In summary, we investigated how subliminally triggered response
conflicts emerge and which factors contribute to the size of
this kind of response conflict. While conflict size is associated
with conflict monitoring/effort as well as early attentional
stimulus processing, a data driven machine learning procedure
demonstrated that only the initial processing of subliminal
information is actually predictive of conflict size. Specifically,
we could show that the size of subliminally induced response
conflicts is determined by how much subliminal task-irrelevant
information is attended/processed, which most likely determines
the intensity the automatic response tendencies it triggers. This
was reflected by activity modulations in left frontoparietal and
attentional networks including several the insula, MFG, angular
gyrus and inferior parietal cortex/TPJ. Those brain regions play
a key role in determining how much subliminal information
is attended based on pre-active top-down task sets. Taken
together, our analyses have shown that even though response
conflicts reliably modulate fronto-central conflict monitoring
processes, their size is not initially determined or caused by
the mismatch between task-relevant and task-irrelevant response
tendencies. Instead, the size of response conflicts seems to
be rooted in the intensity with which an individual initially
attends and processes task-relevant distracting information,
which ultimately results in differences in automatic response
tendency generation.
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