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An event or experience can induce different emotional responses between individuals,
including strong variability based on task parameters or environmental context.
Physiological correlates of emotional reactivity, as well as related constructs of stress
and anxiety, have been found across many physiological metrics, including heart rate
and brain activity. However, the interdependances and interactions across contexts and
between physiological systems are not well understood. Here, we recruited military and
law enforcement to complete two experimental sessions across two different days. In the
laboratory session, participants viewed high-arousal negative images while brain activity
electroencephalogram (EEG) was recorded from the scalp, and functional connectivity
was computed during the task and used as a predictor of emotional response during the
other experimental session. In an immersive simulation session, participants performed
a shoot-don’t-shoot scenario while heart rate electrocardiography (ECG) was recorded.
Our analysis examined the relationship between the sessions, including behavioral
responses (emotional intensity ratings, task performance, and self-report anxiety)
and physiology from different modalities [brain connectivity and heart rate variability
(HRV)]. Results replicated previous research and found that behavioral performance
was modulated within-session based on varying levels of emotional intensity in the
laboratory session (t(24) = 4.062, p < 0.0005) and stress level in the simulation session
(Z = 2.45, corrected p-value = 0.0142). Both behavior and physiology demonstrated
cross-session relationships. Behaviorally, higher intensity ratings in the laboratory was
related to higher self-report anxiety in the immersive simulation during low-stress
(r = 0.465, N = 25, p = 0.019) and high-stress (r = 0.400, N = 25, p = 0.047)
conditions. Physiologically, brain connectivity in the theta band during the laboratory
session significantly predicted low-frequency HRV in the simulation session (p < 0.05);
furthermore, a frontoparietal connection accounted for emotional intensity ratings during
the attend laboratory condition (r = 0.486, p = 0.011) and self-report anxiety after the
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high-stress simulation condition (r = 0.389, p = 0.035). Interestingly, the predictive power
of the brain activity occurred only for the conditions where participants had higher
levels of emotional reactivity, stress, or anxiety. Taken together, our findings describe
an integrated behavioral and physiological characterization of emotional reactivity.

Keywords: emotion, emotional reactivity, stress, anxiety, immersive reality, heart rate variability, EEG, neural
connectivity

INTRODUCTION

Emotion is a pervasive component of how we perceive, interpret,
and react to the events and interactions of our daily lives, and
its pervasive nature likely reflects concomitant responses across
physiological systems in brain and body (Lang, 2014). Successful
emotion regulation can improve our cognitive and behavioral
performance (Lupien et al., 2007) as well as mitigate how we are
mentally and physically impacted by stress (Gross and Muñoz,
1995; Gross, 1998; Davidson, 2000). Research has identified
several emotion regulation strategies that reduce the intensity of
negative experiences (Gross and Levenson, 1993; Ochsner et al.,
2004; Etkin et al., 2015), including emotional reappraisal where
individuals explicitly reinterpret a negative stimulus or event
to be more positive (Richards and Gross, 2000; Gross, 2002;
Hajcak and Nieuwenhuis, 2006). Similar strategies to reframe
how stressful events are perceived, assessed, and interpreted
have also been shown to improve quality of life (Côté et al.,
2010), decrease emotional reactivity (Gross and Levenson, 1993;
Ochsner et al., 2004; Etkin et al., 2015), and reduce anxiety
(Goldin and Gross, 2010).

While the study of emotion encapsulates a rich diversity
in psychological constructs, the literature demonstrates strong
interrelationships among them, including the three of theoretical
interest in our study: emotional reactivity, anxiety, and stress.
In research that examined coping strategies, cognitive emotion
regulation strategies were related to negative emotional responses
including anxiety and stress (Martin and Dahlen, 2005).
Similarly, research has shown that negative emotional reactivity
is associated with higher anxiety (Boyes et al., 2017) and stress
scores (Ripper et al., 2018). Interestingly, these three interrelated,
emotional constructs are often associated with a negative valence
(Boyes et al., 2017), yet they serve an essential role in adaptation
to our environment (Wang and Saudino, 2011; Thayer et al.,
2012). For instance, our stress response promotes fast, automatic
behavior that does not require cognitive control (Arnsten and
Goldman-Rakic, 1998). A stressful event can rapidly increase
our heart rate, dilate our pupils, elevate our skin temperature,
induce perspiration, and heighten ourmemory for the experience
(Kemeny, 2003). The interrelation among these physiological
responses ensures rapid coordination for perception and action
(Tsigos et al., 2016), and this is essential to react to unexpected
and dynamic events (e.g., recoiling after touching a hot stove,
avoiding a collision, or responding to gunfire).

Emotional reactivity can be characterized by peripheral
physiological responses (Kemeny, 2003) that are mediated by
the autonomic nervous system (ANS; Levenson, 2014). For
example, fear is generally accompanied by a withdrawal of

parasympathetic activity and an increase in sympathetic activity,
which in turn leads to a racing heart, increased sweating,
and other peripheral responses that resemble ‘‘fight-or-flight.’’
Research that has linked emotion and ANS has focused on
heart rate variability (HRV) as a marker of ANS influence on
cardiac activity (Appelhans and Luecken, 2006). When analyzed
with spectral analysis, HRV can be decomposed into a low-
frequency (LF) component, reflecting a mixture of sympathetic
and parasympathetic influences, and a high-frequency (HF)
component which reflects purely parasympathetic influences
via the vagus nerve (Saul, 1990; Reyes del Paso et al., 2013).
Importantly, within-person changes in LF and HF-HRV index
the autonomic aspects of emotional reactivity (Kreibig, 2010),
and HRV captures a relationship between stress response and
perception (Barnes et al., 2007), emotional reactivity and/or
regulation (Fox, 1989; Appelhans and Luecken, 2006; Mather
and Thayer, 2018), and emotional memory (Thayer et al.,
2012). Importantly for our research, HRV is a suitable index
of ANS responses in contexts with realistic movements and
task complexity because it is a non-invasive measure and well
established for ambulatory recordings (Laborde et al., 2017).

Additionally, the ANS provides a pathway for bidirectional
communication between the viscera and brain. Through this
pathway, the ANS and brain work together to coordinate
behavioral, experiential, and physiological responses to
motivational stimuli—responses that together comprise an
emotional reaction (Craig, 2002; Thayer and Lane, 2009; Lang,
2014). Thus, examining HRV alongside brain activity can better
reveal the interplay between the central and ANS that give rise
to individual differences in emotional reactivity and emotion
regulation. HRV is specifically regulated by a central autonomic
network that encompasses both subcortical brain regions (e.g.,
amygdala, hypothalamus) linked to emotional arousal and
basic homeostatic functions as well as higher-order cortical
regions (e.g., anterior cingulate cortex) important for emotional
appraisal and perception (Benarroch, 1993; Thayer and Lane,
2009). Indeed, HRV has been systematically related to central
autonomic brain activity during various emotion inductions
(Thayer et al., 2012; Chang et al., 2013; Sakaki et al., 2016),
and this bidirectional relationship between ANS and the brain
complements neuroimaging work that has identified a core set
of brain regions involved with emotion regulation, primarily
within the frontoparietal network (Buhle et al., 2014; Kohn et al.,
2014). More specifically, connectivity from the frontal cortex has
been associated with outcomes related to all three constructs of
theoretical interest in our study: emotional reactivity (Domes
et al., 2010), anxiety (Kim et al., 2011) and stress (Wang and
Saudino, 2011). However, there has been limited research that
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has examined whether the relationship between HRV and
brain responses can capture individual differences in emotional
reactivity across different sessions and contexts.

In our study, we examined the relationship between HRV and
brain activity, investigating their interdependance as a marker
of emotional reactivity between a laboratory setting and an
immersive, simulation environment. Each participant completed
two experimental sessions. In the laboratory session, participants
viewed emotionally-charged images while electroencephalogram
(EEG) was recorded from the scalp. We predicted that the
neural activity during the task would engage frontal and parietal
regions (Domes et al., 2010; Kohn et al., 2014), manifesting in
connectivity changes between anterior and posterior electrodes
(Aftanas et al., 2002; Zheng et al., 2017). In the simulation
session, participants completed an immersive, shoot-don’t-
shoot simulation while electrocardiography (ECG) was recorded.
Following our previous research (Gamble et al., 2018), we
expected that individual differences in HRV would account
for variability in performance accuracy during the shoot-don’t-
shoot task.

In addition to these predictions for within-session
physiological responses, our core analysis examined the
relationship between the sessions, including behavioral
responses (emotional intensity ratings, task performance, and
self-report anxiety) and physiology from different modalities
(brain connectivity and HRV). For the behavioral responses,
we expected that emotional reactivity would be heightened
during the immersive experience (Parsons, 2015); however, the
literature is mixed regarding how well behavior in stationary,
laboratory tasks predicts task performance when the stimuli
have features more typical of real-world environments (Smilek
et al., 2008; Hasson et al., 2010; Gramann et al., 2011; Schmälzle
et al., 2017; Doré et al., 2018; Wasylyshyn et al., 2018). For the
physiological measurements, some recent work has suggested
that a stress response can rapidly couple brain and heart
responses (Sakaki et al., 2016), but it was unclear whether
this relationship would be observed between laboratory and
simulation environments, especially with a temporal delay across
days. Collectively, our results reveal a robust relationship across
tasks and sessions, but only when participants experience higher
levels of emotional reactivity as indexed by their behavioral
performance and self-report anxiety. Our findings describe
an integrated behavioral and physiological characterization of
emotional reactivity.

MATERIALS AND METHODS

Participants
This study was carried out in accordance with the accredited
Institutional Review Board at US Army Research Laboratory
and conducted in compliance with the US Army Research
Laboratory Human Research Protection Program (32 Code of
Federal Regulations 219 and Department of Defense Instruction
3216.01), with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the

US Army Research Laboratory Human Research Protection
Program. We recruited a total of 33 volunteers (32 male,
1 female) from active duty US Army Infantrymen and Special
Reaction Teams (SRTs) to ensure that all participants met the
minimum requirements to qualify as a marksman. This specific
population was necessary because expertise has been shown
to influence physiological responses (Johnson et al., 2014), so
we wanted to ensure homogeneity across participants in their
training for rapid response to dissipate high-threats to better
equate skill and physiological response in the shoot-don’t-shoot
scenario. We also intentionally used scenes related to military
deployments in the laboratory session that were specifically
designed to elicit emotional responses from military personnel.
Participants with any known heart condition or pace makers
were excluded from participating in this study due to the small
shock administered as feedback during the simulation session.
After providing informed consent, participants completed two
sessions (laboratory and simulation).

Data was excluded from participants with excessive signal
artifact in the physiological data, or equipment malfunctions
during data collection. Additionally, analysis was restricted to
male participants to avoid variability due to suggested sex
differences in response to negative visual materials (Cahill et al.,
2001; Canli et al., 2002), resulting in 25 male participants for
analysis (M age = 31 years, SD = 7.65).

Laboratory Session: Procedure, Design,
and Behavioral Analysis
During the laboratory session, participants sat comfortably at
a desk with a computer monitor and keyboard in a sound
attenuated chamber. Headmeasurements from nasion to ion and
left preauricular to right preauricular point were taken to size
and place a 64-channel BioSemi (Amsterdam, Netherlands) EEG
cap, and cleanser was used to prepare the skin around the eyes
for VEOG and HEOG external electrodes and behind the ears
for reference electrodes on the mastoid bones. BioSemi Actiview
software (Amsterdam, Netherlands) was used to ensure electrode
impedances were less than 25 kΩ. Participants completed three
tasks during the session, but only data from the final task were
analyzed here.

Before the task began, the experimenter explained a
cognitive reappraisal strategy involving reinterpretation (similar
to Ochsner et al., 2004). The experimenter individually presented
three demonstration images of aversive events that were not
included in the experimental stimulus set, and she guided
participants through several examples of how the image could
be reappraised so that it no longer elicited a negative response
(e.g., reimagining the scene as from a movie, an image from
a training exercise to treat wounded Soldiers, or an example
of rehabilitative surgery). Following the examples, participants
completed three practice trials and verbally described their
reinterpretation strategy, allowing for feedback and shaping
via the experimenter. These practice trials occurred in the
same design as the experimental trials so that participants also
learned the flow of the trial structure. Once the participant was
comfortable with the task, the experimenter left the chamber and
started the task.
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Using PsychoPy (Pierce, 2007), the negative, emotionally-
aversive stimuli from the military affective picture system
(MAPS; Goodman et al., 2016) were presented. The MAPS
depicts scenes related to recent military deployments, providing
a military-experience equivalent to the commonly used
International Affective Pictures Set (IAPS; Lang et al., 1997)
developed for civilian populations. In the laboratory session,
our participants saw each of the 60 high-arousal negative MAPS
images in two experimental conditions, Attend or Reinterpret,
mirroring an experimental paradigm designed for the IAPS
(Hajcak and Nieuwenhuis, 2006).

As illustrated in Figure 1A, each trial began with a 1 s
VIEW cue to remind the participant to passively view the
image and experience their natural response to the image.
After viewing the image for 1 s, a second cue appeared
that was either ATTEND or REINTERPRET and remained
on the screen for 4.5 s. For Attend trials, participants were
asked to just view the image a second time, not altering
their natural response to the image. For Reinterpret trials,
participants were asked to reappraise the image to change
their emotional response so that the image no longer elicited
a negative response. The second presentation of the image
lasted for 2 s. To end the trial, participants used the numeric
keypad on the keyboard to rate their emotional intensity
in response to each image on a Likert-scale ranging from
1 (low emotional intensity) to 9 (high emotional intensity).
The inter-stimulus interval between trials was 0.5 s, and the
participants were given two breaks (every 20 trials) and resumed
when ready by pressing the space bar. Unlike the practice
trials, participants did not give any verbal responses during
the experimental portion of the task. For the analysis, the
average emotional intensity score was computed separately
for the Attend trials and the Reinterpret trials and used to
index the emotional reactivity experienced in each experimental
condition (Figure 1A).

After rating all 60 images, participants completed theMultiple
Affect Adjective Checklist-Revised (MAACL-R) Today form
(Lubin and Zuckerman, 1999). The MAACL-R Today form is a
state measure consisting of 132 adjectives, and this self-report
questionnaire has been used to capture affective responses
to military-relevant stressful situations (Fatkin et al., 1991;
Hudgens et al., 1991; Patton and Gamble, 2016). Participants
were asked to mark all of the words that described how they
‘‘feel right now’’ to capture a self-report of their emotion
after viewing all of the negative images. Our analysis focused
on the MAACL-R Anxiety subscale (Figure 1C), consisting
of 10 adjectives (e.g., afraid, fearful, frightened, panicky,
shaky, tense). Raw scores were calculated by counting the
number of adjectives endorsed from this subscale and then
transformed based on the total number checked to standard
T-scores provided by the survey developers and normed for
male participants.

Laboratory Session: Brain Analysis
Continuous EEG recordings were captured via the Biosemi
ActiveTwo Bioamplifier system (Amsterdam, Netherlands)
equipped with standard Ag/AgCI electrodes from 64 sites

on the scalp. Raw EEG measurements were pre-processed
using in-house software in MATLAB (Mathworks, Inc.,
Natick, MA, USA) and the EEGLAB toolbox (Delorme
and Makeig, 2004). The pre-processing pipeline largely
follows the PREP approach (Bigdely-Shamlo et al., 2015)
and contains five steps: (1) resampling the raw EEG to
250 Hz; (2) line noise removal via a frequency-domain (multi-
taper) regression technique to remove 60 Hz and harmonics
present in the signal; (3) a robust average reference with a
Huber mean; (4) artifact subspace reconstruction to remove
residual artifact (the standard deviation cutoff parameter
was set to 15); and (5) a piece-wise detrending algorithm
to remove LF drift in the signal (window size = 330 ms,
step size = 8 ms).

After preprocessing, we used the Source Information
Flow Toolbox (SIFT; Mullen, 2014) in EEGLAB to estimate
the direct Directed Transfer Function (dDTF) using the
‘‘Ridge Regression’’ algorithmic option for fitting the vector
autoregressive model (Order = 15) across the full-length of the
timeseries during the MAPS task. The dDTF method of directed
connectivity allows for short time windows of EEG connectivity
whilst also overcoming (in part) the ambiguity between direct
and indirect influences of connections (Korzeniewska et al.,
2003). For computational efficiency and to mitigate against over-
fitting, we reduced the model from 64 to 12 channels spanning
the entire brain (CP3, CPz, CP4, P3, Pz, P4, FC5, F7, F3,
FC4, F8, F4).

Connectivity was computed between all pairs, yielding
132 total connections from each of the 12 channels to each of
the other 11 channels (Figure 1E). The dDTF estimates were
then averaged within the four common frequency bands: delta:
1–3 Hz, theta: 4–7 Hz, alpha: 8–12 Hz, and beta: 13–25 Hz. We
then used these values in two analyses:

1. To inspect the differences in dDTF estimates across frequency
bands and between conditions (Figure 3), we baseline
corrected the dDTF estimates by subtracting the mean dDTF
250 ms before the onset of the second image (during the
second cue, see Figure 1A), and then we averaged the
standardized (z-score) dDTF estimates across subjects.

2. For the LASSO regression analysis, the dDTF estimates were
averaged over the 2-s duration of the second presentation of
the image, capturing the brain activity specific to the attend or
reinterpret viewing of the negative MAPS image (Figure 1A).

In sum, each trial was represented as four sets of
132 connections, one for each frequency band, and we then
separately averaged over trials for each condition, attend
and reinterpret. This resulted in a 132 (connections) × 4
(frequency)× 2 (condition) matrix for each participant.

Immersive Simulation Session: Procedure,
Design, and Behavioral Analysis
In the simulation session, participants moved freely and
untethered around a 300-degree immersive, virtual environment
that was implemented using the VirTra V 300TM1 system and

1http://www.virtra.com/v-300
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projected on five 6′ × 10′ screens (Figure 1B). Building on
previous research (Patton, 2014), the shoot-don’t-shoot scenario
was presented in a panoramic view of a quarry environment,
and an auditory tone indicated when and where two human
characters would appear simultaneously from behind objects
in the quarry. The characters were either: (1) two friendly
actors, both holding innocuous objects (e.g., cell phone or
soda can) or with their hands up; or (2) a mix of one
friendly and one foe shooting at the participant with a black
pistol in their hand. Participants had to rapidly discriminate
friendly or foe in the 2 s that the actors appeared on
the screen. To resolve each presentation, participants were
instructed to withhold fire when the character was a friendly
and fire when the character was a foe. To disarm the foes,
participants used an untethered modified M-4 carbine rifle,
the standard issue in the U.S. Army. The rifle was modified
to provide realistic weapon feedback from recoil generated
from carbon dioxide release from the ammunition magazines,
safely providing feedback similar to an unmodified weapon,
and it was outfitted with a laser to track the location of fire
in the virtual environment. Participants also felt feedback on
their waist from a VirTra ThreatfireTM device placed on their
waistline at belt level when: (1) a foe in the environment
successfully shot them (miss); or (2) they incorrectly shot a
friendly (false alarm). They received no feedback when they
successfully disarmed a foe (hit) or withheld fire from a friendly
(correct reject).

After a training session to become familiar with the
environment, participants completed 256 trials, where half of
the trials consisted of two friendly actors appearing and the
other half consisted of one friendly and one foe. These trials
were then equally split across two experimental conditions
(128 trials each), a low-stress vibration condition and a
high-stress shock condition (Figure 1B). In the low-stress
condition, participants received a 500 ms vibration, similar
to that of a cell phone, from the VirTra ThreatfireTM device
when they made an error. In the high-stress condition, feedback
was given through the VirTra ThreatfireTM shock belt, which
delivered a 200 ms, 50 mA electric shock, administered on
alternating sides of the waist when they made an error. The
order of conditions was counterbalanced between participants,
so while a learning effect was observed between first and second
condition (accuracy: t(25) = −5.51, p < 0.001), performance
was otherwise equivalent within the low- and high-stress trials.
For safety, the feedback in both conditions was configured
to ensure that at least 60 s occurred between vibration
(low-stress) or shock (high-stress) feedback events. During
this 60 s, both friendly and foe presentations could occur,
but if contact was made by the participant, no feedback
was administered other than seeing targets disappear or
fall down.

The accuracy on each trial was determined by the first shot
fired and mirrored the feedback received: hit for shooting at
a foe (H), miss for not shooting at a foe (M), false alarm for
shooting at a friendly (FA), and correct rejects for not shooting
at a friendly (CR). After computing z-scores for each category
(Stanislaw and Todorov, 1999), accuracy was defined as Hits

plus Correct Rejections divided by the number of trials (N = 128)
and computed separately for each condition (low-stress
and high-stress):

(1) accuracy =
(H)+ (CR)

N

Similar to the laboratory session, participants completed
the MAACL-R Today form (Lubin and Zuckerman, 1999) in
the simulation session, once after the low-stress condition and
once after the high-stress condition (Figure 1D). Participants
were asked to mark all of the words that described how they
‘‘felt during the simulation’’ to capture a self-report of their
emotion during each of the stress conditions. Again, our analysis
focused on the MAACL-R Anxiety subscale, and the score
was computed using the same method as described in the
laboratory section.

Immersive Simulation Session: Heart Rate
Analysis
Continuous ECG recordings were captured via the EquivitalTM

EQO2 and LifeMonitor belt. Raw ECG measures were
pre-processed using automated algorithms in vivonoetics’
monitoring and analysis software, Vivosenser, using the
parameters of heart rate above 200 or below 40 beats per minute,
high noise filtering, and removing ectopic beats.

After preprocessing, the R–wave timeseries estimated
HRV as the temporal differences between heart beats
over time, and this timeseries was interpolated and
resampled to 4 Hz, and a fast fourier transform (FFT)
was performed on the time series data between 0.04 and
0.4 Hz (Figure 1F). We then averaged with the two common
frequency bands: LF: 0.04–0.15 Hz and HF: 0.15–0.4 Hz
bands. The HRV values were computed separately for
the low-stress and high-stress experimental conditions,
creating a 2 (frequency range) × 2 (condition) matrix for
each participant.

Cross-Session Analysis: Brain Response
Predicting Heart Rate Variability Response
Following previous research (Mwangi et al., 2014; Powell
et al., 2018), we employed a LASSO regression framework
(Tibshirani, 1996, 2011) to examine the predictive relationship
between the brain connectivity in the laboratory session
and the HRV responses in the simulation session. The
132 directed neural connections were used as predictors
of the HRV response, and LASSO identified the most
predictive connections and zeroed out the irrelevant ones by
penalizing regression coefficients based on the regularization
constant lambda.

We computed separate models for each combination of
laboratory condition (attend, reinterpret), EEG frequency (delta,
theta, alpha, beta), simulation condition (low-stress, high-stress),
and HRV frequency (LF and HF). We used a Monte-Carlo
cross-validation to assess the robustness of each model fit. For
each combination of brain and heart data, we ran 500 Monte-
Carlo iterations where participants were randomly split in a
training set (20 participants) and test set (five participants),
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and the model fit to the training set was used to predict the
brain-heart relationship of the test set and assess the robustness
of the relationship. Since the regularization constant lambda
was also a parameter to fit, we tested each of the brain-
heart rate models at each of 25 regularization constants in
logarithmic steps from 0.032 to 1. The score for each of the
25 lambda values was the mean out-of-sample R2 score across
its 500 splits.

Thus, the cross-validated LASSO regression models identified
what neural connections in the laboratory were predictive of
the HRV in the simulation environment, how robust this
relationship was across participants and lambda parameter
values, and provided a percent variance of HRV that was
accounted for by each significant brain connection.

Cross-Modal Analysis: Linking Brain to
Behavior
From the LASSO analysis, results identified 16 connections
that were robust across the model fits and significantly
related to LF-HRV. In our final analysis, we examined the
relationship of these significant brain connections and our
behavioral performance and self-report anxiety metrics. We
separately assessed the correlation between the brain data and the
following: lab emotional intensity attend, lab emotional intensity
reinterpret, lab self-report anxiety, simulation accuracy low-
stress, simulation accuracy high-stress, simulation self-report
anxiety low-stress, and simulation self-report anxiety high-
stress. Correlational analyses were completed between these
16 connections and the behavioral responses in the statistical
package for the social sciences (SPSS).

RESULTS

Behavioral Responses of Emotional
Reactivity Observed in Laboratory and
Simulation
We first examined the behavioral responses in the two sessions
to assess whether the experimental conditions modulated task
performance. In the laboratory task, participants viewed each
negative MAPS image in one of two experimental conditions,
Attend or Reinterpret (Figure 1A). In the Attend condition,
participants were asked to attend naturally to the stimulus,
reporting the overall emotional intensity that they experienced
when viewing the image (M = 3.65, SD = 1.52). In the
Reinterpret condition, participants were asked to reinterpret
the image during a short delay period and then report the
emotional intensity they experienced after regulating their
emotional response to the image (M = 2.85, SD = 1.27). As
illustrated in Figure 2A, the average intensity for the Attend
condition was higher than for the Reinterpret condition, and this
difference was statistically significant (p(24) = 4.062, p < 0.0005).
This result indicates that emotional reactivity was successfully
modulated during the two experimental conditions in the
laboratory session.

Similarly, for the simulation session, we compared
performance accuracy in the shoot-don’t-shoot task between

FIGURE 1 | Experimental design. (A) In the laboratory session, participants
performed an emotion regulation task. After naturally viewing the image
during the first presentation, either a REINTERPRET or ATTEND cue
appeared to indicate whether the participant should regulate their emotion or
naturally view the image during its second presentation. The trial ended after
participants rated the emotional intensity during the second image
presentation. (B) In the 300 degree simulation, participants had to
discriminate whether two human characters were both friendlies or one foe
and one friendly (depicted). Participants received feedback when they made
an error (failing to shoot a foe or incorrectly shooting a friendly): in the
high-stress condition, feedback was provided as an electrical shock, while in
the low-stress condition, feedback was a vibration. (C) At the end of the
laboratory session, participants completed a self-report anxiety questionnaire.
(D) After each simulation condition, participants completed a self-report
anxiety questionnaire. (E) Brain activity was recorded from the scalp during
the laboratory task, and then timeseries data from 12 electrodes were used to
compute functional connectivity among each electrode pair. (F) Heart activity
was recorded during the simulation task, and then heart rate variability (HRV)
was computed and averaged to derive the low-fequency (LF) and
high-frequency (HF) components.

the low-stress and high-stress conditions. In both conditions,
participants received feedback for errors when they failed to
shoot a foe or incorrectly shot a friendly; however, in the
low-stress condition, the participants felt a vibration, while in
the high-stress condition, they received a shock. As illustrated
in Figure 2B, performance accuracy decreased in the high-stress
condition (M = 0.84, SD = 0.06) compared to the low-stress
condition (M = 0.87, SD = 0.05), and as expected, this difference
was statistically significant (Z = 2.45, corrected p-value = 0.0142).
Similar to the laboratory session, this result demonstrates an
effect of experimental condition in the expected direction, where
high-stress negatively impacts performance.

Next, we investigated the anxiety score derived from the
MAACL-R and examined its variability between sessions.
Overall, participants reported statistically significant lower
anxiety during the laboratory session (M = 47.88, SD = 8.671)
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FIGURE 2 | Behavioral responses across sessions. (A) Significant difference
in the mean intensity ratings for the negative military affective picture system
(MAPS) images averaged across conditions (attend, reinterpret) and across
participants. (B) Significant difference in the mean accuracy for the immersive
shooting task averaged across conditions (low-stress, high-stress) and
across participants. (C) Significant relationship between emotional intensity
rating during the attend condition of the laboratory emotion regulation task
and the self-report anxiety score after the high-stress in the simulation
environment. An ∗ indicates significance in a pair wise t-test (p < 0.05), and
error is indicated as SEM across participants.

compared to the simulation session, both for the low-stress
simulation condition (M = 58.20, SD = 19.59; t(24) = 2.835,
p = 0.009) and the high-stress simulation condition (M = 61.40,
SD = 18.59; t(24) = 3.404, p = 0.002). This stable difference in
self-report anxiety between sessions likely reflects the value of
the immersive and more realistic experience provided in the
simulation session to induce emotional processes of interest
(Parsons, 2015). However, results also demonstrated that the
emotional intensity ratings provided in the laboratory session
accounted for variability in the self-report anxiety in the
simulation session (Figure 2C). Specifically, participants who
reported a higher level of perceived emotional intensity in
response to naturally attending to the negative images viewed
in the laboratory session also reported higher levels of anxiety
in both the low-stress (r = 0.465, N = 25, p = 0.019) and
high-stress conditions (r = 0.400, N = 25, p = 0.047) of the
simulation session.

Overall, these results confirm that our experimental
conditions modulated performance metrics that index
emotional reactivity, namely the emotional intensity ratings
in the attend/reinterpret conditions in the laboratory, and
task accuracy in the low-stress/high-stress conditions in the
immersive simulation. Results also demonstrated a relationship
between sessions, revealing that higher emotional intensity

reported during the attend condition of the laboratory task
related to higher self-report anxiety in the virtual shoot-don’t-
shoot scenario. Together, these behavioral results suggest
an interdependance among our three constructs of interest:
emotional reactivity, stress, and anxiety. We next examine the
neuroimaging data to investigate variability in the underlying
physiological response to these constructs.

Brain Activity Observed in Regions
Associated With Emotion Regulation
Using the neuroimaging data recorded during the laboratory
task, we analyzed the neural activity during the response to the
second presentation of each negative MAPS image to estimate
neural processing related to the emotional response on each
trial. We computed pairwise functional connectivity among
12 channels to estimate the causal influence between the neural
activity recorded by each electrode (132 connections total).
Connectivity relationships were computed separately for each
condition (attend, reinterpret) and for four frequency bands
(delta, theta, alpha, and beta).

Based on the magnitude or strength of the pairwise
relationship, the top 10% of connections were plotted in Figure 3,
with red arrows signifying an increase in connectivity and blue
a decrease compared to baseline. Although there was some
variability in what electrodes are involved between conditions,
the frequency bands showed a similar pattern with overall
increased connectivity in the slower frequency bands (delta,
theta) and decreased activity in the fastest frequency band (beta).
Alpha connectivity showed a difference, with increased activity
in the attend condition and more decreased activity in the
reinterpret condition.

In Figure 3, the connectivity patterns were also summarized
in terms of their overall ‘‘outflow’’ defined as the summed
connectivity magnitude of all connections emanating from a
given electrode. This metric can be interpreted as the amount of
influence that a given electrode has on all other electrodes. The
amount of outflow for each electrode was visualized in Figure 3
as a change in size of the orb for each electrode as well as bar plots
shown underneath each brain image.

Across conditions and frequencies, four electrodes routinely
arose as the ones with the highest outflow. In the beta band,
P4 had the largest decrease in outflow across both conditions
(Attend: −0.37; Reinterpret: −0.47), suggesting a suppression of
activity that is slightly greater during the reinterpret condition.
This might indicate the beta band from parietal cortex has a role
to suppress the emotional response when asked to reinterpret
negative images. For the other three frequency bands, the
P3 electrode had the highest outflow (theta: 0.22, delta: 0.18,
alpha: 0.11), with the F3 and F4 electrodes a close second (left
F3 in attend condition—theta: 0.16, delta: 0.19, alpha: 0.05;
and right F4 in reinterpret condition—theta: 0.22, delta: 0.19,
alpha: 0.11). This effect was strongest in the theta band in the
attend condition, suggesting that the frontal cortex may strongly
influence the emotional intensity experienced during the passive
viewing of a negative image.

Overall, both conditions recruit regions that span parietal
and frontal areas as expected from previous emotion regulation
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FIGURE 3 | Brain connectivity changes during the second image presentation in the emotion regulation task. (A) The top 90% of connectivity changes in the Attend
condition for the 12 electrodes (labels shown on the right) for each frequency band of interest (delta, theta, alpha, beta). Red arrows signify an increase in
connectivity compared to baseline (250 ms before onset of second presentation) and blue a decrease from baseline. The total “outflow” (or summed connectivity) for
each electrode is visualized by scaling the orb size as well as bar plots under each axial brain image that are organized from anterior to posterior electrodes (color of
bar plot matches the color of the circle in the electrode label picture). (B) The same information for the Reinterpret condition as shown in (A) for Attend.

literature (Buhle et al., 2014; Kohn et al., 2014), and there
were not statistically significant differences in the connectivity
between attend and reinterpret conditions (FDR > 0.05).
In contrast, frequency bands demonstrate variability in both
the regions involved as well as whether there is increased
or decreased connectivity compared to baseline. We next
examined whether these brain connectivity differences in the
laboratory session can predict HRV response differences in the
simulation session.

Laboratory Physiology Predicts Simulation
Physiology
We utilized a LASSO regression framework to examine the
predictive relationship between the 132 brain connections in
the laboratory session and the HRV responses in the simulation
session. As shown in Figure 4, we computed separate models for
each combination of laboratory condition (attend, reinterpret),
EEG frequency (delta, theta, alpha, beta), simulation condition
(low-stress, high-stress), and HRV frequency (LF and HF), and
we evaluated the robustness of the relationship using a Monte-
Carlo cross-validation analysis.

Results revealed that the neural connectivity in the theta
band while viewing negative images in the attend condition
during the laboratory session predicted LF-HRV during the
high-stress condition of the immersive threat discrimination

task (Figure 4). This relationship was robust to the 500 cross-
validation iterations, indicating that the theta band connectivity
pattern significantly accounted for variability in the LF-HRV
in 95% of the random iterations (marked by a positive R2

value). Furthermore, this significantly predictive relationship was
consistent across models using 76% of regularization constants
tested, where variance in connectivity in the theta band during
the attend condition explained at least 40% of the variance in
LF-HRV during the high-stress condition in the simulation. No
other model was significant.

We next examined which of the 132 connections accounted
for the LF-HRV response variability. The robustness of the
connection was determined by counting the number of iterations
(within the 95% showing a positive R2) for which the
connection contributed to the positive R2, and results identified
16 connections that significantly contributed to the predicted
relationship. In Figure 4, wider arrows indicate a greater
number of models in which the connections predicted LF-
HRV, and color corresponds to the sign of the majority of the
regression coefficients, with red indicating a positive and blue a
negative value.

In short, these connections show a robust relationship
with LF-HRV, implicating both theta band activity and
LF-HRV as physiological markers of emotional reactivity when
responding to aversive stimuli. Importantly, this predictive
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FIGURE 4 | Brain connectivity predicts HRV. (A–D) Each bar represents the proportion of positive R2 random samplings found with the cross-validation procedure
(see “Materials and Methods” section) within each frequency band (delta, theta, alpha, beta) that predicts HRV (HF on left and LF on right) in both simulation
conditions (high-stress in top row and low-stress in bottom row). The green ∗ indicates a significant relationship between the theta band connectivity and the LF-HRV
in 95% of the random iterations across 500 cross-validation folds. (E) The theta connections that significantly predict LF-HRV in the high-stress condition, with
positive relationships in red and negative relationships in blue. Each arrow represents the direction of connection, scaled by the number of times that the connection
is non-zero across Monte-Carlo simulations.

relationship is robust to task and context, and the relationship
is stable across different days indicating the reliability of these
physiological responses.

Frontoparietal Connection Linked to
Behavioral Responses
In our final analysis, we investigated whether the robust
relationship in physiology between the laboratory and simulation
session can also account for the behavioral responses. Using
the 16 connections significantly related to HRV, we use a
correlational analysis to relate the significant brain connections
to all seven of our behavioral measures: the emotional intensity
ratings in the laboratory (attend, reinterpret), the laboratory
self-report anxiety, the performance accuracy in the simulation
(low-stress, high-stress), and the simulation self-report anxiety
(low-stress, high-stress).

As illustrated in Figure 5, results demonstrated that one
connection from a right anterior electrode to a central posterior
electrode accounted for variance in two of the behavioral
metrics: emotional intensity ratings in the attend condition of
the laboratory task (r = 0.486, p = 0.011) and self-report anxiety
after the high-stress condition in the immersive simulation
(r = 0.389, p = 0.035). More specifically, the outflow from F4
(likely related to brain activity in the frontal cortex) to Pz (likely
related to activity in parietal cortex) accounts for approximately
24% of the variance in emotional intensity ratings in the attend
condition and 15% of the variance in the self-report anxiety in
the high-stress condition.

FIGURE 5 | Brain connectivity predicts behavioral and physiological
outcomes. Across the LASSO regression and subsequently correlational
analyses, a single connection from the anterior F4 electrode to the posterior
Pz electrode predicts the LF-HRV in the high-stress simulation condition, the
emotional intensity ratings in the attend laboratory condition, and the
self-report anxiety in the high-stress simulation condition.

The robust relationship of this F4-Pz connection with
multiple measures that likely index emotional reactivity aligns
with previous research that has found a critical role for the
frontoparietal network in successful emotion regulation (Buhle
et al., 2014; Kohn et al., 2014). Importantly, this neural
connectivity is linked with our metrics from the experimental
conditions with the highest levels of emotional reactivity:
the HRV in the high-stress but not low-stress condition,
the emotional intensity in the attend but not the reinterpret
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condition, and the self-report anxiety after the high-stress but
not the low-stress condition. This relationship manifests in
metrics from within the same session (brain predicts emotional
intensity in the laboratory) as well as metrics between sessions,
contexts, and days (brain predicts HRV and self-report anxiety
in the simulation).

DISCUSSION

In this study, we examined emotional reactivity and
its interrelationships with stress and anxiety across two
experimental sessions. Military and SRT participants completed
an image viewing task of negative MAPS pictures in the
laboratory on 1 day, and then they completed an immersive
shoot-don’t-shoot task in a virtual simulation on another
day. Each task included two experimental conditions, and
our behavioral results confirmed that task performance
was modulated across conditions in the expected direction:
participants rated negative images with higher emotional
intensity in an attend condition compared to a reinterpret
condition, and participants were less accurate disarming foe
characters in a high-stress condition compared to a low-stress
condition. Their self-reported anxiety was also higher in the
simulation scenario, suggesting an effect of immersion (Patton,
2014; Parsons, 2015); however, stability in their emotional
responses across sessions was also observed. Specifically,
higher ratings of emotional intensity in the laboratory
were statistically related to higher self-report anxiety in the
immersive simulation.

This behavioral relationship between the laboratory and
simulation was mirrored in a robust, yet specific, relationship
between the brain connectivity in the laboratory and the heart
response in the simulation. Interestingly, this relationship
was strongest in the theta band during the attend condition,
where participants had higher emotional intensity ratings,
and the LF-HRV during the high-stress condition, where
participants had decreased performance accuracy. This suggests
that the relationship may be salient only in the conditions
that invoke higher emotional reactivity. Complementing
this result, a dependence on higher emotional content was
also revealed in the correlation between brain connectivity
in the F4-Pz connection and emotional intensity ratings
during the attend condition and self-report anxiety after the
high-stress condition. Together, our findings describe an
integrated behavioral and physiological characterization of
emotional reactivity.

Frontoparietal Connectivity Relates to
Emotional Reactivity
Our theoretical interest centered on emotional responses and
their physiological interdependances across contexts. More
specifically, we studied the relationship between a standard
laboratory emotion regulation task and its relationship to
the embodied experience of stress in an immersive shoot-
don’t-shoot task. Results revealed a strong link between a
frontoparietal connection across tasks and contexts, showing
the strongest relationship during experimental conditions where

participants experienced higher levels of emotional intensity,
stress, or anxiety. This finding is well aligned with previous
literature that has implicated frontoparietal involvement during
emotion regulation (Buhle et al., 2014; Kohn et al., 2014),
including a set of studies where connectivity from frontal
cortex was associated with outcomes related to emotional
reactivity (Domes et al., 2010), anxiety (Kim et al., 2011),
and stress (Wang and Saudino, 2011). Interestingly, the EEG
network activity was concentrated over the F4 electrode
which has been previously associated with activity from the
dorsolateral prefrontal cortex (DLPFC; Herwig et al., 2003).
This frontal region has been implicated in both emotion
reappraisal (Phillips et al., 2008) and risk-taking behavior
(Fecteau et al., 2007), and our tasks sit at their intersection as
an emotionally-charged, risky decision to shoot or not shoot.
The physiological interdependance across contexts suggests
that emotion regulation may rely on an implicit assessment
of risk, where the risk of adapting an emotional response
to an event may be evaluated in relation to its impact on
the success in future behavior. Research to explore how
risk and emotion regulation may invoke complementary
processes in the DLPFC is an exciting avenue of interest for
future research.

Our results demonstrated that this predictive relationship
was specific to the theta band, an intrinsic oscillation often
implicated in a variety of cognitive processes. The theta band
has been found to play a critical role in episodic memory
formation and general working memory function (Klimesch,
1999; Aftanas et al., 2002), two cognitive processes heavily
influenced by emotional responses. Moreover, the theta band
has also been linked to anxiety while appraising visual stimuli
(Aftanas et al., 2002), corroborating our result that links theta
activity to self-report anxiety in the immersive simulation.
However, theta activity in our study was also related to the more
general experience of high emotional intensity reported after
viewing the MAPS images, suggesting that theta activity in the
frontoparietal network may reflect the entanglement of emotion
in other cognitive processes.

Robust Prediction of LF-HRV in Simulation
From Theta Activity in Laboratory
While neuroimaging research has identified neural correlates
of emotional reinterpretation, our work extends our
understanding of emotional reactivity by examining the
interrelationships between brain and HRV between tasks,
contexts, and days. Our results specifically linked neural
connectivity in the theta band to LF-HRV. Research
in the last decade suggests that the specific autonomic
contributions to LF-HRV are ambiguous, suggesting it
is dually influenced by some mix of sympathetic and
parasympathetic influences (Randall et al., 1991; Reyes del
Paso et al., 2013); however, research has found LF-HRV
increases in response to negative emotion (Sloan et al., 1994;
Murakami and Ohira, 2007), and individuals showing high
levels of negative emotionality (e.g., anxiety patients, high
trait anger) show greater levels of LF-HRV compared to
their low LF-HRV counterparts (Ottaviani et al., 2009;
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Shah et al., 2013). Our research aligns with this previous
research because the predictive brain-heart relationship was
observed only in the high-stress condition of the simulation,
the condition that participants reported higher levels of
negative emotion.

LF-HRV has also been associated with connectivity between
neural regions implicated in emotional processing, including
amygdala, dorsal anterior cingulate, ventromedial PFC, and
the temporoparietal junction (Chang et al., 2013; Thome
et al., 2017). A proposal by Chang et al. (2013) posits
that connectivity in the emotional network that co-occurs
with changes in LF-HRV could in principle be linked to
an adaptive process in which psychological and physiological
states are adjusted when reorienting attention and changing
emotional states. Our results are a novel extension of this
interrelationship of brain connectivity and LF-HRV, showing
that this predictive relationship is stable between tasks as
well as across days. This may reflect that these physiological
metrics are capturing the intrinsic, stable processing of
emotional reactivity, but future research is needed to further
address the generalizability of this relationship across contexts
and time.

Understanding the Link Between the
Laboratory and Immersive Simulation
Outcomes
Our experimental design explored the relationship between
a controlled laboratory session and an immersive simulation
session, and our findings describe an integrated behavioral
and physiological characterization of emotional reactivity. The
emotion regulation paradigm included in our study has been
primarily studied within a controlled laboratory setting using
emotion invoking stimuli (Jackson et al., 2003; Ochsner et al.,
2004; Domes et al., 2010; Thiruchselvam et al., 2011; Uchida
et al., 2015). Our work aligns with the proposal that incorporating
additional realistic and complex experimental environments may
provide a more enhanced model of emotion regulation beyond
what has been shown in controlled laboratory studies alone
(Parsons, 2015).

Additionally, recent neuroscience research has shown that
non-invasive neural measurements made in the laboratory may
be used to predict behavioral outcomes in the real world
across a variety of tasks and diverse contexts (Tompson et al.,
2019). This framework has been coined the brain-as-predictor
approach (Berkman and Falk, 2013), and the promise of the
approach has been shown in a variety of tasks, including second
language acquisition (Tan et al., 2011), intelligence quotients
(Choi et al., 2008), and high-risk driving behavior (Wasylyshyn
et al., 2018). We employed this approach to compare emotional
reactivity during a stationary laboratory task to an immersive
simulation scenario. The simulator provided the opportunity
for participants to move around in the environment and
receive physical feedback, providing a closer approximation
to a real-world experience. Our results demonstrated that
connectivity strength in a frontoparietal network while viewing
negative, high arousal images predicts several indices of

a participant’s emotional response in an immersive shoot-
don’t-shoot scenario: LF-HRV and self-report anxiety after
a high-stress condition. Interestingly, this brain-as-predictor
relationship was significant for emotional responsesmeasured on
different days in different contexts. More generally, our findings
further add to the growing literature that psychological studies
broaden the scope beyond the laboratory for extended validity
and generalizability to real-world outcomes (Kingstone et al.,
2003; Doré et al., 2018; Schmälzle et al., 2017).

Methodological Considerations
Our results indicate the promise of linking physiological
responses across contexts and days; however, a few limitations
resulting from design decisions in our work indicate several
interesting directions for future research. While the differences
between the laboratory and simulation tasks had the benefit of
examining generalizability of the core constructs examined, these
discrepancies may also limit the direct mapping of constructs
between the two scenarios. Though both the MAPS and
simulation scenario stimuli were designed to induce stress and
negative affect, participants may vary in their response to these
stimuli across intensity, type, and duration. That is, individuals
may vary in how they respond to viewing emotionally-aversive
picture stimuli compared to their emotional response when
immersed in a shoot-don’t-shoot task with physical feedback.
Furthermore, the physiological measurement of this reactivity
had to vary based onmethodological considerations. The amount
of physical movement during the immersive simulation session
prevented the collection of EEG, so our research extends
literature that has linked both brain activity and HRV to
emotion (Chang et al., 2013; Sakaki et al., 2016). Future research
could employ laboratory and immersive scenarios with higher
interdependency in stimuli and/or task to examine whether
more similarity in scenarios enhance the relationships found
between sessions.

Additionally, our analysis was limited to male participants
with expert training in reacting to high-stress situations. Previous
research has identified sex differences in response to negative
visual materials (Cahill et al., 2001; Canli et al., 2002) and in
brain activation patterns elicited from emotional stimuli (Wager
et al., 2003), all while expertise also shapes our neural responses
to stimuli (Gauthier et al., 2000). Thus, based on our population,
wemay have limited the generalizability of our results, and future
work in this areamay aid in developing broader characterizations
of emotional reactivity and regulation.

Our study did not continually monitor the employment of the
reinterpretation strategy during the laboratory task. Participants
only verbalized their strategy during training, but not during the
experiment. Thus, we do not know if participants continued to
employ this strategy during the MAPS image task. Future studies
using the brain-as-predictor approach may find that regulation
strategy plays a key role to isolate the neural networks serving
this emotion regulation task and may better predict behavioral
and physiological outcomes across contexts.

Finally, due to model constraints, we only inspected a subset
of the connectivity patterns available and restricted our analysis
to a priori bands of interest, despite the inherent complexity
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of brain signals (Buzsáki, 2006). Thus, future studies may show
that the connectivity pattern shown to reliably relate to a variety
of measurements may actually only be a subset of connections
within an intricate mesh of brain connections that may predict
the behavioral outcomes explored.
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