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Brain monitoring combined with automatic analysis of EEGs provides a clinical decision

support tool that can reduce time to diagnosis and assist clinicians in real-timemonitoring

applications (e.g., neurological intensive care units). Clinicians have indicated that a

sensitivity of 95% with specificity below 5% was the minimum requirement for clinical

acceptance. In this study, a high-performance automated EEG analysis system based

on principles of machine learning and big data is proposed. This hybrid architecture

integrates hidden Markov models (HMMs) for sequential decoding of EEG events with

deep learning-based post-processing that incorporates temporal and spatial context.

These algorithms are trained and evaluated using the Temple University Hospital EEG,

which is the largest publicly available corpus of clinical EEG recordings in the world.

This system automatically processes EEG records and classifies three patterns of

clinical interest in brain activity that might be useful in diagnosing brain disorders: (1)

spike and/or sharp waves, (2) generalized periodic epileptiform discharges, (3) periodic

lateralized epileptiform discharges. It also classifies three patterns used to model the

background EEG activity: (1) eye movement, (2) artifacts, and (3) background. Our

approach delivers a sensitivity above 90% while maintaining a specificity below 5%. We

also demonstrate that this system delivers a low false alarm rate, which is critical for any

spike detection application.

Keywords: electroencephalography, EEG, hidden markov models, HMM, deep learning, stochastic denoising

autoencoders, SdA, automatic detection

INTRODUCTION

Electroencephalograms (EEGs) are used in a broad range of health care institutions to
monitor and record electrical activity in the brain using electrodes placed on the scalp.
EEGs are essential in diagnosis of clinical conditions such as epilepsy, depth of anesthesia,
coma, encephalopathy, and brain death (Yamada and Meng, 2017). Manual scanning and
interpretation of EEGs is time-consuming since these recordings may last hours or days.
It is also an expensive process as it requires highly trained experts. Therefore, high
performance automated analysis of EEGs can reduce time to diagnosis and enhance real-time
applications by flagging sections of the signal that need further review. Many methods
have been developed over the years (Ney et al., 2016) including time-frequency digital
signal processing techniques (Osorio et al., 1998; Gotman, 1999), wavelet analysis (Sartoretto
and Ermani, 1999), multivariate techniques based on simulated leaky integrate-and-fire
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neurons (Schindler et al., 2001; Schad et al., 2008), non-linear
dynamical analysis of EEG(Stam, 2005), expert systems that
attempt to mimic a human observer (Deburchgraeve et al., 2008)
and autoregressive spectral analysis of scalp EEG (Khamis et al.,
2009). In spite of recent research progress in this field, the
transition of current EEG analysis methodologies to the real-
life usage in clinical settings like ICUs has been limited, mainly
because of unacceptably high false detection rates (Varsavsky and
Mareels, 2006; Hopfengärtner et al., 2007).

Machine learning has made tremendous progress over
the past three decades due to rapid advances in low-cost
highly-parallel computational infrastructure, powerful machine
learning algorithms, and, most importantly, big data. Although
contemporary approaches for automatic interpretation of EEGs
have employed more modern machine learning approaches
such as neural networks (Ramgopal, 2014) and support vector
machines (Alotaiby et al., 2014), state of the art machine
learning algorithms that employ high dimensional models have
not previously been utilized in EEG analysis because there has
been a lack of large databases that incorporate sufficient real-
world variability to adequately train these systems. In fact,
what has been lacking in many bioengineering fields including
automatic interpretation of EEGs are the big data resources
required to support the application of advancedmachine learning
approaches. A significant big data resource, known as the
TUH EEG Corpus (Obeid and Picone, 2016), has recently
become available creating a unique opportunity to evaluate high
performance deep learning models that require large amounts of
training data. This database includes detailed physician reports
and patient medical histories, which are critical to the application
of deep learning. But, transforming physicians’ reports into a
deep learning paradigm is proving to be challenging because
the mapping of reports to underlying EEG events is non-
trivial. Our experiments suggest that a hybrid structure based on
hiddenMarkovmodels and deep learning can approach clinically
acceptable levels of performance.

Spike and seizure detection software is widely used in many
countries around the world. Industry leaders such as Persyst
(Persyst Development Corporation, 2017) provide a wide variety
of tools to automatically detect and classify various EEG events.
The limitations of the performance of such systems on tasks such
as seizure detection is a widely discussed topic within the clinical
and research communities. In fact, in collaboration with IBM,
we are hosting a Kaggle-style challenge (see https://www.kaggle.
com/) focused on the problem of seizure detection. More details
on this challenge will follow in Spring 2019.

METHODS

An overview of our proposed system is shown in Figure 1.
In order to classify data, N independent feature streams
are extracted from the multichannel EEG signal using a
standard cepstral coefficient-based feature extraction approach.
A sequential modeler analyzes each channel and produces
event hypotheses. Three passes of post-processing are performed
to produce the final output. In this section, we discuss the

various components of this system, including development of the
statistical models using a supervised training approach.We begin
with a discussion of the data used to train and evaluate the system.

Data: The TUH EEG Corpus
Our system was developed using the TUH EEG Corpus (TUH-
EEG) (Obeid and Picone, 2016), which is the largest publicly
available corpus of clinical EEG recordings in the world. The
most recent release, v1.1.0, includes data from 2002 to 2015. It
contains over 23,000 sessions from over 13,500 patients (over
1.8 years of multichannel signal data in total). This dataset was
collected at the Department of Neurology at Temple University
Hospital. The data includes sessions taken from outpatient
treatments, Intensive Care Units (ICU) and Epilepsy Monitoring
Units (EMU), Emergency Rooms (ER) as well as several other
locations within the hospital. Since TUH-EEG consists entirely
of clinical data, it contains many real-world artifacts (e.g., eye
blinking, muscle artifacts, head movements). This makes it an
extremely challenging task for machine learning systems and
differentiates from most research corpora currently available in
this area. Each of the sessions contains at least one EDF file and
one physician report. These reports are generated by a board-
certified neurologist and are the official hospital record. These
reports are comprised of unstructured text that describes the
patient, relevant history, medications, and clinical impression.
The corpus is publicly available from the Neural Engineering
Data Consortium (www.nedcdata.org).

EEG signals in TUH-EEG were recorded using several
generations of Natus Medical Incorporated’s NicoletTM EEG
recording technology. The raw signals consist of multichannel
recordings in which the number of channels varies between 20
and 128 channels (Harati et al., 2014). A 16-bit A/D converter
was used to digitize the data. The sample frequency varies from
250 to 1024Hz. In our work, we resample all EEGs to a sample
frequency of 250Hz. The Natus system stores the data in a
proprietary format that has been exported to EDF with the use
of NicVue v5.71.4.2530. The original EEG records are split into
multiple EDF files depending on how the session was annotated
by the attending technician. Some statistics about the corpus
are shown in Figure 2. For our studies, we use the 22 channels
associated with a standard 10/20 EEG configuration (American
Clinical Neurophysiology Society, 2006).

A portion of TUH-EEG was annotated manually during a
study conducted with Temple University Hospital neurologists
(Harati et al., 2014). We selected the data based more on the
presence of the events of interest described below than the type
of EEG since it is difficult to locate examples of spikes. We
have analyzed performance as a function of the type/location of
the EEG recording for a specific application, seizure detection,
using similar technology to that presented in this paper, and
not found a significant correlation. The error profiles are similar
for EEGs collected in the ICU and EMU from a machine
learning perspective.

The annotations we developed comprise six patterns of
clinical interest. The first three patterns that might be useful in
diagnosing brain disorders are:
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FIGURE 1 | A three-pass architecture for automatic interpretation of EEGs that integrates hidden Markov models for sequential decoding of EEG events with deep

learning for decision-making based on temporal and spatial context.

FIGURE 2 | Some relevant statistics demonstrating the variety of data in TUH-EEG.

(1) spike and/or sharp waves (SPSW): patterns of EEGs observed
during epileptic seizures.

(2) periodic lateralized epileptiform discharges (PLED): patterns
observed in the context of destructive structural lesions of
the cortex. PLED events manifest themselves by presence
of a pattern of repetitive periodic, focal, or hemispheric
epileptiform discharges like sharp waves, spikes, spike and
waves and polyspikes, at intervals of between 0.5 and 3 s.

(3) generalized periodic epileptiform discharges (GPED):
manifest themselves as periodic short-interval diffuse
discharges, periodic long-interval diffuse discharges and
suppression-burst patterns. GPEDs are encountered

in metabolic encephalopathy and cerebral hypoxia
and ischemia. They are similar to PLEDs. In fact, if
periodic complexes are limited to a focal brain area
they are called as PLEDs, but if periodic complexes
are observed over both hemispheres in a symmetric,
diffuse and synchronized manner, they are defined
as GPEDs.

The other three patterns were used by our machine learning
technology to model background noise:

(4) eye movement (EYEM): spike-like signals that occur during
patient eye movement.
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(5) artifacts (ARTF): recorded electrical activity that is not
of cerebral origin including physiologic artifacts generated
from sources other than brain. This class also includes
extraphysiologic artifacts arising from outside the body such
as noise generated from the recording equipment.

(6) background (BCKG): a class used to denote all other data that
does not fall in the five classes above. This class usually plays
an instrumental role in machine learning systems and needs
to include a rich variety of artifacts that are not events of
clinical interest.

Note that standard terminology in this field has changed
somewhat. PLEDs are now referred to as lateralized periodic
discharges (LPDs), GPEDs are now referred to as generalized
periodic discharges (GPDs) and spike and sharp waves are
referred to as spike and wave (SW) (American Clinical
Neurophysiology Society, 2012). However, we will retain the
older terminology because this aligns with the way the
corpus was annotated and is what was used in our machine
learning experiments.

There are over 10 different electrode configurations and over
40 channel configurations represented in the corpus. This poses a
serious challenge for machine learning systems since for a system
to be practical it must be able to adapt to the specific type of EEG
being administered. However, for this initial study, we focused
on a subset of the data in which signals were recorded using
the Averaged Reference (AR) electrode configuration (Lopez
et al., 2016). This data is publicly available at https://www.isip.
piconepress.com/projects/tuh_eeg/html/downloads.shtml.

In this paper we focus on the problem of six-way event
classification. We have also recently worked on seizure detection

using technology that was based on the technology presented
here. The work presented here represents our first attempts
at doing machine learning on EEG signals and forms the
basis for our subsequent work on a wide range of EEG
challenges (see https://www.isip.piconepress.com/publications/_
index.shtml).

Data: The TUH-EEG Event Short Set
We collaborated with several neurologists and a team of
undergraduate annotators (Shah et al., 2018) to manually label
a subset of TUH-EEG for the six different kinds of EEG patterns
described in Section Data: The TUH EEG Corpus. This subset,
known as the TUH EEG Events Corpus (TUH-EEG-ESS), is
available from our project web site: https://www.isip.piconepress.
com/projects/tuh_eeg/html/downloads.shtml. The training set
is designed to include segments from 359 sessions and the
evaluation dataset contains segments from 159 sessions. This
data is designed in a way that every patient appears just once in
the dataset.

Note that the annotations were created on a channel basis—
the specific channels on which an event was observed were
annotated. This is in contrast to many open source databases that
we have observed which only mark events in time and do not
annotate the specific channels on which the events occurred. In
general, with EEG signals, events such as SPSW do not appear
on all channels. The subset of channels on which the event
appears is relevant diagnostic information. Our annotations are
demonstrated in Figure 3.

A summary of the TU-EEG-ESS dataset is presented in
Table 1. The dataset is divided into a training and evaluation

FIGURE 3 | An example demonstrating that the reference data is annotated on a per-channel basis.
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TABLE 1 | An overview of the distribution of events in the subset of the TUH EEG

Corpus used in our experiments.

Event Train Train % (CDF) Eval Eval % (CDF)

SPSW 645 0.8% ( 1%) 567 1.9% ( 2%)

GPED 6,184 7.4% (8%) 1,998 6.8% (9%)

PLED 11,254 13.4% (22%) 4,677 15.9% (25%)

EYEM 1,170 1.4% (23%) 329 1.1% (26%)

ARTF 11,053 13.2% (36%) 2,204 7.5% (33%)

BCKG 53,726 63.9% (100%) 19,646 66.8% (100%)

Total: 84,032 100.0% (100%) 29,421 100.0% (100%)

set in a way that it includes sufficient number of observations
to train machine learning models such as HMMs and evaluate
these models on unseen examples from new patients. An
overview of the distribution of six types of events for both
of training and evaluation set demonstrates that some events
occur much less frequently in the actual corpus than other
common events. For example, while just <1%of the subset
is assigned to SPSW more than 60% is assigned to BCKG.
Also notice that 99% of the TU-EEG-ESS data composed of
three classes for modeling background which are EYEM, ARTF
and BCKG. This distribution of data makes the design of
robust classifiers for the detection of non-background classes
even more challenging. High performance automatic analysis
of EEGs requires dealing with infrequently occurring events
since much of the data is uninformative. This is often referred
to as an unbalanced data problem, and it is quite common
in many biomedical applications. Hence, the evaluation set
was designed to contain a reasonable representation of all
classes. All of EEGs in this subset were recorded using
standard 10–20 system and processed using a TCP montage
(Lopez et al., 2016), resulting in 22 channels of signal data
per EEG.

Pre-processing: Feature Extraction
The first step in EEG processing in Figure 1 consists of
converting the signal to a sequence of feature vectors (Picone,
1990). Common EEG feature extraction methods include
temporal, spatial and spectral analysis (Mirowski et al., 2009;
Thodoroff et al., 2016). A variety of methodologies have
been broadly applied for extracting features from EEG signals
including wavelet transform, independent component analysis
and autoregressive modeling (Jahankhani et al., 2006; Subasi,
2007). In this study, we use a methodology based on mel-
frequency cepstral coefficients (MFCC) which have been
successfully applied to many signal processing applications
including speech recognition (Picone, 1993). In our systems,
we use linear frequency cepstral coefficients (LFCCs) since a
linear frequency scale provides some slight advantages over
the mel scale for EEG signals (Harati et al., 2015). A block
diagram summarizing the feature extraction process used in this
work for automatic classification of EEG signals is presented in
Figure 4. Recent experiments with different types of features (Da
Rocha Garrit et al., 2015) or with using sampled data directly

(Xiong et al., 2017) have not shown a significant improvement
in performance by eliminating the feature extraction process and
using sampled data directly.

The first step to derive cepstral coefficients using LFCC
feature extraction method is to divide raw EEG signals into
shorter frames. The second step is to take a high resolution
discreet fast Fourier Transform of each frame. Next, the spectrum
is downsampled with a filter bank composed of an array of
overlapping bandpass filters. Finally, the cepstral coefficients are
derived by computing a discrete cosine transform of the filter
bank’s output (Picone, 1993). In our experiments, we discarded
the zeroth-order cepstral coefficient. Instead of this term we
use a frequency domain energy term which is calculated by
adding the output of the oversampled filter bank after they
are downsampled:

Ef = log
(

∑N−1

k=0

∣

∣X(k)
∣

∣

2
)

(1)

In our experiments, we found adding a new feature that is able
to model the long-term differentiation in energy can improve the
results of spike detection significantly. We call this new feature
as differential energy term which can differentiate between
transient pulse shape patterns and stationary background noise.
To compute differential energy term, we compute the energy
of frames inside a window of a channel of EEG. Differential
energy equals to maximum energy minus minimum energy over
this interval:

Ed = maxm
(

Ef (m)
)

−minm
(

Ef (m)
)

(2)

We have used a window with length of a 0.9 s to calculate
differential energy term. Even though this term is a simple
feature, our experiments showed that it results in a statistically
significant improvement in performance (Harati et al., 2015).

Our experiments have also shown that using derivatives of
features based on a regression approach, which is a popular
method in speech recognition (Picone, 1993), are effective in the
classification of EEG events. We use the following definition for
the derivative:

dt =

∑N
n=1 n (ct+n − ct−n)

2
∑N

n=1 n
2

(3)

Equation (3) is applied to the cepstral coefficients, ct , to compute
the first derivatives, referred to as delta coefficients. Equation (3)
is then reapplied to the first derivatives to compute the second
derivatives, which are referred to as delta-delta coefficients. We
use a window with length of 9 (N = 9) for the first derivative and
a window with length of 3 (N = 3) for the second derivative. The
introduction of derivatives helps the system discriminate between
steady-state behavior, such as that found in a PLED event, and
impulsive or non-stationary signals, such as that found in spikes
(SPSW) and eye movements (EYEM).

In this work, through experiments designed to optimize
feature extraction, we found best performance can be achieved
using a feature vector length of 26. This vector includes nine
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absolute features consisting of seven cepstral coefficients, one
frequency-domain energy term, and one differential energy term.
Nine deltas are added for these nine absolute features. Eight delta-
deltas are added because we exclude the delta-delta term for
differential energy (Harati et al., 2015).

First Pass: Sequential Decoding Using
Hidden Markov Models
Hidden Markov Models (HMMs) are one of the most important
machine learning models available today for sequential machine
learning problems that require both temporal and spectral
modeling (Picone, 1990; Juang and Rabiner, 1991). HMMs can be
considered as a class of doubly stochastic processes that are able
to model discrete state sequences as Markov chains. HMMs have
been used broadly in speech recognition where a speech signal
can be decomposed into an energy and frequency profile in which
particular events in the frequency domain can be used to identify
the sound spoken.

The challenge of interpreting and finding patterns in EEG
signal data is very similar to that of speech related projects. There
is one distinct difference, however. In a typical speech signal,
speech comprises about 50% of the signal and speech events
occur frequently. In EEG signals, key events such as seizures
occur <1% of the time. This disparity in prior probabilities of
these events makes training somewhat of a challenge, since there

is overwhelming pressure for the system to simply ignore the
events of interest.

For automatic analysis of EEGs, we consider EEG signals to
bare composed of a chain of encoded messages as a sequence of
one or more symbols. We model an EEG as a sequence of one
of six symbols: SPSW, PLED, GPED, EYEM, ARTF, and BCKG.
We assume that each one of these patterns is represented by a
sequence of feature vectors or observations O, defined as:

O = o1, o2, . . . , oT (4)

Here oT is the feature vector observed at time t. If we define Si as
the ith event in our dictionary of K events, and S as a sequence
of events from this dictionary, then the EEG pattern recognition
problem can be considered as finding themost probable sequence
of events that maximize the posterior probability P (O | S). We
train one HMM model for each event in our dictionary using
manually annotated data.

A simple left-to-right GMM-HMM, illustrated in Figure 5,
was used for sequential decoding of EEG signals. A GMM-HMM
is characterized by N states where each state consists of an L-
component Gaussian mixture model. The transition probability
matrix which describes how the states are interconnected consists
of a set of probabilities aij which denotes the probability of a
transition from state i to j. Considering α(i, t) as the forward
probability where (i = 1, 2,. . . ,N; t = 1, 2, . . . , T) , β

(

j, t
)

as the

FIGURE 4 | An overview of the feature extraction algorithm.

FIGURE 5 | A left-to-right HMM is used for sequential decoding in the first pass of processing.
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backward probability where (j = 1, 2, . . . , N; t = T-1, . . . ,0), and
P(O|M) as the probability that model M generates symbol series
O, the probability that there will be a transition from state i to
state j at time t can be defined as:

γi
(

i, j
)

=
α (i, t − 1) aijbij(Ot ,µij,6ij)β

(

j, t
)

P(O|M)
(5)

The reestimation formulae for the transition probabilities are:

aij =

∑

t γi
(

i, j
)

∑

t

∑

j γi
(

i, j
) (6)

We can calculate the output density function using the output
vector, Ot, if it follows an n-dimensional normal distribution as:

bij(ot ,µij,6ij) =
exp{−(ot − µij)

t ∑−1
ij (ot − µij)/2

(2π)n/2
∣

∣6ij

∣

∣

1/2
(7)

whereµij is the mean and6ij is the covariance matrix. The mean
and covariance for each Gaussian mixture component can be
estimated by:

µij =

∑

t γi
(

i, j
)

ot
∑

t γi
(

i, j
) (8)

6ij =

∑

t γi
(

i, j
)

(ot − µij)(ot − µij)
t

∑

t γi
(

i, j
) (9)

In the first pass of signal modeling shown in Figure 1, we
divide each channel of the EEG signal into epochs. Each epoch
is represented by a sequence of frames where each frame is
represented by a feature vector. During training, we estimate the
parameters of the K models ({aij}, {bij}, {µij} and {6ij}) from the
training dataset by iterating over all epochs using Equations (5–
9). To determine these parameters in an iterative fashion, it is
first necessary to initialize them with a carefully chosen value
(Picone, 1990). Once this is done, more accurate parameters, in
the maximum likelihood sense, can be found by applying the
so-called Baum-Welch reestimation algorithm (Picone, 1990).
Decoding is typically performed using the Viterbi algorithm
(Alphonso and Picone, 2004). Using one HMM model per label,
we generate one posterior probability for each model and we
select the label that corresponds to the highest probability. Rather
than use the best overall output from the HMM system, we let the
HMM system output probabilities for each event for each epoch
for each channel, and we postprocess these probabilities using a
second pass consisting of a deep learning-based system.

Second Pass: Temporal and Spatial
Context Analysis Based on Deep Learning
The goal of the second pass of processing in Figure 1 is to
integrate spatial and temporal context to improve decision-
making. Therefore, the output of the first pass of processing,
which is a vector of six posterior probabilities for every epoch of
each channel, is postprocessed by a deep learning system. This
system extracts knowledge in a data-driven manner and learn

representations of data that involve multiple levels of abstraction
(LeCun et al., 2015).

In the second pass of processing, we are using a specific
type of deep leaning network known as a Stacked denoising
Autoencoder (SdA) (Vincent et al., 2010). SdAs have proven to
perform well for applications where we need to emulate human
knowledge (Bengio et al., 2007). Since interrater agreement for
annotation of seizures tends to be relatively low and somewhat
ambiguous, we need a deep learning structure that can deal with
noisy inputs. From a structural point of view, SdAs are composed
of multiple layers of denoising autoencoders in a way that the
input to each layer is the latent representation of the denoising
autoencoder found in the layer below. The most important
feature of denoising autoencoders that make them appropriate
for automatic analysis of EEGs is their ability in reconstructing a
repaired input from a corrupted version of it.

Denoising Autoencoders are themselves an extension of a
classical autoencoder (Vincent et al., 2008). The input vector to an
autoencoder is x ∈ [0, 1]d. Then using a deterministic mapping,
autoencoder maps the input to a hidden representation y ∈

[0, 1]d
′

as:

y = fθ (x) = s(Wx+ b) (10)

where W is a d′ × d weight matrix, b is a bias vector, s is a
non-linearity such as sigmoid function and θ = {W, b}.

A decoder maps this latent representation y to a
reconstruction z of the same shape as x:

z = gθ ′
(

y
)

= s
(

W
′

y+ b
′
)

(11)

It is common to constrain this mapping using a technique by
applying a constraint on these equations such as . This particular
constraint is known as tied weights. The parameters of this model
are optimized to minimize the average reconstruction error using
a loss function, L, such as reconstruction cross-entropy:

θ∗, θ ′
∗
= arg minθ , θ ′

1

n

n
∑

i=1

L(x(i), gθ ′
(

fθ

(

x(i)
))

) (12)

To implement a denoising autoencoder, we train an autoencoder
on partially corrupted and destroyed input data in a way that
it learns to reconstruct a repaired version of the input. To
implement this methodology, we use a stochastic mapping
function as x̃ = qD(x̃|x) for mapping the input x to a partially
destroyed version x̃. We use the corrupted data x̃ as the input
of a typical autoencoder to calculate the latent representation by
means of y = fθ (x̃) = s(Wx̃ + b). We reconstruct a repaired
version of the input using y = fθ (x̃) = s(Wx̃+b). The schematic
representation of the process is presented in Figure 6. In the
training process, the goal is to find parameters that minimize the
loss function which in this case is the average reconstruction error
on the training dataset. Note that in these equations, unlike basic
autoencoders, reconstruction of z is not a function of x but it is a
deterministic function of x̃ and thereby the result of a stochastic
mapping of x.
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The application of deep learning networks like SdAs generally
involves three steps: design, training and implementation. In the
design step, the number of inputs and outputs, the number of
layers, and the function of nodes are defined. During training,
the weights of the nodes are determined through a deep learning
process. In the last step, the statistical model is implemented
using the fixed parameters of the network determined during
training. Pre-processing of the input data is an additional step
that is extremely important to various aspects of the deep learning
training process.

The block diagram of the second stage of processing is
depicted in Figure 7. This stage consists of three parallel SdAs
designed to integrate spatial and temporal context to improve
decision-making. These SdAs are implemented with varying
window sizes to effectively perform a multi-time-scale analysis
of the signal and map event labels onto a single composite
epoch label vector. A first SdA, referred to as an SPSW-SdA,
is responsible for mapping labels into one of two classes:
epileptiform and non-epileptiform. A second SdA, EYEM-SdA,
maps labels onto the background (BCKG) and eye movement
(EYEM) classes. A third SdA, 6W-SdA, maps labels to any
one of the six possible classes. The first two SdAs use a
relatively short window context because SPSW and EYEM are
localized events and can only be detected when we have adequate
temporal resolution.

Training of these three SdA networks is done in two steps:
pre-training and fine-tuning. SdAs are deep learning networks

FIGURE 6 | In a stacked denoising autoencoder the input, x, is corrupted to x̃.

The autoencoder then maps it to y and attempts to reconstruct x.

that are composed of multiple layers of denoising autoencoders.
Pre-training is an unsupervised approach that minimizes the
reconstruction error. During pre-training, we train each layer of
the SdA separately using an unsupervised approach in which we
train the first level of a denoising autoencoder to minimize the
error in reconstructing of its input. Next, using the output code
of the first layer, we train the second layer denoising autoencoder
to learn a second level encoding function. This process is repeated
for all layers.

Following completion of pre-training, we perform fine-tuning
using a supervised training procedure. In fine-tuning the goal
is to minimize a loss function that represents the classification
error. First, we compose a network with just the encoding parts
of each denoising auto-encoder and then we add a logistic
regression layer as the last layer of a SdA deep learning network.
We initialize this network using weights that we obtained during
pre-training and train the entire network to minimize the
prediction error (Hinton et al., 2006; Bengio et al., 2007).

As shown in Figure 7, we also preprocess the data using
a global principal components analysis (PCA) to reduce
dimensionality before application of these SdAs (van der
Maaten et al., 2009). PCA is applied to each individual epoch
by concatenating each channel output into a supervector
and then reducing its dimensionality. For rare and localized
events (e.g., SPSW and EYEM), we use an out-of-sample
technique to increase the number of training samples
(van der Maaten et al., 2009).

Finally, using a block called an enhancer (Vincent et al., 2010),
the outputs of these three SdAs are then combined to obtain the
final decision. To add the three outputs together, we initialize our
final probability output with the output of the 6-way classifier.
For each epoch, if the other two classifiers detect epileptiform
or eye movement and the 6-way classifier was not in agreement
with this, we update the output probability based on the output
of 2-way classifiers. The overall result of the second stage is a
probability vector of dimension six containing a likelihood that
each label could have occurred in the epoch. It should also be
noted that the outputs of these SdAs are a probability vector.
A soft decision paradigm is used because this output will be
smoothed in the third stage of processing.

Third Pass: Statistical Language Modeling
Neurologists generally impose certain restrictions on events
when interpreting an EEG. For example, PLEDs and GPEDs
don’t happen in the same session. None of the previous

FIGURE 7 | An overview of the second pass of processing.
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stages of processing address this problem. Even the output
of the second stage accounts mostly for channel context and
is not extremely effective at modeling long-term temporal
context. The third pass of processing addresses this issue
and improves the overall detection performance by using a
finite state machine based on a statistical language model. In
general, for problems such as EEG event detection in which
infrequently occurring events play a significant role, post-
processing based on domain knowledge tends to provide large
gains in performance. Automatic this using deep learning is
not trivial.

As is shown in Figure 1, the third stage of post-processing is
designed to impose some contextual restrictions on the output
of the second stage. These contextual relationships involve
long-term behavior of the signal and are learned in a data-
driven fashion. This approach is also borrowed from speech
recognition where a probabilistic grammar is used that combines
the left and right contexts with the labels (Levinson, 2005).
This is done using a finite state machine that imposes specific
syntactic constraints.

In this study, a bigram probabilistic language model that
provides the probability of transiting from one type of epoch
to another (e.g., PLED to PLED) is prepared using the
training dataset and also in consultation with neurologists in
Temple Hospital University. The bigram probabilities for each
of the six classes are shown in Table 2, which models all
possible transitions from one label to the next. The remaining
columns alternate between the class label being transitioned
to and its associated probability. The probabilities in this
table are optimized on a training database that is a subset of
TUH-EEG. For example, since PLEDs are long-term events,
the probability of transitioning from one PLED to the next
is high ∼0.9. However, since spikes that occur in groups
are PLEDs or GPEDs, and not SPSWs, the probability of
transitioning from a PLED to SPSW is 0.0. Therefore, these
transition probabilities emulate the contextual knowledge used
by neurologists.

After compiling the probability table, a long window is
centered on each epoch and the posterior probability vector for
that epoch is updated by considering left and right context as
a prior (essentially predicting the current epoch from its left
and right context). A Bayesian framework is used to update
the probabilities of this grammar for a single iteration of
the algorithm:

Pgprior =

∑L
i=1 Pi + ǫpriorM

L+M
(13)

RPP(k) =
βR

∑N
i=1 exp (−iλ)Pk+i + αPgprior

1+ α
(14)

LPP(k) =
βL

∑N
i=1 exp (−iλ) Pk−i + αPgprior

1+ α
(15)

PCk|LR = βCPCk
(
∑k

i=1

∑k

j=1
LPP (i)RPP

(

j
)

Prob
(

i, k
)

Prob(k, j))
γ
n

(16)

In these equations, k = 1, 2. . . K where K is the total number of
classes (in this study K= 6), L is number of epochs in a file, ǫprior

is the prior probability for an epoch (a vector of length K) and M
is the weight. LPP and RPP are left and right context probabilities,
respectively.λ is the decaying weight for window, α is the weight
associated with Pgprior and βR and βL are normalization factors.
PCk

is the prior probability, PCk|LR is the posterior probability
of epoch C for class k given the left and right contexts, y is the
grammar weight, n is the iteration number (starting from 1) and
βC is the normalization factor. Prob

(

i, j
)

is a representation of the
probability table shown in Table 2. The algorithm iterates until
the label assignments, which are decoded based on a probability
vector, converge. The output of this stage is the final output and
what was used in the evaluations described in Section Results.

RESULTS

In this section, we present results on a series of experiments
designed to optimize and evaluate each stage of processing.

Pre-processing: Feature Extraction
Features from each epoch are identified using a feature extraction
technique described in Section Data: The TUH-EEG Event
Short Set. Neurologists review EEGs in 10 s windows. Pattern
recognition systems often subdivide the signal into small
segments during which the signal can be considered quasi-
stationary. HMM systems need further subdivision so that there
are enough observations to allow the system to develop a
strong sense of the correct choice. A simple set of preliminary
experiments determined that a reasonable tradeoff between
computational complexity and performance was to split the 10 s
window into 1 s epochs, and to further subdivide these into
0.1 s frames. Hence, features were computed every 0.1 s using
a 0.2 s overlapping analysis window. The output of the feature
extraction system is 22 channels of data, where in each channel, a
feature vector of dimension 26 corresponds to every 0.1 s. These
parameters were optimized experimentally in a previous study
(Harati et al., 2015).

First Pass: Sequential Decoding Using
Hidden Markov Models
A 6-way classification experiment was conducted using the
models described in Figure 5. Each state uses 8 Gaussian mixture
components and a diagonal covariance assumption (drawing on
our experience with speech recognition systems and balancing
dimensionality of the models with the size of the training
data). Models were trained using all events on all channels
resulting in what we refer to as channel independent models.
Channel dependent models have not proven to provide a boost
in performance and add considerable complexity to the system.

The results for the first pass of processing are shown in
Table 3, in the first pass section. Amore informative performance
analysis can be constructed by collapsing the three background
classes into one category. We refer to this second evaluation
paradigm as a 4-way classification task: SPSW, GPED, PLED
and BACKG. The latter class contains an enumeration of the
three background classes. The 4-way classification results for the
first pass of processing are presented in Table 4, in the first pass
section. Finally, in order that we can produce a detection error
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TABLE 2 | A bigram probabilistic language model for the third pass of processing which models all possible transitions from one of the six classes to the next.

i j P(i, j) j P(i, j) j P(i, j) j P(i, j) j P(i, j) j P(i, j)

SPSW SPSW 0.40 PLED 0.00 GPED 0.00 EYEM 0.10 ARTF 0.20 BCKG 0.30

PLED SPSW 0.00 PLED 0.90 GPED 0.00 EYEM 0.00 ARTF 0.05 BCKG 0.05

GPED SPSW 0.00 PLED 0.00 GPED 0.60 EYEM 0.00 ARTF 0.20 BCKG 0.20

EYEM SPSW 0.10 PLED 0.00 GPED 0.00 EYEM 0.40 ARTF 0.10 BCKG 0.40

ARTF SPSW 0.23 PLED 0.05 GPED 0.05 EYEM 0.23 ARTF 0.23 BCKG 0.23

BCKG SPSW 0.33 PLED 0.05 GPED 0.05 EYEM 0.23 ARTF 0.13 BCKG 0.23

TABLE 3 | The 6-way classification results for the three passes of processing.

Pass Event ARTF BCKG EYEM GPED PLED SPSW

First ARTF 41.24 45.19 2.18 3.81 2.77 4.81

BCKG 7.02 71.93 2.59 7.37 2.28 8.81

EYEM 2.13 0.61 82.37 2.13 8.51 4.26

GPED 7.46 4.85 2.39 53.32 20.42 11.55

PLED 0.70 1.85 4.70 17.62 54.80 20.32

SPSW 4.41 8.29 9.17 33.33 4.59 40.21

Second ARTF 27.49 61.73 7.28 0.00 1.08 2.43

BCKG 7.00 82.03 5.79 0.97 0.36 3.86

EYEM 4.21 16.84 77.89 0.00 0.00 1.05

GPED 0.60 14.69 0.00 59.96 10.26 14.49

PLED 1.40 22.65 0.80 13.83 52.30 9.02

SPSW 7.69 35.90 2.56 28.21 0.00 25.64

Third ARTF 14.04 72.98 10.18 0.00 0.00 2.81

BCKG 3.42 81.40 8.93 0.30 0.00 5.95

EYEM 2.30 17.24 79.31 0.00 0.00 1.15

GPED 0.30 3.65 0.00 65.05 13.37 17.63

PLED 0.00 10.76 0.49 9.78 65.28 13.69

SPSW 10.00 33.33 13.33 10.00 0.00 33.33

tradeoff (DET) curve (Martin et al., 1997) we also report a 2-
way classification result in which we collapse the data into a
target class (TARG) and a background class (BCKG). The 2-way
classification results for the first pass of processing are presented
in Table 5, in the first pass section. Note that the classification
results for all these tables are measured by counting each epoch
for each channel as an independent event. We refer to this as
forced-choice event-based scoring because every epoch for every
channel is assigned a score based on its class label.

Second Pass: Temporal and Spatial
Context Analysis Based on Deep Learning
The output of the first stage of processing is a vector of six
scores, or likelihoods, for each channel at each epoch. Therefore,
if we have 22 channels and six classes, we will have a vector
of dimension 6 × 22 = 132 scores for each epoch. This 132-
dimension epoch vector is computed without considering similar
vectors from epochs adjacent in time. Information available
from other channels within the same epoch is referred to as
“spatial” context since each channel corresponds to a specific
electrode location on the skull. Information available from other

TABLE 4 | The 4-way classification results for the three passes of processing.

Pass Event BCKG SPSW GPED PLED

First BCKG 82.30 8.35 6.94 2.42

SPSW 21.87 40.21 33.33 4.59

GPED 14.71 11.55 53.32 20.42

PLED 7.26 20.32 17.62 54.80

Second BCKG 95.60 3.24 0.62 0.54

SPSW 46.15 25.64 28.21 0.00

GPED 15.29 14.49 59.96 10.26

PLED 24.85 9.02 13.83 52.30

Third BCKG 95.11 4.69 0.19 0.00

SPSW 56.67 33.33 10.00 0.00

GPED 3.95 17.63 65.05 13.37

PLED 11.25 13.69 9.78 65.28

TABLE 5 | The 2-way classification results for the three passes of processing.

Pass Event TARG BCKG

First TARG 86.92 13.08

BCKG 18.20 81.80

Second TARG 78.94 21.06

BCKG 4.40 95.60

Third TARG 90.10 9.90

BCKG 4.89 95.11

epochs is referred to as “temporal” context. The goal of this
level of processing is to integrate spatial and temporal context to
improve decision-making.

To integrate context, the input to the second pass deep
learning system is a vector of dimension 6 x 22 x window
length, where we aggregate 132-dimension vectors in time. If
we consider a 41-second window, then we will have a 5,412-
dimension input to the second pass of processing. This input
dimensionality is high even though we have a considerable
amount of manually labeled training. To deal with this problem
we follow a standard approach of using Principal Components
Analysis (PCA) (Fukunaga, 1990) before every SdA. The output
of PCA is a vector of dimension 13 for SdA detectors that look
for SPSW and EYEM and 20 for 6-way SdA classifier.

Further, since we do not have enough SPSW and EYEM events
in the training dataset, we must use an out-of-sample technique
(van der Maaten et al., 2009) to train SdA. Three consecutive
outputs are averaged, so the output is further reduced from 3
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× 13 to just 13, using a sliding window approach to averaging.
Therefore, the input for SPSW SdA and EYEM SdA decreases to
13 x window length and 20 x window length for 6-way SdA.

We used an open source toolkit, Theano (Bergstra et al., 2010;
Bastien et al., 2012), to implement the SdAs. The parameters of
the models are optimized to minimize the average reconstruction
error using a cross-entropy loss function. In the optimization
process, a variant of stochastic gradient descent is used, referred
to as minibatches. Minibatch stochastic gradient descent is
similar to stochastic gradient descent, but we use more than
one training example to calculate each estimate of the gradient.
Using this optimization method, we will have less variance
in the estimate of the gradient. Additionally, this framework
makes better use of the hierarchical memory organization in
modern computers.

SPSW SdA uses a window length of 3 which means it has 39
inputs and 2 outputs. It has three hidden layers with corruption
levels of 0.3 for each layer. The number of nodes per layer are:
first layer = 100, second layer = 100, third layer = 100. The
parameters for pre-training are: learning rate = 0.5, number
of epochs = 200, batch size = 300. The parameters for fine-
tuning are: learning rate = 0.2, number of epochs = 800 and
batch size= 100.

EYEM SdA uses a window length of 3 which means it has 39
inputs and 2 outputs. It has three hidden layers with corruption
levels of 0.3 for each layer. The number of nodes per layer are:
first layer = 100, second layer = 100, third layer = 100. The
parameters for pre-training are: learning rate = 0.5, number
of epochs = 200, batch size = 300. The parameters for fine-
tuning are: learning rate = 0.2, number of epochs = 100 and
batch size= 100.

Six-way SdA uses a window length of 41 which means it
has 820 inputs and 6 outputs. It has three hidden layers with
corruption levels of 0.3 for each layer. The number of nodes per
layer are: first layer= 800, second layer= 500, third layer= 300.
The parameters for pre-training are: learning rate= 0.5, number
of epochs = 150 and batch size = 300. The parameters for fine-
tuning are: learning rate = 0.1, number of epochs = 300 and
batch size= 100.

The 6-way, 4-way and 2-way classification results for the
second stage of processing are presented in Tables 3–5, in the
second pass section, respectively. Note that unlike the tables for
the first pass of processing, the classification results in each of
these tables are measured once per epoch—they are not per-
channel results. We refer to these results as epoch-based.

Third Pass: Statistical Language Modeling
The output of the second stage of processing is a vector of
six scores, or likelihoods, per epoch. This serves as the input
for the third stage of processing. The optimized parameters
for the third pass of processing are: prior probability for an
epoch, ǫprior, is 0.1; the weight, M, is 1; the decaying weight,
λ, is 0.2; the weight associated with Pgprior,α, is 0.1; the
grammar weight, y, is 1; the number of iterations, n, is 20,
and the window length to calculate the left and right prior
probabilities is 10.

The 6-way, 4-way and 2-way classification results are
presented in Tables 3–5, in the third pass section, respectively.
Note that these results are also epoch-based.

DISCUSSION

The 6-way classification task can be structured into several
subtasks. Of course, due to the high probability of the signal
being background, the system is heavily biased toward choosing
the background model. Therefore, in Table 4 in the first pass
section, we see that performance on BACKG is fairly high. Not
surprisingly, BCKG is most often confused with SPSW. SPSW
events are short in duration and there are many transient events
in BCKG that resemble an SPSW event. This is one reason we
added ARTF and EYEM models, so that we can reduce the
confusions of all classes with the short impulsive SPSW events. As
we annotate background data in more detail, and identify more
commonly occurring artifacts, we can expand on our ability to
model BCKG events explicitly.

GPEDs are, not surprisingly, most often confused with PLED
events. Both events have a longer duration than SPSWs and
artifacts. From the first pass section of Table 4, we see that
performance on these two classes is generally high. The main
difference between GPED and PLED is duration, so we designed
the post-processing to learn this as a discriminator. For example,
in the second pass of processing, we implemented a window
duration of 41 s so that the SdA system would be exposed to
long-term temporal context. We also designed three separate
SdA networks to differentiate between short-term and long-
term context. In Table 4 in the second pass section, we see
that the performance of GPEDs and PLEDs improves with
the second pass of post-processing. More significantly, the
confusions between GPEDs and PLEDs also decreased. Note
that also in Table 4 in the second pass section, performance
of BCKG increased significantly. Confusions with GPEDs and
PLEDs dropped dramatically to below 1%.

While performance across the board increased, performance
for SPSW dropped by adding the second pass of post-processing.
This is a reflection on the imbalance of the data. Less than one
percent of data is annotated as SPSWs, while we have ten times
more training samples for GPEDs and PLEDs. Note that we used
an out-of-sample technique to increase the number of training
samples for SPSWs, but even this technique could not solve the
problem of a lack of annotated SPSW data. By comparing the
first pass results of Tables 3–5 we saw a similar behavior with the
EYEM class because there are also fewer EYEM events.

A summary of the results for different stages of processing
is shown in Table 6. The overall performance of the multi-pass

TABLE 6 | Specificity and sensitivity for each pass of processing.

Pass Sensitivity Specificity

1 (HMM) 86.78 17.70

2 (SdA) 78.93 4.40

3 (SLM) 90.10 4.88
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hybrid HMM/deep learning classification system is promising:
more than 90% sensitivity and <5% specificity.

Because the false alarm rate in these types of applications
varies significantly with sensitivity, it is important to examine
performance using a DET curve. A DET curve for the first,
second, and third stage of processing is given in Figure 8.
Note that the tables previously presented use the unprocessed
likelihoods output from the system. They essentially correspond
to the point on theDET curve where a penalty of 0 is applied. This
operating point is identified on each of the curves in Figure 8.
We see that the raw likelihoods of the system correspond to
different operating points in the DET curve space. From Figure 8

it is readily apparent that post-processing significantly improves
our ability to maintain a low false alarm rate as we increase
the detection rate. In virtually all cases, the trends shown in
Tables 3–6 hold up for the full range of the DET curve. This study
demonstrates that a significant amount of contextual processing
is required to achieve a specificity of 5%.

CONCLUSION

Virtually all previous R&D efforts involving EEG, including
seizure detection, have been conducted on small databases
(Akareddy et al., 2014). Often these databases are not good
representations of the type of data observed in clinical
environments. Transient artifacts, not common in databases
collected under research conditions, can significantly degrade
performance. Not surprisingly, despite high accuracies presented
in the research literature, the performance of commercially
available systems has been lacking in clinical settings. There is
still great demand for an automated system that achieves a low
false alarm rate in clinical applications.

We have presented a three-pass system that can achieve
high performance classifying EEG events of clinical relevance.

The system uses a combination of HMMs for accurate
temporal segmentation and deep learning for high performance
classification. In the first pass, the signal is converted to EEG
events using an HMM-based system that models the temporal
evolution of the signal. In the second pass, three stacked
denoising autoencoders (SDAs) with different window durations
are used to map event labels onto a single composite epoch label
vector. We demonstrated that both temporal and spatial context
analysis based on deep learning can improve the performance
of sequential decoding using HMMs. In the third pass, a
probabilistic grammar is applied that combines left and right
context with the current label vector to produce a final decision
for an epoch.

Our hybrid HMM/deep learning system delivered a sensitivity
above 90% while maintaining a specificity below 5%, making
automated analysis a viable option for clinicians. This framework
for automatic analysis of EEGs can be applied in other
classification tasks such as seizure detection or abnormal
detection. There are many straightforward extensions of this
system that can include more powerful deep learning networks
such as Long Short-Term Memory Networks or Convolutional
Neural Networks. This is the subject of our ongoing research.

This project is part of a long-term collaboration with
the Department of Neurology at Temple University Hospital
that has produced several valuable outputs including a large
corpus (TUH-EEG), a subset of the corpus annotated for
clinically relevant events (TUH-EEG-ESS), and technology to
automatically interpret EEGs. In related work, we are alsomaking
the corpus searchable using multimodal queries that integrate
metadata, information extracted from EEG reports and the
signal event data described here (Obeid and Picone, 2016). The
resulting system can be used to retrieve many different types of
cohorts and will be a valuable tool for clinical work, research
and teaching.

FIGURE 8 | DET curves are shown for each pass of processing. The “zero penalty” operating point is also shown since this was used in Tables 3–5.
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