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When the brain is active, the neural activities of different regions are integrated on

various spatial and temporal scales; this is termed the synchronization phenomenon

in neurobiological theory. This synchronicity is also the main underlying mechanism for

information integration and processing in the brain. Clinical medicine has found that some

of the neurological diseases that are difficult to cure have deficiencies or abnormalities

in the whole or local integration processes of the brain. By studying the synchronization

capabilities of the brain-network, we can intensively describe and characterize both the

state of the interactions between brain regions and their differences between people with

a mental illness and a set of controls by measuring the rapid changes in brain activity

in patients with psychiatric disorders and the strength and integrity of their entire brain

network. This is significant for the study of mental illness. Because static brain network

connection methods are unable to assess the dynamic interactions within the brain, we

introduced the concepts of dynamics and variability in a constructed EEG brain functional

network based on dynamic connections, and used it to analyze the variability in the time

characteristics of the EEG functional network. We used the spectral features of the brain

network to extract its synchronization features and used the synchronization features to

describe the process of change and the differences in the brain network’s synchronization

ability between a group of patients and healthy controls during a working memory task.

We propose a method based on the fusion of traditional features and spectral features

to achieve an adjustment of the patient’s brain network synchronization ability, so that

its synchronization ability becomes consistent with that of healthy controls, theoretically

achieving the purpose of the treatment of the diseases. Studying the stability of brain

network synchronization can provide new insights into the pathogenic mechanism and

cure of mental diseases and has a wide range of potential applications.

Keywords: EEG, working memory, EEG dynamic brain network, brain network synchronization stability, brain

network synchronization adjustment and control

INTRODUCTION

The brain is a complex system that exhibits various subsystems on different spatial and temporal
scales. These subsystems are recurrent networks, that is, very large clusters of neurons that
repeatedly interact with each other. Individual neurons are microscopic and change at a different
time rate than macroscopic neural populations. After Babloyantz et al. (1986) first used nonlinear
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dynamics theory to study EEG signals in 1985, research on
EEG signals rapidly entered the era of nonlinear dynamics.
Various theories and methods of nonlinear dynamics have
opened up new possibilities for analyzing EEG data. Eliasmith
et al. (2012) presented a 2.5 million neuron model of the
brain (called “Spaun”) that bridged this gap by exhibiting
many different behaviors. The model is presented by only
visual image sequences, and it draws all its responses with
a physically modeled arm. Although simplified, the model
captures many aspects of neuroanatomy, neurophysiology, and
psychological behavior.

Hutt (2010) studied themain characteristics of a single neuron
and its interactions by establishing a standard mathematical
model and applied the model to explain experimental results
from the delayed feedback system of weak electric fish and from
electroencephalography (EEG). Liley et al. (2002) used nonlinear
differential equations based on the human brain’s physiological
structure andmedical anatomy to define amathematical model of
brain neuron clusters in states of both excitement and inhibition.
With the establishment of neuron models, neuroscientists have
conducted extensive and in-depth studies on neural network
dynamics using various neuronal models to try to reveal the
hidden secrets of the brain (Stam et al., 2007; Liu et al., 2008,
2014; De Han et al., 2009; Sun et al., 2009; Bartolomei et al., 2010;
Skidmore et al., 2011).

Currently, many studies (Zhao et al., 2008; Qun, 2009; Gao
et al., 2014b; Ruizhen et al., 2017) have shown that when the
brain is active, the neural activities of different regions are
integrated on a variety of spatial and temporal scales; this is
known as the synchronization phenomenon in neurobiological
theory. Synchronization is the basic mechanism for information
integration and processing. Clinical medicine studies have shown
that some of the neurological diseases that are difficult to
cure have deficiencies or abnormalities in the whole or local
integration process of the brain. Scientists have discovered
a variety of synchronous behaviors in the neuronal system.
The results of these studies show that the synchronization
behavior of neuronal firing not only affects daily learning, brain
memory, calculation, and motor control but can also be used
to explain some neurological diseases such as epilepsy and
Parkinson’s disease.

The human brain is a complex network. Synchronization
capability is an important indicator of complex networks.
Therefore, brain network synchronization research has gradually
attracted the attention of brain scientists and has made great
advances. For example, Ma et al. (2014) and Hongli et al.
(2013) found that the synchronization of the brain network
of Alzheimer’s patients was lower than that of a control
group. Hou et al. (Dong et al., 2014; Feng-Zhen et al., 2014)
analyzed the brain network of epilepsy patients using the
network connectivity index to understand whether the brain
network of patients with epilepsy is different from a normal
brain network, and also investigated the brain electrical signal
synchronization of patients with cerebral infarction. Rosário et al.
(2015) proposed a new brain network edge association method
that involves motif synchronization, primarily by calculating
the number of occurrences of certain patterns between any
two time-series to provide information about the degree and

direction of synchronization between two nodes in the network.
Sakkalis et al. (2013) used amplitude square coherence, phase
synchronization estimation, and robust nonlinear state space
generalized synchronization assessment methods to calculate the
synchrony between all the pairs of channels in alcohol addiction
patients. The experimental results showed that, during a rehearsal
procedure, the alcohol addiction patients showed a loss of
synchrony and an impaired lateralization of the brain activity.

Although previous studies have used synchrony to study
neurodegenerative diseases, most of the current studies about
the differences in brain function between patients with
mental disorders and normal subjects investigated traditional
features of brain network properties (node degree, mean-
clustering-coefficient, global-efficiency, small-world attributes,
etc.) (Micheloyannis et al., 2006; Zhang et al., 2013a,b, 2015;
Müller et al., 2018). Researching these traditional features can
clearly aid in understanding the topological characteristics of
the brain network, but these features do not fully reflect the
structure of the brain network. As a result, clinicians cannot find a
unique and effective index for determining the specific diagnosis
that a subject should receive. The spectral properties of complex
networks (Li and Zhang, 1997; Xiao, 2012; Sato and Iwai, 2014;
Liu and Shen, 2017) can provide a comprehensive measure of the
global structure of the network. Any change in a local attribute
feature is reflected in changes in the spectrum.

Therefore, to find more significant indicators of the
differences between mental patients and healthy controls,
we built a brain network based on complex network
theory, used the spectral features of the brain network to
identify the synchronization characteristics, and used the
synchronous features to characterize the patients and the healthy
controls. Thus, we studied the process by which the brain’s
synchronization ability changed during the working memory
process and its difference between the two groups. We also
proposed a method based on fusing traditional features and
spectral features to adjust the synchronization ability of the brain
networks of patients so that their synchronization ability will be
consistent with those of healthy controls. Theoretically we can
achieve the goal of treating diseases. Studying brain network
synchronization can help to more clearly explain the dynamic
process of the collective behavior of a large number of nodes in a
complex brain network and may be able to prevent the harm that
comes from some types of synchronizations. Thus, this research
may provide a new direction for studying the pathological
mechanisms of brain diseases. The brain network mechanisms
of healthy controls and patients have very important practical
significance and academic value.

The paper is organized as follows: Section EEG Dataset
Description and Preprocessing briefly describes the dataset of
EEG signals employed in our research. Section Methods presents
information about the methods used in this study, including
constructing the brain-network, extracting synchronization
features, and synchronizing optimization algorithms. Section
Experimental Results and Analysis provides the experiments
undertaken in the framework of the study, the experimental
procedures used, and the experimental results obtained. Finally,
section Limitations describes the conclusions derived from the
study and some thoughts, with regard to future work.
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EEG DATASET DESCRIPTION AND
PREPROCESSING

EEG Dataset Description
The dataset used in this work was task state EEG data. The
experimental paradigm used the modified Sternberg’s SMST
(Manoach et al., 1999) (short-term memory scanning task)
paradigm (see Figure 1) The dataset included 34 psychiatric
(in this study we used schizophrenic) patients and 34 healthy
people (controls), none of whom had any record of drug abuse
or diagnosis of neuropsychiatric disease in the past 6 months.
The age range of the patient group was 20–51 years old, and the
average age was (40.1± 11.1) years old; the healthy control group
age range was 21–58 years old, and the average age was (37.1
± 13.8) years old. Age, sex, and education level did not differ
significantly between the two groups. All the members of both
groups had normal vision or corrected visual acuity, had no color
disturbance, and were right-handed (Zhao et al., 2011).

Data Preprocessing
Data collection was completed at a hospital psychiatry research
center on a NeuroScan 64-lead EEG acquisition device. The
sampling frequency was 500Hz, the impedance was kept below
5 k�, the ground electrode was AFz, and the reference electrode
was physically connected to the left and right mastoids. The
vertical electro-oculogram recording was from electrodes placed
above and below the left eye, and the horizontal electro-
oculogram recording was from electrodes placed on the right
eyelid margin (Stam et al., 2007).

The preprocessing was performed on the EEGLab (https://
sccn.ucsd.edu/eeglab/download.php) platform on Matlab, which
converted the reference data of the original data, removing the
electrooculogram, filtering, segmenting, and removing artifacts
to yield noiseless and clean EEG data. An average reference
electrode was selected as the reference electrode, and the low-pass
and high-pass noise were removed by filtering in the range of 0.5–
50Hz. The ocular electrical artifacts in the data were removed
using the negative entropy-based FastICA method (Joyce et al.,
2010; Jiaqing et al., 2018). Compared with the traditional blind
source separation algorithm, this method does not require the
ocular electrical signal as the reference electrode, avoiding the
mixing of new noise during the EE signal acquisition process
and reducing the collection workload. In addition, volume

conduction can affect the output of synchronization measures
when using EEG signals, because EEG is bipolar by nature.
This means that EEG signals are composed of a difference
between an electrode of interest and a reference (Guevara et al.,
2005; Peraza et al., 2012). We used surface Laplacian transform
methods (Matlab toolbox CSD) (Kayser and Tenke, 2006a,b) to
eliminate the mixing effect of volume conduction. During the
data acquisition process the data were labeled as S1–S10, in which
S1–S5 represented the encoding phases, S6–S8 represented the
maintenance phases, and S9–S10 represented the retrieval phases
(see Figure 2). The data were filtered and retained by θ (4–7Hz),
α (7–14Hz), β1 (14–20Hz), β2 (for 20–30Hz), and γ (30–40Hz)
signals in five frequency bands. From these data, 20 segments
were selected from the different frequency bands in the different
stages, and each was spliced. Duration of the EEG trajectory in
the encoding, maintenance, and retrieval phases were 100 s, 60 s,
and 50 s, respectively.

METHODS

Unweighted Complex Dynamic
Brain-Networks Construction
In the experiment, 60 scalp electrode channels were selected as
the nodes of the brain network. The phase-locking value (PLV)
coherence function was chosen for the edges of the network.
This function was used to calculate the correlation between two
electrode channels to form a 60 × 60 PLV correlation matrix.
PLV can separate phase and amplitude components. Because
EEG data can be affected by transient amplitude changes such
as eye movements, PLV is quite suitable for this data. This paper
uses a wavelet transform to extract phase information. The short
time Fourier transform (STFT) method uses a sliding window
to intercept the signal and performs a Fourier transform on the
signal in the window to obtain the spectrum formula of the signal
at any time (1), where STFT of f(t): computed for each window
centered at t = t′; t′ is the time parameter; µ is the frequency
parameter; f(t) is the signal to be analyzed; W(t − t′) is the
windowing function.

STFT(t′,µ) =

∫

f (t)W(t − t′)e−j2πµtdt (1)

Specifically, the PLV definition (Xu et al., 2014) is Equation (2),
where N represents the number of brain network nodes (In

FIGURE 1 | Short-term memory scanning task (SMTS) paradigm. Subjects needed to remember the numbers appearing on the screen during the encoding stage

and recall these during the maintenance stage. Finally, in the retrieval stage, the subjects were required to determine whether the number had appeared by searching

their memory.
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FIGURE 2 | Brain-network. (A) Represents the healthy controls, (B) represents the patients.

this paper N = 60); 1 ϕn (t) = ϕx (t) − ϕy (t) represents the
phase difference between the two channel time-frequency points
t; and PLV ǫ [0,1].

PLV (t) =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

exp(j(△Φn(t)))

∣

∣

∣

∣

∣

(2)

The study of dynamic functional networks or time-varying
brain function networks is an emerging field in brain function
connection research. Its purpose is to study the dynamic nature
or variability of functional connections over time. It has been
applied to the analysis and diagnosis of brain diseases in fMRI
and has in EEG signal analysis. Common methods for studying
time-varying functional connections include important transfer
point detection, time-frequency decomposition methods, and
time window methods (Rosário et al., 2015). Of these, the
sliding time window method is currently the most widely used.
Existing research found that the brain network clearly shows
time-variability and dynamics even over a short period of time
and that the size of the time window is related to changes in the
topological properties of the brain network (Sakkalis et al., 2013).
The time window selected for the PLV cannot be too large. If it is
too large, the signal may not be reasonably stable during this time
period. Therefore, referring to existing research in a PLV phase
synchronicity measurement study (Yi et al., 2014) and existing
related research (Gysels and Celka, 2004; Gao et al., 2014a; Bola
et al., 2015), we selected a sliding time window (step size of 0.04 s)
in the range of 0.04–0.48 s. To determine the size of the PLV
sliding time window, the classification accuracy of the network
attributes was calculated within a given range of 0.04–0.48 s. The

classification accuracy between the groups was determined. The
final time window was determined to be 0.12 s.

The experiment was related to previous research on the small-
world characteristics of the human brain (Guo et al., 2013).
The sparsity range chosen was 30 to 40% with a step size of
2%; the network was constructed separately for each of the 20
trials. The networks for the 34 patients and 34 healthy controls
were constructed separately for the encoding, maintenance, and
retrieval stages and for the alpha and theta bands. A total of
48,960 brain networks were constructed.

Brain-Network Feature Extraction
The traditional features of brain networks are usually attributes
of the network and include global attributes and local attributes
(Guo et al., 2013). Our experiment calculated four local attributes,
which were degree, inference, clustering coefficient, and local
efficiency, and six global attributes, which were global efficiency,
modularity index, positive and negative matching degree, feature
path length, average clustering coefficient, and average local
efficiency. The feature extraction in this research included two
stages: The first stage extracted the distinctive features from the
traditional features; the second stage extracted the features of
the brain network spectrum; and spectral feature calculations
provided the synchronization features.

The first stage:

A. Extraction of significant differences from global features

We compared the global attribute values between the patient
group and the healthy controls in the same frequency band and
at the same sparsity in the same stage. We used the Kolmogorov-
Smirnov (KS) test (P < 0.05) to indicate that the node difference
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between the patients’ brain networks and those of the healthy
controls was significant. A significant difference attribute was put
into a support vector machine (SVM) classifier as a feature. Based
on an analysis of the classification result, a global attribute with
a significant difference at a specific stage and a specific frequency
band was selected.

B. Extraction of significant differences and nodes from
local attributes

To characterize the overall level of a property Y over a given
sparsity range (Guo et al., 2013; Hao, 2013), these two papers
from our research group used the area under the curve (AUC)
to characterize the value of the entire sparsity range YAUC in the
selected sparsity range. Its definition is shown in formula (3),
where 1S represents the space between the sparse upper bound
Sn and the lower bound S1 span, which is the step size for the
change in sparseness. In this study, the upper bound Sn was 40%,
the next S1 was 30%, and the step size 1S was 2%.

YAUC =

n−1
∑

k=1

[Y (Sk) + Y(Sk−1)]× 1S/2 (3)

In our current experiment, the sparsity range was fused by
calculating the AUC. Throughout the entire sparsity range, we
identified the nodes that had significant differences between the
patients and the healthy controls. We tested the AUC value of
each subject’s local attribute value in the sparsity range at a certain
stage and a certain frequency band. Then, we selected the local
attribute AUC value splicing of the significant difference node as
a feature to classify, and obtained locally significant attributes and
significant nodes that differed significantly between the patients
and healthy controls.

The second stage extracted the brain network spectrum
characteristics and calculated the brain network synchronization
characteristics according to section Synchronization Criteria.
The spectral features of a network generally refer to the set of all
the eigenvalues of the Laplacian matrix.

Synchronization Criteria
Network synchronization is a very common and important non-
linear phenomenon. There are many different types of network
synchronization, such as common constant synchronization,
phase synchronization, generalized synchronization, etc.
Identical synchronization is defined as:

Definition 1:
Let xi(t,X0) be a solution of the complex dynamic network

ẋ = f (xi) + gi (x1, x2, x3, . . . xN) , i = 1, 2, . . . ,N (4)

where X0 =
(

(

x01
)T

,
(

x02
)T

, . . . ,
(

x0N
)T

,
)T

∈ RN
∗N , f :D → Rn

and gi :D × D → Rn( i = 1, 2, . . . ,N) are all continuously
differentiable , D ⊆ Rn,and meet g (x1, x2, . . . , xn) = 0. There
is any non-empty open set C ⊆ F in the domain, which can make
any xi(t,X0) ∈ F and

limt→∞‖xi (t,X0) − si (t,X0)‖ = 0 i = 1, 2, . . . ,N

for any x0i ∈ C, i = 1, 2, . . . ,N and t ≥ 0, i = 1, 2, . . . ,N,
where si(t,X0) is an effective solution space of equation ẋ = f (x),
and X0 ∈ F, then the complex dynamics network can reach the
identity synchronous steady state, and C × . . . × C is called the
synchronous area of the complex dynamic network.

Identical synchronization is a common phenomenon of
network synchronization, which shows that all nodes in the
network are in the same state at a particular time point. In
Definition 1, s(t,X0) is the synchronous steady state of the
network, and x1 = x2 = . . . = xN is the synchronization
manifold of the network state space; that is, each physical
oscillator tends to be in a described state when a network
is synchronized.

Definition 2:
In 1998, Pecora and Carroll (Pecora and Carroll, 1990;

Kashtan and Alon, 2005) studied the stability of the
synchronization of linear coupled networks and developed
the main stability function discrimination method. In 2002,
Wang and Chen (Lü and Guanrong, 2005; Jin-Hu, 2010; Gao
et al., 2014b; Zhou et al., 2014) studied the problem of the
synchronization stability of coupled oscillators in a continuous
system and proposed a dynamic network consisting of N
identical vibrators whose dynamic equation is:

ẋi = f (xi) − c

N
∑

j=1

lijH
(

xj
)

, i = 1, 2, . . . . . .N (5)

where xi = (xi1, xi2, . . . , xin)
T ∈ RN are the node’s state

variable; xi = f(xi) describes the state of a single node when
there is no coupling; c is the strength of the brain network
coupling that has been constructed; H is a node state variable
indicating which variables are passed between the coupled
nodes; L is the Laplacian matrix of the brain network; lij is
the matrix element of L and contains the information of the
network topology.

When the coupling matrix is a Laplacian matrix:If L is a
positive semidefinite symmetric matrix and the row sum is 0,
then the eigenvalue of L satisfies the following when the network
remains connected:

Àmatrix L has only one eigenvalue with a multiplicity of 1 and
its corresponding eigenvector is

(1,1,1,1 . . . . . . 1)T

ÁThe remaining N-1 eigenvalues of the matrix L are positive
real numbers, that is: 0= λ1< λ2≤λ3≤λ4≤........≤λN◦

Definition 3:
When the coupling matrix L satisfies Definition 2, the

synchronization ability of the network can be expressed by
the spectral features of the coupling matrix L. According to
the different situations of the synchronization area, a dynamic
network (Definition 2) can be divided into two categories. One
(type 1) is that the synchronization field of the network is semi-
unbounded, and its synchronization ability passes through the
minimum non-zero spectral feature λ2 of the corresponding
Laplacian matrix L. The larger the value of λ2, the stronger
the synchronization ability. The other type (type 2) is that
the synchronization domain of the network is bounded, and
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its synchronization capability can be characterized by the ratio
R of the maximum non-zero spectral characteristics of the
corresponding Laplacian matrix L to the smallest non-zero
spectral features. The smaller the value of R, the stronger the
synchronization capability.

Note:

R = λN/λ2 (6)

Proof:
Construct a brain network of experimental datasets and

compute the spectral features of the L-matrix. The experimental
results shown in Figure 3 show that the spectral features of the
brain network were all positive. The data verification used in
this paper satisfies the synchronization criterion condition type
2. That is, the synchronization ability of the network can be
measured by calculating the parameter R.

Defining the Coupling Formula L∗

Currently, the adjustment of the synchronization capability of
complex network power systems (Wigand et al., 2015; Hongyue
et al., 2017; Ruizhen et al., 2017) is mainly based on the
network topology, adaptive synchronization control of dynamic
equations, and network coupling methods. Considering the
particularity of a brain network in the practical application
process, that is, that the brain network structure is not easy
to change and that the dynamic system is more complex and
difficult to control, we here propose a method based on the
fusion of traditional features and spectral features to achieve the
ability of brain network synchronization for patients. In theory,
adjusting a disease brain network so that it is synchronized with
that of normal people could be a way to treat the disease.

FIGURE 3 | EEG Working memory data Laplacian eigenvalue spectrum

(descending order) diagram.

The definition of the T&S(Traditional and Spectral)coupling
matrix L∗equationĩs:

L∗ = L∗G (7)

where matrix L is the original Laplacian matrix of the complex
network dynamics equation, which represents the network
spectrum characteristics. Matrix G is the distinctive feature of the
extracted brain network.

Formula (7) can be written as formula (8):

l∗ij = l∗ijgi
aa
∗gj

bb (8)

Where ∀ aa, bbǫ R, we can adjust the parameters aa, bb to
enhance or weaken the synchronization ability of the network.
The combinations of parameters aa, bb are: À parameters aa, bb
are both positive; Á parameters aa, bb are one positive and one
negative; Â parameters aa, bb are both negative.

Define the T&S coupling matrix L∗ [Equation (7)], If
the T&S coupling matrix L∗ satisfies definition 3 of section
Synchronization Criteria,

which is:
L∗ is a positive semidefinite symmetric matrix;
L∗ line sum is 0;
Then the synchronization capability of the brain network is

the ratio R of the spectral features of the T&S coupling matrix L∗.
Mathematical proof:
À If the matrix L∗ is a real symmetric matrix know all

eigenvalues of L∗ are real numbers;
Á If the matrix L∗ is a positive semi-definite matrix know all

eigenvalues of L∗ are positive or 0;
ÂThe following only proves that the matrix L∗ satisfies the

row sum to 0;
Proof:
Write formula (7) as a matrix:

L∗ = L∗Gaa∗Gbb (9)

Where
G = diag {k1, k2 . . . ..kN} is a diagonal matrix composed of a

distinctive feature of the brain network.

TABLE 1 | Extracted nodes that showed differences in encoding/alpha/sparsity

34%.

ELECTRODE NUMBER—ELECTRODE NAME

59-POZ 3-FP2 51-PO3

58-P2 60-P1 29-Pz

36-AF4 57-PO4 31-FPz

16-Cz 22-TP8 17-CPz

15-FC4 27-O2 28-O1

35-AF8 43-FC6 5-FC3

9-F4 10-Fz 11-FCz

13-TP7 14-FT8 32-AF3
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TABLE 2 | The average Pearson correlation coefficient for the 10 healthy controls.

Normal/Encoding/Alpha NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 AVE

Assortativity 0.59 0.20 0.57 0.237 0.571 0.059 0.602 0.326 0.549 0.152 0.385

Mean-Clustering-Coef 0.79 0.531 0.567 0.259 0.697 0.834 0.824 0.595 0.718 0.588 0.6105

Transitivity 0.82 0.546 0.566 0.595 0.701 0.703 0.653 0.666 0.544 0.795 0.6588

Global-Efficiency −0.769 −0.430 −0.554 −0.708 −0.718 −0.787 −0.787 −0.572 −0.892 −0.852 −0.7069

Modularity −0.234 0.163 −0.378 −0.337 0.369 0.063 0.549 −0.405 0.114 −0.484 −0.0579

Mean-Path-Length 0.774 0.530 0.754 0.717 0.709 0.797 0.789 0.633 0.899 0.906 0.774

Bold indicates that the conclusion is drawn from the bold part.

The sum of all elements in the i-th row of matrix L∗ is:

LJ
∗ =

∑N

i=1,j 6=i
Lijg

aa
i ∗gbbj =

(

∑N

i=1,j 6=i
Lijg

aa
i

)

∗gbbj

=

(

∑N

i=1,j 6=i
Lijg

aa
i −

(

∑N

i=1,i6=j
Lijg

−aa
j gaai gaaj

))

∗gbbj

=
∑N

i=1,i6=j
Lijg

aa
i gbbj −

∑N

i=1,i6=j
Lijg

aa
i gbbj = 0 (10)

Through mathematics and experiments (Figure 3) prove: When
the network remains connected, the spectral features of
L∗satisfy: (1) The matrix L∗has only one eigenvalue with a
multiplier of 1 and its corresponding eigenvector (1,1,1,1, . . .
. . . 1)T ; (2) The remaining N-1 eigenvalues of the matrix
L∗are positive real numbers, that is: 0 = λ1< λ2≤λ3≤λ4
≤........≤λN.

EXPERIMENTAL RESULTS AND ANALYSIS

Experiment 1:Brain-Network Significant
Difference Features and Node Extraction
Experiment 1 investigated the encoding stage.

ÀUsing the method of feature extraction described in section
Brain-Network Feature Extraction, the distinctive features
obtained in the first stage extraction included: assortativity
(depending on the trend of nodes in the network, it can be
divided into an assortative or disassortative network. Assortative
means that a node tends to be connected to its similar node;
otherwise, the network is said to be disassortative), mean-
clustering-coefficient, transitivity (transitivity is the ratio of
“triangles to triplets” in the network), global efficiency, modulus,
and mean path length (in the current study, we reanalyzed
EEG data from our previous publications Liting et al., 2017;
Yuchi et al., 2017).

ÁWe calculated the Pearson correlation coefficient of the
features extracted from the first stage and the second stage
and identified the features that were strongly correlated. We
randomly selected 10 normal subjects and 10 patients with 7
significant differences in characteristics and used their network
spectral characteristics (R) to calculate the Pearson correlation
coefficients (Tables 2, 3). Table 1 shows the nodes that differed
significantly between the patient and healthy controls, as
identified using the KS test.

Tables 2, 3 show that there was a strong positive correlation
between the synchronization of the brain network and the mean-
clustering-coefficient, transitivity, mean path length, and node

degree and that there was a strong negative correlation with
global efficiency.

The criteria for evaluating the Pearson correlation coefficient
are: (1) 0.8–1.0 means that the two are highly correlated; (2) 0.6–
0.8 means that the two are significantly correlated; (3) 0.4–0.6
means that the two are mildly correlated (4) 0.2–0.4 means that
the two are weakly related; (5) 0.0–0.2means that the two are very
weakly related.

Experiment 2:Brain-Network
Synchronization Stability Analysis
Differences in Synchronous Processing
In this process, 20 brain networks were constructed for each
subject’s 20 trial EEG signals and were used to extract the
synchronization features (R) of the brain network’s spectral
features. The patients and healthy controls could be represented
by their synchronization features and by the time required
to reach the initial synchronization. The process by which
brain synchronization occurs during memory processing differs
between healthy subjects and patients. Table 4 is the range of
changes in the mean values of the synchronization characteristics
for the 34 patients and 34 healthy controls in the encoding,
maintenance, and retrieval stages; Figure 4 is the initial
synchronization of the time chart for the 10 patients and
10 healthy controls who were randomly selected during the
encoding, maintenance, and retrieval stages; Table 5 shows the
mean and variance at the initial synchronization in Figure 4.

Table 4 shows that there was a significant difference in the
synchronization between the patients and the healthy controls
in the encoding phase and that the patient’s synchronization
ability was stronger than that of the normal subjects. This may
be because patients have cognitive impairments in memory and
their thinking and speech are often confused. Therefore, they
showed considerable differences from the healthy controls in
the encoding phase of working memory. An analysis of Table 5
shows that the normal subjects achieved synchronization earlier
than the patients.

Determining Significant Differences in the

Synchronization Stability of Area S

A. Discovering-significant-differences-in-area-s
The PLV binary matrix corresponding to 48,960 brain networks
constructed using data from the patients and the healthy controls
is shown in Figures 5A–C shows the difference significant area,
S, a mathematical representation of the difference between
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TABLE 3 | The average Pearson correlation coefficient for the 10 patients’ group.

Patient/Encoding/Alpha NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 AVE

Assortativity 0.25 0.32 0.29 0.275 0.683 0.847 0.314 0.383 0.545 0.604 0.4522

Mean-Clustering-Coef 0.59 0.814 0.683 0.745 0.773 0.818 0.844 0.819 0.545 0.668 0.730

Transitivity 0.57 0.667 0.581 0.551 0.774 0.804 0.851 0.823 0.716 0.703 0.65883

Global-Efficiency −0.735 −0.801 −0.530 −0.582 −0.804 −0.898 −0.841 −0.830 −0.885 −0.829 −0.7736

Modularity −0.285 0.092 −0.379 −0.119 −0.154 −0.062 −0.551 0.486 −0.150 −0.174 −0.1295

Mean-Path-Length 0.667 0.802 0.635 0.709 0.804 0.797 0.848 0.839 0.902 0.826 0.667

Bold indicates that the conclusion is drawn from the bold part.

TABLE 4 | Comparison of synchronization differences between healthy controls

and patients.

NORMAL GROUP AND PATIENT GROUP R-MEAN

Normal Patient

Encoding 5–19 5–8

Maintenance 5–13 5–8

Retrieval 5–8 5–8

Bold indicates that the conclusion is drawn from the bold part.

5a and 5b; Figure 5D is a brain electrode position diagram
corresponding to a 5c S region in the brain map.

Comparing the differences (Figures 5A,B) we found that the
significant differences in the brain network between normal
subjects and patients were located in the S region (Figure 5C).
The specific manifestations were as follows: The normal controls’
S-area connections were tightly organized and the patients’ S-
area connections were sparsely disordered. This is likely because
psychiatric (specifically schizophrenic in this study) patients
have cognitive impairments in memory, and their thinking and
speech are often confused. Therefore, in memory processing,
the connections between the brain regions of the brains of the
psychiatric patients were disorganized, but the brain connections
of the normal controls showed obvious signs of organization.

From the above analysis, we concluded that the area that
was significantly different between the patients and the healthy
controls was region S, so the corresponding brain area was
primarily located in the occipital lobe.

B. Regional-s-synchronization-stability-analysis
Using the information about the significant difference node
(Table 1) extracted in Experiment1: Brain-Network Significant
Difference Features and Node Extraction the coupling between
a certain node in the brain network and the other nodes
was removed, and the synchronous characteristics R of brain
networks that were randomly selected from the patients
and healthy controls (if the other subject conditions were
kept constant) were the same. The subjects were compared
based on the order of magnitude (Figure 6). In Figure 6, the
abscissa represents the decoupling node number (the electrode
corresponding to the node number in Table 6), and the ordinate
represents the synchronization eigenvalue of the brain network
after decoupling.

Figure 6 shows that, in the encoding stage, when node
numbers 59, 3, 51, 58, 60, ..., 9, 10, 11 were successively
removed, the trends of the patients and the healthy controls in
the Figure 6A were similar to those in Figure 6B. Particularly
when the node numbers 16, 22, 17, 15, 27, 28 were sequentially
removed, the synchronicity between the patient and the normal
person increased. In addition, the node numbers 16, 22, 17, 15,
27, 28 all belong to the red area S, and the ability to remove
these nodes one at a time was enhanced. The data shown in
Figure 6 also indicate that, as the density of the red zone S
edge decreased, the synchronization ability was stronger, and as
the edge density increased, the worse the synchronization ability
became (Figures 5A,B as healthy controls).

Without changing the coupling relationship of the red region
S (Figure 5C), the effect of the influence on the synchronization
ability of the brain network was observed by enhancing the edge
strength of the red region S. Figures 7A,B show the changes in
the synchronization ability of the red region S edge strengths
of the 20 brain networks of a specific patient and a specific
individual from the healthy controls from 1, 1.5...3.5 times (In
the encoding phase, we chose a period of consecutive 100 s for
each participant, constructing a brain network every 5 s).

It can be seen from Figure 7 that for the same edge strength,
the change in the synchronization ability between the patients
and the healthy controls exhibited opposite trends and tended
to be uniform; the strength of the internal bridging of S is
more obvious. However, if the edge strength was too great,
it simultaneously reduced the ability of the healthy subjects’
network and the patients’ network to synchronize.

Experiment 3: Synchronization Stability
and Brain-Network Adjustment
From the analysis of the differences in the synchronization ability
of the brain network between the patients and healthy controls
in section Experiment 2:Brain-Network synchronization stability
analysis, we found that the two groups differed considerably in
their brains’ synchronization ability and that these differences
are concentrated in the local area S. That is, the smaller the S
edge density, the stronger the synchronization ability. To achieve
the goal of curing disease, this section primarily discusses the
theory of complex network synchronization control to explore
ways in which a patient’s brain network could be given a certain
“treatment” that would make the patient’s synchronization ability
consistent with the synchronization ability of normal people.
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FIGURE 4 | Time of initial synchronization in the healthy controls and the patients. (A) is the encoding stage, (B) is the maintenance stage, and (C) is the

retrieval stage.

TABLE 5 | Time to initial synchronization in patients and healthy controls.

Subject Stage/band

(alpha)

Average

value (ms)

Standard

deviation (ms)

Patients Encoding 27 9.798

Maintenance 26.5 10.259

Retrieval 22 7.810

Normal Encoding 18 6.782

Maintenance 21 5.385

Retrieval 15.5 6.874

This section proposes a method based on the fusion
of traditional features and spectral features to achieve the
adjustment of the patient’s brain network synchronization ability,
so that its synchronization ability would be consistent with
normal subjects, theoretically achieving the purpose of treatment
of diseases. Applying the T&S coupling formula defined in
section Defining the Coupling Formula L∗, the patient’s brain
network synchronization ability could be adjusted by selecting
appropriate values of the T&S coupling matrix L∗ parameters aa
or bb. The feasibility and validity of the method were verified by
specific data.

Coupling Matrix L∧∗Parameter Selection
The experiment investigated the patients’ brain networks. Based
on the results of the Pearson correlation coefficient calculation
in section Experiment1:Brain-Network Significant Difference
Features and Node Extraction, the clustering coefficient of the
matrix G and the mean path length were used to adjust the
brain’s synchronization ability. Figure 8 shows the change in
the synchronization ability of the patient’s brain network when
the matrix G takes the clustering coefficient; Figure 9 shows the
synchronization stability of the brain network when the matrix
G takes the path length. The abscissa indicates the value of the
parameter bb, and the ordinate indicates the corresponding brain
network synchronization feature value. The parameters chosen

in the experiment were arbitrary and have no practical meaning.
Other values could also be selected.

Adjustment-A
Figure 8A shows the result when the parameters aa and bb are
both positive; 8b shows the result when parameter aa is negative
and bb is positive; 8c shows the result when the parameters aa
and bb are both negative.

In Figure 8A, when the parameters aa and bb are positive
numbers, the results are as follows: When parameter bb is
fixed, the network synchronization capability is proportional
to the value of parameter aa; when parameter aa is constant,
the synchronization capability of the network has an anti-
proportional relationship to the value of parameter bb.

In Figure 8B, when parameter aa is negative and bb is
positive, the network synchronization capability changes are
more complex. When parameter aa < −1.5, the trend of the
network synchronization capability is exactly the same as that
in graph c. When the parameter aa> −1.5, the synchronization
trend of the network is exactly the same as that in graph a.

In Figure 8C, when the parameters aa and bb are both
negative numbers, the results are as follows: When parameter
bb is fixed, the network synchronization ability is inversely
proportional to the value of parameter aa. When parameter
aa is constant, the network synchronization ability increases
with parameter bb and then decreases, and the network
synchronization ability gradually changes to become consistent
with the original synchronization capabilities.

Adjustment-B
Figure 9A shows the results when the parameters aa and bb are
both positive; 9b shows the results when parameter aa is negative
and bb is positive; 9c shows the results when parameters aa and
bb are both negative.

In Figure 9A, when the parameters aa and bb are both
positive, the results are as follows: When parameter bb is fixed,
the network synchronization capability is directly proportional
to the value of parameter aa; when parameter aa is fixed, the
synchronization capability of the network is directly proportional
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FIGURE 5 | Brain network structure. (A) is a binary matrix constructed using the healthy controls; (B) is a binary matrix constructed using the patient subjects; (C) is

the difference significant area S, a mathematical representation of (A,B,D) is a brain electrode position diagram corresponding to a (C) S region in the brain map.

FIGURE 6 | R-value changes with the coupling of the S area in patients and healthy controls. The patient subject graphed here was #6 and the healthy control subject

was #4 in (A), and the patient subject graphed in (B) was #4 and the healthy control subject was #6.

to the value of parameter bb. This shows that, when the coupling
matrix selects the path length as the “weighted” mode, the
network synchronization capability is proportional to the values
of the parameters aa and bb.

In Figure 9B, when parameter aa is negative and bb is
positive, the results are as follows: When parameter bb is fixed,
the network synchronization capability is directly proportional
to the value of parameter aa; when parameter aa is fixed,
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TABLE 6 | EEG signal 64 electrode name numbering table.

Ele-No. EN Ele-No. EN Ele-No. EN Ele-No. EN Ele-No. EN

1 Fp1 14 FT8 27 O2 40 F2 53 CP6

2 F7 15 FC4 28 O1 41 FC1 54 PO8

3 Fp2 16 Cz 29 Pz 42 C5 55 P6

4 F3 17 CPz 30 Oz 43 FC6 56 CP2

5 FC3 18 CP3 31 Fpz 44 FC2 57 PO4

6 FT7 19 P3 32 AF3 45 C2 58 P2

7 T7 20 P7 33 AF7 46 C1 59 POz

8 F8 21 T8 34 F5 47 CP1 60 P1

9 F4 22 TP8 35 AF8 48 CP5 61 VEOU

10 Fz 23 C4 36 AF4 49 P5 62 VEOL

11 FCz 24 P8 37 F1 50 C6 63 HEOL

12 C3 25 CP4 38 FC5 51 PO3 64 HEOR

13 TP7 26 P4 39 F6 52 PO7

FIGURE 7 | R-value changes with the strength of the S area in patients and healthy controls. The patient subject graphed here was #6 in (A) and the healthy control

subject was #4 in (B).

FIGURE 8 | R-value changes in a patient subject. Matrix G represents mean-clustering-coef and the data are from patient #6. (A) shows the parameters aa, bb are

positive. (B) shows the parameter aa is negative, bb is positive. (C) shows the parameter aa, bb are negative.
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FIGURE 9 | R-value changes in a healthy subject. Matrix G represents mean-path-length and the data are from patient #6. (A) shows the parameters aa, bb are

positive. (B) shows the parameter aa is negative, bb is positive. (C) shows the parameter aa, bb are negative.

FIGURE 10 | Adjustment of patient’s brain- network synchronization ability.

The data are from patient #6 and healthy control subject number #4. The

abscissa is the value of parameter bb, and the ordinate is the corresponding

brain network synchronization feature value. P-A indicates the synchronization

ability of the patient after the brain network adjustment; P-I indicates the

synchronization ability of the patient before the brain network adjustment; N-I

indicates normal synchronization ability.

the relationship between the synchronization capability of the
network and the value of the parameter bb is first weakened
and then enhanced to match the initial synchronization ability.
After weakening, the enhancement tends to be consistent with
the original synchronization ability.

In Figure 9C, when parameters aa and bb are negative, the
network synchronization capability changes are more complex.
When parameter bb is fixed and bb<−0.05, the synchronization
capability of the network is proportional to the value of parameter
aa; when parameter bb is fixed and bb > −0.05, the network
synchronization capability is enhanced and does not change with

parameter aa; when parameter aa is constant, the synchronization
capability of the network decreases with an increase in parameter
bb, and then the enhancement gradually changes to become
stronger than the original synchronization capability.

Adjusting the Patient Synchronization Stability
Based on the conclusions in Coupling Matrix L ∧∗ Parameter
Selection, the best values of parameters aa and bb could be
selected to be applied to the patient, so that the synchronization
ability of the brain network of a patient and the brain
synchronization ability of a normal person would tend to be
consistent. Next, the clinician would refer to the equivalent of
Figure 8A to identify the parameter transformation and would
select aa = 0.5. The patient’s brain network synchronization
ability would finally be adjusted using parameter bb (Figure 10).
In Figure 10, it can be seen that when aa = 0.5 and bb = 2.5, the
patient’s synchronization ability should be consistent with that
of a normal person. In this way, the goal of curing disease can
theoretically be achieved.

LIMITATIONS

The current study involved several limitations that should be
considered. First, the effect of offline processing of EEG traces
on brain network dynamics synchronization was not considered,
so it is unclear how the synchronization differences obtained
in an offline analysis of the EEG can pave a way for the
treatment of unspecified neuropsychiatric diseases. In addition,
EEG signals recorded from the scalp surface are generally highly
correlated. Each channel is a linear mixture of concurrently
active brain and non-brain electrical sources, whose activities
are volume conducted to the scalp electrodes with broadly
overlapping patterns (Nunez et al., 1997). Therefore, we used
surface Laplacian transform methods to eliminate the mixed
effect of volume conduction (Makeig et al., 1996; Jung et al., 2001;
Delorme et al., 2012). Also, our study did not provide specific
values for the parameters aa and bb, so the values of aa and
bb were arbitrarily chosen. The purpose was only to verify the
validity of the T&S coupling formula proposed in this study. As
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for its application in clinical trials, it may be necessary to correlate
the aa and bb parameters with certain biological characteristics of
the human body (such as blood flow). Consequently, we should
pay more attention to these aspects and add related experiments
in future research.

CONCLUSION

In this study, a brain network was constructed based on complex
network theory. The synchronization characteristics of the brain
network were calculated using the spectral features of the
brain network. The synchronization process characterizes the
differences and changes in the brain network synchronization
ability between a patient and healthy subjects during the
process of making memories. Our experiments showed that
the synchronization of aa differed significantly between the
patients and the healthy controls and that this synchronization
is concentrated in the S region. In addition, these experiments
further indicated that the effect of S on the synchronization ability
in this S region was that the density of the S region was smaller,
and the synchronization ability was stronger. To achieve the
purpose of treating patients, we proposed a method based on
the fusion of traditional features and spectral features to achieve
the adjustment of a patient’s brain network synchronization
ability. The KS test, SVM classification, and other methods
were used to extract traditional features and nodes that showed
significant differences; we designed a T&S coupling method that
fuses traditional features with spectral features and selects the
appropriate parameter values aa or bb to adjust the patient’s
brain network synchronization capabilities. The data validated
the feasibility of the method and theoretically achieved the
purpose of treating disease. This study has only theoretically
explored the treatment of disease through algorithms and has
not been clinically applied. In the future, we will try to explore
animal (rat) susceptibility factors, clinical manifestations, skull

characteristics, and prognosis in depth, and we hope to find
feasible measures (such as physical therapy) that can adjust
these features.
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