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In an auditory environment, humans are frequently exposed to overlapping sound
sequences such as those made by human voices and musical instruments, and we can
acquire information embedded in these sequences via attentional and nonattentional
accesses. Whether the knowledge acquired by attentional accesses interacts with
that acquired by nonattentional accesses is unknown, however. The present study
examined how the statistical learning (SL) of two overlapping sound sequences is
reflected in neurophysiological and behavioral responses, and how the learning effects
are modulated by attention to each sequence. SL in this experimental paradigm was
reflected in a neuromagnetic response predominantly in the right hemisphere, and the
learning effects were not retained when attention to the tone streams was switched
during the learning session. These results suggest that attentional and nonattentional
learning scarcely interact with each other and that there may be a specific system for
nonattentional learning, which is independent of attentional learning.
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INTRODUCTION

Statistical learning (SL) is a domain-general and automatic process that is innate to humans
(Saffran et al., 1996; Perruchet and Pacton, 2006). By this process, the brain computes transitional
probabilities (TPs) of sequential phenomena such as music and language without intention or
awareness (Cleeremans et al., 1998), and incessantly updates acquired statistical knowledge to
adapt to variable phenomena in environments (Daikoku et al., 2017¢; Daikoku, 2018a,c,d).

Such SL effects have been observed in neurophysiological responses. For instance, the event-
related potentials (ERPs) and magnetic fields (ERFs) represent a more sensitive method than
behavioral responses (Schon and Frangois, 2011; Paraskevopoulos et al., 2012; Koelsch et al.,
2016). In a framework of predictive coding (Friston, 2005), when the brain codes TP distributions
of a stimulus sequence, it expects a probable future stimulus with a high TP and inhibits the
neural response to predictable external stimuli. Finally, the SL effects manifest as a difference
in amplitudes between stimuli with lower and higher TPs. A body of studies detected SL effects
on ERP/ERF such as P50 (Paraskevopoulos et al., 2012; Daikoku et al., 2016, 2017¢; Daikoku
and Yumoto, 2017), N100 (Sanders et al., 2002; Furl et al., 2011; Daikoku et al., 2014, 2015,
2017c), mismatch negativity (MMN; Koelsch et al., 2016; Francois et al., 2017; Moldwin et al.,
2017), P200 (Cunillera et al., 2006; De Diego Balaguer et al., 2007; Francois and Schon, 2011;
Furl et al., 2011), P300 (Batterink et al., 2015), and N400 components (Sanders et al., 2002;
Cunillera et al., 2006, 2009; Frangois and Schon, 2011; Frangois et al., 2013, 2014). Compared
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with later auditory responses, the earlier auditory responses that
peak at 20-80 ms (e.g., P50) have been attributed to parallel
cortico-cortical or thalamo-cortical connections between the
primary auditory cortex and the superior temporal gyrus (Adler
etal., 1982). Thus, suppression of an early component of auditory
responses to stimuli with a higher TP in lower cortical areas
can be regarded as a transient expression of prediction error
that is suppressed by predictions from higher cortical areas in a
top-down connection (Skoe et al., 2015).

Most neurophysiological studies on SL have investigated
the SL of single-tone sequences. In real-world auditory
environments, however, humans are simultaneously exposed
to overlapping sound sequences such as those made by
musical instruments and human voices.
selectively attend to the important information and ignore
the unimportant information in overlapping sounds, humans
generally acquire the information through both attentional
and nonattentional processes (Jimenez and Castor, 1999;
Aizenstein et al., 2004; Daikoku and Yumoto, 2017; Yumoto and
Daikoku, 2018). However, few neurophysiological studies have
examined attentional and nonattentional SL when learners are
simultaneously exposed to multiple streams of sequences. To
understand the mechanisms underlying SL, which is considered
to occur automatically regardless of attention (Perruchet and
Pacton, 2006), it is important to investigate how concurrent SL of
attended and ignored sequences is reflected in neural responses.

In studies addressing consciousness during learning, the
learning system has been divided into implicit learning, which
may be accomplished through unconscious and nonattentional
learning processes, and explicit learning, which may be
accomplished through conscious and attentional learning
processes (Reber, 1989; Ellis, 2005, 2009; Daikoku and Yumoto,
2017). The earlier studies suggested that explicit and implicit
knowledge could be acquired by different learning processes
and that explicit knowledge cannot be transformed into implicit
knowledge through practice (Hulstijn, 2002). In contrast,
other researchers have demonstrated that implicit and explicit
knowledge can interact with each other (DeKeyser, 2003, 2007;
De Jong, 2005; Ellis, 2005, 2009). Thus, interactive mechanisms
between implicit and explicit learning remain a matter for debate
(Krashen, 1982; Hulstijn, 2002; Daikoku et al., 2017b, 2018;
Daikoku, 2018b).

To understand the neural mechanisms underlying concurrent
attentional and nonattentional SL of auditory sequences, the
present study used magnetoencephalography (MEG), a modality
that can clearly resolve signals produced by the auditory cortices
located bilaterally in the temporal lobes. We investigated how
concurrent SL of simultaneous sequences of auditory stimuli is
reflected in neuromagnetic responses and how the two forms
of SL neurophysiologically interact with each other. MEG was
recorded while participants listened to a dyad sequence (two-
note chord). The dyad sequence can also be regarded as two
types of auditory sequences consisting of low- and high-voice
sequences in a distinct Markov-chain relationship. During
the last third of each sequence, however, the Markov chains
controlling the low and high voices were exchanged. The subjects
were instructed to ignore one of the two types of sequences but

Even when we

to attend to the other. Given neural representations of SL effects,
we hypothesized that if subjects could concurrently perform SL
of the two sequences, a dyad that consisted of two frequent tones
with higher TP should lead to the lowest response amplitudes,
while a dyad that consisted of two rare tones with lower TP
should lead to the highest response amplitudes. Furthermore,
if the statistical knowledge of attended sequences and that of
ignored sequences cannot be transformed from one type to
the other, the SL effect should disappear when the sequential
regulation of the high and low voices is exchanged in the final
third of the sequence. In contrast, if statistical knowledge of the
attended and ignored sequences can interact and be transformed,
the SL effect should remain even when the sequential regulation
of the low and high voices is exchanged.

MATERIALS AND METHODS

Participants

Fifteen right-handed (57.9-100 in Edinburgh handedness,
Oldfield, 1971) subjects without neurological and audiological
disabilities participated (age range: 24-36 years, seven females,
no absolute pitch). The present study was approved by the
Ethics Committee of The University of Tokyo. All subjects
were informed about this experiment including protection and
safety of personal data, then provided written informed consent.
The present study was conducted based on the guidelines
and regulations.

Stimuli
We used the same stimuli as those in our previous study
(Daikoku and Yumoto, 2017). The eight complex tones consisted
of four high and low pitches each based on a five-tone equal
temperament (100 x 2"~ 1D/> Hz, high: n = 11-14: 400,
459, 528, and 606 Hz; low: n = 1-4: 100, 115, 132, and
152 Hz; duration 350 ms with rise/fall of 10/150 ms; 80 dBSPL
intensity and binaural presentation). The sequence consisted of
1,092 repetitions of two-tone chords (SOA = 500 ms), each of
which consisted of a high and low pitches within which the
intervals were separated by more than one octave (Figure 1).
The order in which the high and low pitches was defined
separately based on a second-order Markov model (Markov,
1971, reprinted) with the constraint that the probability of a
forthcoming tone was statistically defined (80% for a tone; 6.67%
for the other three tones) by the last two successive tones

Behavioural test

>

MEG measurement

13 2/3 ' 33
(regularity swapped)

gl -

Low voice @ €777

1,092 two-tones 8 single-tones x 30
FIGURE 1 | Experimental procedure. Two simultaneous sequences
consisting of high- and low-voice sequences were presented during
magnetoencephalography (MEG) measurement. After the measurement,
behavioral tests were conducted.
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FIGURE 2 | The Markov models used in the present study (Daikoku and
Yumoto, 2017). The paired digits in the circles represent two successive
tones in the stimulus sequence. The distinct two Markov chains (A,B) were
used in each of the low and high voices, and the use of Markov chains was
counterbalanced across participants. The solid arrows represent transitions
from each state with a high probability (80%). The remaining possible
transitions from each state to the other three states occurred with a low
probability (6.67% each). In the last third of the sequence, the Markov models
controlling sequential regularity of the low and high voices were exchanged.

(Figure 2). In the last third of the sequence, however, the Markov
models controlling sequential regularity of the low and high
voices were exchanged (Figure 1). The regularities of the Markov
models were counterbalanced across subjects.

Experimental Protocol

Subjects listened to a 1,092-dyad sequence with MEG
measurement and took a behavioral test immediately afterward.
They were instructed to ignore one sequence but attend to the
other. The assignment of the attended and ignored sequences
was counterbalanced across the subjects. To distinguish between
attended and ignored conditions, a silent period of 500 ms was
pseudo-randomly inserted within every set of 40 successive
tones in attended sequence. Before the session, the subjects
were instructed to raise their right hands at every silent period
in attended sequence. Thus by observing that all subjects
correctly raised their right hands at every silent period, we were
able to confirm that they continually paid attention to only
attended sequence.

After the measurement, subjects were presented with 30 series
each consisting of eight single tones. Subjects answered whether
each eight-tone series sounded familiar or not. The 30 series
of eight tones could be classified into three types, and the
presentation order was randomized. In 10 series, tone stimuli
were sequenced using the Markov model that was applied in

the last third of the ignored sequence (tone series A). In an
additional 10 series, tone stimuli were sequenced according to the
same Markov model as an attended sequence in last third of the
sequence (tone series B). In the remaining 10 series, tones were
pseudo-randomly ordered (random tone series). The behavioral
test was completed within 6 min for each subject.

Measurement and Data Analysis

Measurement and analysis were conducted as in our previous
studies (Daikoku and Yumoto, 2017). Selective response
averaging was performed separately for the first, middle, and last
thirds of the sequence. Responses to each chord were selectively
averaged from the beginning of each first, middle, and last thirds
of the sequence. They were also selectively averaged in each dyad
stimulus: chord that consisted of two high-TP (i.e., frequent)
tones in both attended and ignored sequences, chord that
consisted of two low-TP (i.e., rare) tones in both attended and
ignored sequences, chord that consisted of a frequent tone in
attended sequence and a rare tone in ignored sequence, and
chord that consisted of a rare tone in the attended sequence
and a frequent tone in the ignored sequence. The averaged
responses were filtered offline with a 2-40 Hz band-pass. The
baseline for the magnetic signals in each MEG channel was
defined by the mean amplitude in the pre-dyad period from
—100 to 0 ms. The analysis window was defined as 0-500 ms.
In addition to selective averaging, all responses (1,092-dyad
stimuli) to the dyads were averaged in each subject, enabling
us to evaluate reliability for individual components. Using the
averaged responses to all 1,092-dyad stimuli, the P1m, N1m
and P2m were separately modeled as single equivalent current
dipoles (ECDs) in each hemisphere (Daikoku et al., 2017a).
The ECDs were calculated from the averaged responses to all
1,092-dyad stimuli with a goodness of fit above 80% using the
66 temporal channels (44 gradiometers and 22 magnetometers)
for each participant. The selected channel areas correspond
to our previous studies (Daikoku et al, 2014, 2015, 2016,
2017a). Subjects who demonstrated poor ECD estimation, with a
goodness-of-fit below 80% in either the left or right hemisphere,
were discarded from further analyses. Consequently, learning
effects on the P1m, N1m, and P2m components were studied in
13, 10, and 11 subjects, respectively. Because a lot of the goodness
of fit in the ECDs for the N1m and P2m were less than 80%, they
were excluded from the analyses in this study.

Using the ECDs, the source-strength for P1 m in each
hemisphere were calculated based on selective response
averaging. Then, we performed a 3 (portion: first, middle,
and last) x 2 (hemisphere: right and left) x 4 (dyad stimulus:
chord that consisted of two frequent tones in both attended
and ignored sequences, chord that consisted of two rare tones
in both attended and ignored sequences, chord that consisted
of a frequent tone in attended sequence and a rare tone in
ignored sequence, and chord that consisted of a rare tone in the
attended sequence and a frequent tone in the ignored sequence)
repeated-measures analysis of variance (ANOVA) with peak
amplitude and the latency of the source-strength of Plm.
Bonferroni-corrected post hoc tests were conducted for further
analysis. Furthermore, we performed ANOVA with the logit
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FIGURE 3 | The logit values and percentages of familiarity ratios. In tone
series A, tones were sequenced using the constraint that was applied in the
last third of the ignored sequence. In tone series B, tones were sequenced
using the constraint that was applied in the last third of the attended
sequence. In the remaining 10 series, tones were pseudo-randomly
sequenced (random tone series). The bars indicate the standard error of the
mean. Asterisks indicate significant differences in a pairwise test (o < 0.05,
Bonferroni-corrected).

values of the familiarity ratios in behavioral test. Significance
levels were set at p = 0.05 for all analyses. For further analysis,
post hoc tests with Bonferroni correction were performed.

RESULTS

Behavioral Results

The results of two-tailed t-tests indicated that the familiarity
ratios were significantly above chance level in both tone series
A and tone series B (tone series A: (14, = 2.30, p = 0.037, tone
series B: f(14) = 2.46, p = 0.028; Figure 3). The ANOVA detected
no significant results.

MEG Results

The averaged peak amplitudes and latencies of P1m responses are
shown in Figure 4. The ANOVA detected that the main portion
effect on the amplitudes was significant (F(3,24) = 3.74, p = 0.039).
The amplitudes in the last portion were significantly greater
than those in the first portion (p = 0.049). The hemisphere-
stimulus-portion interaction of the amplitudes was significant
(F6,72) = 2.32, p = 0.042). In the middle and last portions, the
amplitudes for the dyads that consisted of two frequent tones
were significantly higher in the left than in the right hemispheres
(middle: p = 0.039, last: p = 0.036). In the right hemisphere,
the amplitudes for the dyads that consisted of two rare tones
were significantly higher than those for the dyads that consisted
of two frequent tones in the middle portion (p = 0.028). The
results were consistent with a body of previous studies on SL:
the brain learned TPs of the sequences, predicted a stimulus
with a high TP (i.e., frequent stimuli), and inhibited the neural
response to the stimuli with a high TP. The SL effects finally
represent as a difference amplitudes between the stimuli with
high and low TPs (Francois and Schon, 2011; Francois et al.,
2013, 2017; Paraskevopoulos et al., 2012; Daikoku et al., 2014,

2015, 2016; Koelsch et al., 2016). These SL effects (i.e., difference
amplitudes between the stimuli with high and low TPs), however,
could not be detected after the Markov chains of the two
sequences were exchanged in the last portion. This may suggest
that SL effects cannot be retained when sequential regulations
are exchanged. There was no significance in latency. No other
significant differences were detected.

DISCUSSION

When the brain encodes the TP distributions of a stimulus
sequence, humans expect a probable future stimulus with a
high TP and inhibit the neural response to predictable external
stimuli. In the end, the effects of SL manifest as a difference in
amplitudes between stimuli with lower and higher TPs (Yumoto
and Daikoku, 2016; Daikoku, 2018b). In the present study,
subjects listened to two simultaneous sequences composed of
tones with lower and higher TPs (i.e., rare and frequent tones,
respectively). The subjects were instructed to ignore one of the
two simultaneous sequences and to attend to the other. Based
on the combinations of rare and frequent tones in the two
simultaneous sequences, there were four types of dyads: dyads
consisting of frequent tones in both sequences, dyads consisting
of rare tones in both sequences, dyads consisting of a frequent
tone in the attended sequence and a rare tone in the ignored
sequence, and vice versa. If subjects were able to perform the
SL of two sequences, and simultaneously predict stimuli with
high TPs in both sequences, dyads consisting of two frequent
tones should generate the lowest-amplitude responses, while
those consisting of two rare tones should generate the highest-
amplitude responses.

We found that, in the right hemisphere, neural responses
to dyads consisting of two rare tones in ignored and attended
sequences were significantly greater than those to dyads
consisting of two frequent tones in ignored and attended
sequences. These results suggested that the subjects were able to
learn the statistics of the two sequences simultaneously and that
SL of a sequence of two-tone dyads may be right-hemisphere
dependent. This result is in agreement with previous studies
that have reported the SL effects of single-tone sequences to be
right-hemisphere dependent (Roser et al., 2011; Danckert et al,,
2012; Shaqiri and Anderson, 2013). The amplitude difference
could not be retained after the statistical regularities of the two
sequences were exchanged in the last third of each sequence,
although the finding that the amplitude in the right hemisphere
was lower than that in the left was retained. This may imply that
learning effects cannot be retained when sequential regulations
in the low and high voices are exchanged. A previous study has
suggested that explicit knowledge cannot be transformed into
implicit knowledge through practice (Krashen, 1982; Hulstijn,
2002). In contrast, other researchers have claimed that implicit
and explicit knowledge can interact with each other (DeKeyser,
2003, 2007; De Jong, 2005; Ellis, 2005, 2009). The present study
may imply that implicit and explicit learning can interact with
each other, but only barely.

SL is reflected in the early component of P1 (Paraskevopoulos
et al., 2012; Daikoku et al.,, 2016, 2017c) as well as in the
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late components such as N1, mismatch negativity (MMN), P2,
and N400 (Abla et al., 2008; Furl et al., 2011; Daikoku et al,,
2014, 2015; Koelsch et al., 2016). It is, however, considered that
the SL effect relationship with P1 involves music expertise and
specialized training experience (Boutros et al., 1995; Boutros
and Belger, 1999; Kisley et al., 2004; Kizkin et al., 2006; Wang
et al., 2009). According to a previous study (Adler et al., 1982),
earlier auditory responses such as P1 were attributed to parallel
thalamo-cortical connections and superior temporal gyrus. Thus,
the findings of P1 in the present study can be interpreted as a
prediction error suppressed by top-down predictions (Friston,
2005). Further studies are needed to reveal the role of P1 in SL.
Previous studies have suggested that the brain regions
and activation patterns engaged during attentional and
nonattentional learning might be partially distinct (Curran
and Keele, 1993; Rauch et al., 1995; Reber and Squire, 1998;
Jimenez and Castor, 1999; Poldrack et al.,, 2001; Aizenstein
et al., 2004; Paradis, 2004; Destrebecqz et al., 2005; Daikoku and
Yumoto, 2017). In our recent study, the SL of two simultaneous
sequences was facilitated by paying attention to only one

sequence and ignoring the other (Daikoku and Yumoto, 2017).
This suggests that there is a partially distinct neural basis
of attentional and nonattentional SL. In other words, biased
attention might be an essential strategy in situations where
the learner is exposed to multiple streams of information
simultaneously. In this study, we exchanged the Markov model
between attentional and nonattentional sequences in the last
third of the sequences. We also revealed that the SL of two
simultaneous auditory sequences might be right-hemisphere
dependent. Learning effects cannot be retained when the
tone sequence to which the subject is attending is changed
during listening. These results suggest that attentional and
nonattentional learning scarcely interact with each other and
that there may be a specific cognitive system for nonattentional
learning that is independent of attentional learning. As we
could not demonstrate a neurological dichotomy between
nonattentional and attentional SL due to the methodological
limitations of the present study, further studies are needed
to examine distinct or common neural mechanisms between
attentional and nonattentional learning.
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