AUTHOR=Dubbioso Raffaele , Manganelli Fiore , Siebner Hartwig Roman , Di Lazzaro Vincenzo TITLE=Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson’s Disease JOURNAL=Frontiers in Human Neuroscience VOLUME=Volume 13 - 2019 YEAR=2019 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2019.00111 DOI=10.3389/fnhum.2019.00111 ISSN=1662-5161 ABSTRACT=Parkinson disease (PD) is a prototypical basal ganglia disorder. Nigrostriatal dopaminergic denervation leads to progressive dysfunction of the cortico-basal ganglia-thalamo-cortical sensorimotor loops, causing the classical motor symptoms. Although the basal ganglia do not receive direct sensory input, they are important for sensorimotor integration. Therefore, the basal ganglia dysfunction in PD may profoundly affect sensory-motor interaction in the cortex. Cortical sensorimotor integration can be probed with transcranial magnetic stimulation (TMS) using a well-established conditioning-test paradigm, called short-latency afferent inhibition (SAI). SAI probes the fast-inhibitory effect of a conditioning peripheral electrical stimulus on the motor response evoked by a TMS test pulse given to the contralateral primary motor cortex. Since SAI occurs at latencies that match the peaks of early cortical somatosensory potentials, the cortical circuitry generating SAI may play an important role in rapid online adjustments of cortical motor output to changes in somatosensory inputs. Here we review the existing studies that have used SAI to examine how PD affects fast cortical sensory-motor integration. Studies if SAI in PD have yielded variable results, showing reduced, normal or even enhanced levels of SAI. This variability may be attributed to the fact that the strength of SAI is influenced by several factors, such as differences in dopaminergic treatment or the clinical phenotype of PD. Inter-individual differences in the expression of SAI scales with motor impairment as revealed by UPDRS motor score and thus, may reflect the magnitude of dopaminergic neurodegeneration.