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Music is commonly used to modify mood and has attracted attention as a potential
therapeutic intervention. Despite the well-recognized effects of music on mood, changes
in affective perception due to music remain majorly unknown. Here, we examined if the
perception of aversive stimuli could be altered by mood-changing background music.
Using subjective scoring data from 17 healthy volunteers, we assessed the effect of
relaxing background music (RelaxBGM), busy background music (BusyBGM), or no
background music (NoBGM) conditions on response to aversive white noise stimulation.
Interestingly, affective response to the white noise was selectively alleviated, and white
noise-related P3 component amplitude was reduced in BusyBGM. However, affective
responses as well as P3 amplitude to reference pure tone stimuli were similar regardless
of background music conditions. Interestingly, heart rate (HR) increased in BusyBGM,
whereas no increase in HR was found in similar distress, NoBGM condition. These
findings suggest that increase in HR, which happens during BusyBGM exposure, can be
a reflecting feature of music that ameliorates the affective response to aversive stimuli,
possibly through selective reduction in neurophysiological responses.

Keywords: background music, affective response, mood changes, event-related potentials, modulation of
affective perception

INTRODUCTION

From majestic operas to a casual humming, music plays an indispensable and extensive role
in human life. One reason for the ubiquity of music is its ability to change mood (Sloboda
and Juslin, 2001). For example, the choice of background music in a movie can dramatically
change the impact of visual scenery perception, even if the music itself is not being consciously
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listened to Boltz (2004). The mood adjusting effects of
background music are not only applicable to movies, but
are widely used in environments, such as shopping malls
and restaurants, to enhance the behavior of customers
(Milliman, 1982, 1986). Background music is not limited to
composed melodies: several online music streaming services
provide artificial mixtures of daily noise claimed to serve as
“concentration helping” background music (Zhang et al., 2013).

Recently, an increasing number of studies have elucidated
the efficacy of music therapy (Bradt et al., 2013; Aalbers et al,,
2017; van der Steen et al., 2018). Interestingly, a relaxing effect
is not the only expected outcome of some music therapies.
For example, in music therapy for pain, the main outcome is
the alleviation of pain perception (Lee, 2016). This suggests
that music can regulate cognitive perception, beyond a direct
effect on mood. Another interesting aspect of music therapy is
continuous attention to music is not necessary because passive
listening is as effective as active listening in several cases
(Mercadie et al,, 2015; Millett and Gooding, 2018). Indeed, the
music used in music therapy is played at normative loudness;
it need not be loud or boisterous as in a concert hall. These
findings suggest that unconscious listening to background
music in daily life can affect mood and consequently modify
affective perception.

Such change in affective perception can be assumed as a
kind of affective bias. In relation to the clinical consideration,
the affective perceptions are negatively biased in patients with
depression, which is paralleled by reduced P3 amplitudes related
to happy-face perception (Cavanagh and Geisler, 2006). In
the basic cognitive science study, it is reported that auditory-
induced pleasant mood enhances the cognitive inhibition that
is paralleled with pronounced amplitudes in event-related
potential (ERP) components between 150 and 550 ms (Yuan
et al., 2011). In addition, these early components of ERP
are thought to be involved in the mechanism of affective
bias (Huang and Luo, 2006). For example, P3 component
is related to the valence perception (Conroy and Polich,
2007). Early posterior negativity (EPN) is also considered to
be the early stage of affective process, mirroring the fast
and effortless detection of emotional stimuli (Olofsson et al.,
2008; Ullrich et al, 2016). Consistently, in a recent article,
we reported that the sounds of different aversiveness were
associated with different neuroelectric activities in this time
range. Briefly, aversive white noise stimuli involved more
activity in the parietal region than pure tone stimuli in
the time range corresponding to EPN and P3 components
(Masuda et al., 2018).

Intriguingly, the effects of background music on cognitive
function are not conclusive. For example, one study reported
that background music has beneficial effect on reasoning
or memory performance (Rauscher et al, 1993) whereas
another study found detrimental effects on memory and
comprehension tasks (Furnham and Strbac, 2002). These
contrasting results could be attributable to the difference in
the methodologies, targeted cognitive function, or applied
choice of music. Choice of music type is important because
it is reported that music interferes with the learning process

depending on the congruency of the learning material and the
kind of background music (Sousou, 1997). Similarly, music
with increased arousal and positive affect can improve the
performance of certain tests of spatial abilities (Thompson
et al, 2001). The difference in the autonomic nervous
system (ANS) might be involved in the inconsistent results
because the autonomic nervous activity is related to type of
music (Zatorre, 2015).

Thus, to establish the basis of affective bias caused by daily
loudness music therapy, we performed a multimodal study
that examined neurocognitive responses as well as the ANS
changes. As an ANS measure that is closely related to mood, we
examined changes in heart rate (HR) along with the subjective
measurement of mood (Sammler et al., 2007).

We hypothesized that calming music can alleviate the aversive
perception paralleled with reduced amplitudes of aversive-
related EPN/P3 and reduction of corresponding neural activity
in parietal region. In addition, we expected such music to have a
soothing effect on ANS activity, such that it would be observable
as decreased HR. This report is an extension of our recent work
that reported the appraisal mechanism of white noise and pure
tone (Masuda et al., 2018).

MATERIALS AND METHODS
Subjects

Advertisements were used to recruit 17 healthy adult participants
for this study (10 men; mean age =+ standard deviation,
21.6 £ 2.06 years). The participants were compensated with
a gift card with a value equivalent to ¥2,500. Interview by a
psychiatrist confirmed that the participants had no psychiatric
disorders, hearing problems, or smoking history and did not
habitually take medication or consume caffeine on the day
of the study. All the subjects were right-handed, which was
confirmed using Edinburgh handedness score being not <50
(Oldfield, 1971). All subjects had normal hearing ability. Four
subjects had experience of taking music lessons in their
childhood, but no subject was taking music education at
the time of the experiment. This study was in accordance
with the recommendations of the ethical committee at Shiga
University of Medical Science with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the ethical committee at Shiga University of Medical
Science (Approved #26-227).

Experimental Design and Settings

Background Music and Sound Stimuli

Two types of background music were used to induce changes in
mood. Relaxing background music (RelaxBGM) was a privately
composed music that was spacious and ethereal, such as music
typically played for yoga or meditation. Busy background music
(BusyBGM) was an artificial mixture of traffic noise that was
reminiscent of a busy highway. The background music was
played at the same loudness in all conditions, at an average
loudness of 40 dB[A]. In addition, no background music
(NoBGM) condition [<30 dB(A) silence] was used.
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A 500-ms burst of 50 dB[A] white noise with instantaneous
(10 ms) rise/fall times was used as an aversive stimulus. The
white noise included all frequency bands within the audible
range. A 1,000-Hz pure tone was used as a reference. Pure
tone was used as a reference because sounds with 1,000 Hz
peaks are most ubiquitously observed (Kim et al, 2012)
and less affected by age-related losses in hearing sensitivity
(Cruickshanks et al., 1998). We presented the stimuli in a passive
task context, where subjects were instructed to simply view a
presented fixation point without special attention to sound or
background music.

Subjective Measures of Mood and Affective
Response

The subjects were asked to score their subjective emotional
responses using the Self-Assessment Manikin (SAM), a
two-dimensional subjective scoring system developed for
assessing affective stimuli of the International Affective Picture
System (Bradley and Lang, 1994). This is a nine-point rating scale
comprising sets of figures to measure valence (1 = unpleasant;
9 = pleasant) and arousal responses (1 = arousing; 9 = calming).
We used the Profile of Mood States (POMS), which has high
levels of reliability and validity, to measure psychological distress.
In the scale, participants were required to rate 65 mood-related
adjectives on a 5-point scale (0 = not at all to 4 = extremely).
The scores of 65 adjectives were combined to make six sub-scale
scores, and Total Mood Disturbance (TMD) was then calculated
based on the sub-scale scores. A larger TMD score indicates an
increased state of distress.

Procedures and Settings

Subjects underwent three background music experiments, in
which one of the three background music options (RelaxBGM,
BusyBGM, or NoBGM) was played (Figure 1, upper panel).
The background music was selected following randomized
counterbalanced crossover design. During the experiment,
subjects remained seated on a chair placed 70 ¢cm in front
of a cathode ray tube (CRT) display in a sound proof and
electromagnetic shield room. The illumination in the room
was maintained at 80 lux. The subjects were instructed to
look at a white-cross fixation point that appeared against
the black CRT background during the entire experiments.
Auditory stimulation was provided through headphones (AKG
closed-back headphones, K404, Vienna, Austria).

One experiment was consisted with two major blocks
(Figure 1, lower panel). In the first block, participants were only
exposed to the background music. The effect of background
music on mood was examined by TMD before and after a 5-min
exposure to the background music. In addition, the participants
were asked to use SAM to rate their appraisal evaluation of the
background music. After completion of the ratings, the subjects
immediately proceeded to the second block.

In the second block, the participants were exposed to the
same background music for 5 min as in the first block,
followed by the administration of pure tone and white noise
sound stimuli with background music lasting approximately
5 min. The pure tone and white noise sound stimuli were

programmed to randomly produce each frequency 75 times, with
randomized stimulus intervals of 2,000 &= 200 ms using E-Prime
v 2.0 software (Psychology Software Tools, Pittsburgh PA, USA).
The participants completed SAM for both white noise and pure
tone stimuli immediately after each experiment.

Electroencephalography Data Acquisition

Electroencephalography (EEG) signals were recorded using
NetStation software [Electrical Geodesics Inc (EGI), Eugene, OR,
USA] with 64-channel recordings made through a HydrocCel
Geodesic Sensor Net v.1.0. gel cap. Data were sampled using
a high-input impedance amplifier (200 M2, EGI Inc., Model:
GES 300), at 500 Hz and referenced to Cz. Electrode impedances
were kept at <60 k2 throughout the experiments, following
the guideline recommending the electrode impedance to be less
than the input impedance of the amplifier by a factor of at least
100 (Picton et al., 2000). The participants were asked to remain
awake, and a vigilant state was qualitatively confirmed by online
observation of the EEG signal by a somnologist during the study.

Event-Related Potential (ERP) Data

Processing

EEG data processing was performed using EEGLAB (version
14.1.2; Delorme and Makeig, 2004), an open source toolbox that
runs on MATLAB version 2017a (Mathworks Inc. Natick, MA,
USA). Briefly, EEG data were re-referenced to the average of the
left and right mastoids, and bandpass filtered offline by 0.1-50 Hz
using linear finite impulse response filtering method. Gross
artifacts were visually rejected following independent component
analysis based artifact correction embedded in EEGLAB,
excluding 1-3 components produced by eye movement or
muscle activity. We epoched all data segments 500 ms prior to
and 1,500 ms post stimulations, and baseline corrections were
done by subtracting the average of 100 ms prior to stimulation
using ERPLAB (version 7.0.0; Lopez-Calderon and Luck, 2014).
Epochs for ERP calculation were first selected using the simple
voltage threshold function of ERPLAB using 100 pV as the
threshold. Finally, an examiner, without the knowledge of the
experiment conditions, visually confirmed artifact-free epochs
for ERP calculation. The average number of epochs used for
ERP calculation was as follows: 55.76 + 2.57 for pure tone
and 53.94 + 2.44 for white noise in NoBGM; 54.29 + 2.69 for
pure tone and 51.88 + 2.77 for white noise in RelaxBGM;
and 48.59 £ 3.54 for pure tone and 48.76 + 3.43 for white
noise in BusyBGM. To compare component amplitudes, we
calculated the mean relative-to-baseline amplitude value between
the specified time range from each electrode. To compare ERP
component amplitudes on region-of-interest basis, we averaged
the potentials of four electrodes (Pz, Cz, C3, and C4). We focused
on these four electrodes because EPN/P3 related potentials
were most pronounced in these electrodes (Supplementary
Figure S1). To investigate the regions involved in the differential
processes between pure tone and white noise, we used
time series standardized low resolution brain electromagnetic
tomography analysis (SLORETA) every 2 ms to estimate the
current source density distribution for each ERP component
(Pascual-Marqui et al., 1994).
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Experiment procedure

Block1

POMS before BGM
v v

POMS after BGM

F ¥F-e 4
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SAM for BGM

BGM (5 min)

BGM with WN/PT A
SAM for WN/PT

FIGURE 1 | Schematic representation of the study. The study was conducted following randomized counterbalanced crossover design. Each participant underwent
three experiments with different background music conditions. In each background music condition, two blocks of experiments were conducted. In block 1,
participants were exposed to selected background music for 5 min. In block 2, participants were exposed to the background music for 5 min, followed by exposure

to the same background music with intermittent sound stimuli.

Heart Rate and Calculation of Autonomic

Features

Kubios HRV (version 2.1, Kubios, Finland) was used for
HR detection (Tarvainen et al., 2014). The type II lead of
electrocardiogram was simultaneously recorded during EEG
recordings, and the data were later processed by Kubios HRV.
HR was calculated from 20 s data at the beginning or end of
BGM exposure.

Statistical Analyses

Data are shown as mean =+ standard error of mean, unless
otherwise stated. For the examination of effects by background
music and sound stimuli, a two-way repeated measures (3 x 2)
analysis of variance (ANOVA) with three background music
conditions and two sound stimuli as the within-subjects
factors was conducted unless otherwise described. Greenhouse-
Geisser correction was used when the sphericity was violated.
Bonferroni pairwise comparison was used to adjust for multiple
comparisons. SPSS statistics software Version 22 (IBM, Armonk,
NY, USA) was used to perform statistical analysis. SLORETA
images were statistically compared between sound conditions
using the voxel-by-voxel t-test, which was corrected by Statistical
non-Parametric Mapping (SnPM) randomization (number of
randomizations = 5,000). The threshold of statistical significance
was set at P < 0.05.

Comparisons of Components of

Event-Related Potentials

To examine the changes in sound stimulation related
potentials in each background music condition, we focused
on 200-300 and 300-450 ms because these time ranges were
pivotal in the aversive process of pure tone and white noise
(Masuda et al., 2018).

RESULTS

Subjective Ratings of Appraisal Response
and Consequential Mood by Background
Music

First, to investigate how participants experienced the background
music, the two-way repeated measures (2 x 2) ANOVA
within the subject factors background music (RelaxBGM and
BusyBGM) and subjective evaluations (SAM scores in valence
and arousal) was performed. This analysis showed significant
effect of background music (Fg,16) = 94.298, P < 0.01,
partial n?> = 0.855), and SAM (F(116) = 28.810, P < 0.01,
partial n?> = 0.643) as well as their interaction between
background music and SAM (F,16y = 24.800, P < 0.01,
partial n? = 0.608). BusyBGM was perceived as more aversive
than RelaxBGM (valence score: BusyBGM, 2.71 £ 0.24;
RelaxBGM, 6.24 + 0.22, Figure 2A, 16y = 13.631, P < 0.01).
In addition, BusyBGM was more arousing than RelaxBGM
(arousing score: BusyBGM, 5.18 =+ 0.33; RelaxBGM, 6.88 £ 0.32,
t(16) = 6.5884, P < 0.01).

Thereafter, we examined the mood changes caused by
5-min exposure to RelaxBGM, BusyBGM, and NoBGM using
TMD calculated from POMS questionnaire. TMD score had
high internal consistency in our study sample (Cronbach’s
Alpha = 0.915). The two-way repeated measures ANOVA with
background music and the time (before or after background
music exposure) as within subject factors found simple main
effect by time (F(1,16) = 11.437, P < 0.01, partial n* = 0.417) and
no effect of background music (F(232) = 1.251, P = 0.300, partial
n? = 0.073), and significant interaction between background
music and time (F32) = 10.159, P < 0.01, partial 7% = 0.388).
Following planned comparisons, to check background music
specific change of the mood, found worsening of TMD in
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FIGURE 2 | Affective responses and consequential mood for each background music condition. (A) Affective responses to relaxing background music (RelaxBGM)
and busy background music (BusyBGM) are shown based on two-dimensional evaluation: valence and arousal. Note that RelaxBGM was more pleasant and
calming than BusyBGM. (B) Emotional consequences of listening to each background music for 5 min are shown. Note that mood worsened in BusyBGM and no
background music (NoBGM) conditions, whereas RelaxBGM prevented the worsening. (C) Heart rate (HR) changes were noted during exposure to each background
music. HR increased in BusyBGM, while HRs at the beginning were similar in all conditions. Asterisk shows significant difference between the indicated pair.

BusyBGM (pre vs. post: 6.71 & 1.14 vs. 10.88 + 1.34, (35 = 4.077,
P < 0.01, Figure 2B) and NoBGM (pre vs. post: 6.35 = 0.84 vs.
10.18 £ 1.73, t(32) = 3.733, P < 0.01), although no worsening was
observed in RelaxBGM (pre vs. post: 8.29 £ 1.44 vs. 6.65 £ 1.19,
t(32) = 1.608, P = 0.353).

Heart Rate Changes Due to the
Background Music

Similar to the analysis of the mood changes due to background
music, we performed the two-way repeated measures ANOVA
on HR with background music and time as within subject
factors. We used two representative average HR from two
time windows, the first and the last 20 s of BGM exposure
(Figure 2C). This analysis found significant main effect of
the time (Fqu,16y = 9.061, P = 0.008, partial 7> = 0.362).
However, no significant effect of background music was found

(F2,32) = 0.319, P = 0.729, partial 7% = 0.020) and marginal
interaction was found (F(3 = 3.014, P = 0.063, partial
n? = 0.159). In following planned comparisons, an increase
in HR was found to be specific to BusyBGM condition
(pre vs. post: 58.16 £ 1.79 vs. 61.49 & 2.10, t3 = 4.291,
P < 0.01), and HR remained constant in NoBGM (pre vs. post:
58.97 £ 1.86 vs. 59.68 £ 1.89, t(3) = 0.901, P > 0.900) and
RelaxBGM conditions (pre vs. post: 58.43 £ 1.77 vs. 59.94 + 2.29,
t(32) = 1.945, P = 0.182).

Changes in Affective Response to White
Noise/Pure Tone in the Three Background

Music Conditions

We examined if pure tone and white noise caused different
affective responses in the three background music conditions
using the two-way repeated measures ANOVA. The analysis
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FIGURE 3 | Affective response to white noise and pure tone for each
background music condition. Self-Assessment Manikin (SAM) scores for
white noise and pure tone are graphically presented. Panel (A) shows the
valence scores, whereas Panel (B) shows the arousal scores. Significant
difference due to background music condition is shown by asterisk.

on valence found significant main effect for the sound
stimuli (F(1,16) = 16.812, P = 0.001, partial n*> = 0.512) and
marginal significance for background music (F32) = 2.744,
P = 0.079, partial n?> = 0.146), although the interaction
between them was not significant (F(332) = 0.232, P = 0.794,
partial »?> = 0.014). Planned comparisons within the same
sound stimulus found aversive response to white noise
significantly reduced in BusyBGM compared to those
in NoBGM (BusyBGM vs. NoBGM: 347 £ 0.34 vs.
2.76 £ 0.28, t32 = 3.339, P < 0.01, Figure 3A), although
no significant reduction of aversiveness was found in
RelaxBGM compared to NoBGM (RelaxBGM vs. NoBGM:
3.06 = 033 vs. 2.76 £ 0.28, t3y = 1.391, P = 0.521).
Interestingly, aversive response to pure tone was comparable
to NoBGM in both RelaxBGM (RelaxBGM vs. NoBGM:
424 £ 0.32 vs. 3.94 £ 031, t32 = 1.391, P = 0.521) and
BusyBGM (BusyBGM vs. NoBGM: 4.47 & 0.21 vs. 3.94 & 0.31,
t(32) = 2.504, P = 0.052).

The same analysis on arousal found marginal effect of sound
stimuli (F(1.000,16.000) = 4.176, P = 0.058, partial n* = 0.207) but
no significant effect of background music (F(1.91630.656) = 1.171,
P =0.322, partial n? = 0.068) as well as no significant interaction
(F(1.471,23.539) = 2.368, P = 0.127, partial n* = 0.129).

Planned comparisons found no significant difference in
arousal responses to white noise, which was similar to
NoBGM condition in both RelaxBGM (RelaxBGM vs. NoBGM:
447 + 037 vs. 400 + 038, tqe = 1.095 P = 0.869)
and BusyBGM (BusyBGM vs. NoBGM: 4.47 =+ 0.43 vs.
4.00 £ 0.38, t(16) = 1.000, P > 0.900 in BusyBGM, Figure 3B).
Similarly, comparable arousal responses were found for pure
tone (arousal response to pure tone: RelaxBGM vs. NoBGM:
4.65 £ 0.36 vs. 4.71 £ 0.31, t6 = 0.203, P > 0.900) and in
BusyBGM (BusyBGM vs. NoBGM: 5.29 4 0.38 vs. 4.71 & 0.31,
t(e) = 2.163, P = 0.138).

Neurophysiological Response to Sound

Stimulations

The two-way ANOVA analysis on P3 component amplitude
found simple main effect of background music (F32) = 7.601,
P < 0.01, partial »? = 0.322) and sound stimuli (Fa,16) = 77.962,
P < 0.01, partial n*> = 0.830), although there was no
significant interaction (F(232 = 0.929, P = 0.405, partial
n? = 0.055). Following comparison within each sound stimuli
found that white noise-related amplitude was significantly
smaller in BusyBGM (BusyBGM vs. NoBGM: 3.36 £ 0.58 vs.
5.64 £ 0.64 WV, t3z) = 3.906, P < 0.01; Figure 4), although
amplitude was comparable between RelaxBGM and NoBGM
(RelaxBGM vs. NoBGM: 4.54 + 0.42 vs. 5.64 £ 0.64 pV,
t32) = 1.885, P = 0.21). Interestingly, the pure tone-related
amplitude in BusyBGM was comparable to NoBGM (BusyBGM
vs. NoBGM: 0.98 £ 0.34 vs. 2.15 & 0.58 WV, t32) = 1.999,
P = 0.16) as well as in RelaxBGM (RelaxBGM vs. NoBGM:
1.47 +0.42 vs. 2.15 £ 0.58 WV, t(32) = 1.175, P = 0.75).

For EPN component, simple main effect of sound stimuli
(F(1,16) =31.617, P < 0.01, partial n* = 0.664) was found, although
there was no main effect of background music (F,32) = 0.361,
P = 0.700, partial n*> = 0.022) and no significant interaction
(F32 = 0591, P = 0.560, partial n* = 0.036). Planned
comparisons of amplitudes within each sound stimuli found
EPN in BusyBGM (BusyBGM vs. NoBGM: —0.64 £ 0.38 vs.
—0.89 £ 0.72 nV, t32 = 0.587) and RelaxBGM (RelaxBGM
vs. NoBGM: —1.17 % 0.69 vs. —0.89 & 0.72 WV, t32) = 0.634)
were comparable to those in NoBGM for white noise.
Pure tone-related EPN in BusyBGM (BusyBGM vs. NoBGM:
—2.69 £ 0.40 vs. —3.35 & 0.60 WV, t33 = 1.524, P = 0.412)
and RelaxBGM (RelaxBGM vs. NoBGM: —2.96 £ 0.45 vs.
—3.354+0.60 WV, t(32) = 0.890, P > 0.900) were also comparable
to those in NoBGM.

Source Localization of ERP

Time series analysis using SLORETA between white noise and
pure tone revealed significantly greater electrical activity induced
by white noise than pure tone under NoBGM and RelaxBGM,
whereas no difference was found for BusyBGM (Figure 5). In the
NoBGM condition, significant difference between white noise
and pure tone were found for the time window between 294 and
328 ms after sound stimulation, as previously reported (Masuda
et al., 2018). During this time range, significantly increased
electrical activity was found in the parietal lobe centering at the
left inferior parietal lobule, for white noise compared with pure
tone (left parietal lobe, BA 40, Figure 5A). In RelaxBGM, the
difference between white noise and pure tone at the same time
range was not found. However, there was a significantly increased
electrical activity in the posterior cingulate cortex (PCC) in white
noise compared with pure tone (Brodmann 40) at 340 ms in
RelaxBGM (Figure 5B).

DISCUSSION

In this study, we examined the effect of mood-changing
background music on affective perception. Because music
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FIGURE 4 | Event-related potentials (ERPs) to white noise and pure tone for each background music condition. Each panel shows the grand average ERP for each
BGM condition. ERPs evoked by white noise (blue line), and pure tone (green line) are presented. Shaded colors represent the mean =+ standard error. (The inset box)
The electrodes used in the calculation of ERP (Pz, Cz, C3, and C4) are shown in red, while others are in blue.

therapy is reportedly used in pain clinics to reduce pain
perception, we predicted that calming background music would
help to reduce aversive reaction to white noise.

We used two newly composed background music, aiming
to change the mood. The initial assessment of appraisal
response to RelaxBGM and BusyBGM revealed that they had
intended appraisal effects. As we expected, BusyBGM had mood
worsening effect. Slightly different from our initial expectation,
the mood was worsened in NoBGM condition possibly because
of the stress of sitting still. RelaxBGM appeared to prevent
such mood worsening, if not improved the mood. The mood
in BusyBGM or NoBGM was not at an evidently stressful level,
as the POMS total disturbance scores in the present study were
low compared to that in studies assessing a stressful condition
using the same measure (Rosenzweig et al., 2003). Intriguingly,
even with the similar level of mood worsening in BusyBGM
and NoBGM, ANS activity selectively changed in BusyBGM as
shown by the increased HR. Considering that the initial HR
was similar at the beginning of background music exposure, HR
increase was specifically attributable to BusyBGM. The result
is consistent with a previous study that showed HR changes
depend on music (Koelsch and Jancke, 2015), particularly in the
presence of discomforting music (Sammler et al., 2007). Thus,
the absence of HR increase in the NoBGM condition suggests
that ANS activity could be differentially modulated even in the
same subjective distress level. This is consistent with a report
that showed differential ANS modulation by different type of
stressors (Hu et al., 2016).

In examination of the background music effect on affective
perception of white noise and pure tone, we found unexpected
reduction in aversive response to white noise in BusyBGM.
The reduction was specific to white noise, suggesting that low
level aversiveness, as that found against pure tone, was less
prone to the background music effect. One possible psychological
explanation for these unexpected results is that moderate distress
can reduce the effect of aversive stimulation. It is often indicated
that moderate stress is more facilitating for human performance
than no stress because the presence of stress often leads to
improved performance (Smeets et al., 2008; Hupbach and
Fieman, 2012) and emotion (Marin et al., 2010).

In this study, the neurophysiological responses showed the
effect of background music similar to subjective response:
white noise-related P3 amplitude was reduced in BusyBGM,
whereas that in RelaxBGM remained comparable to NoBGM.
The reduction in P3 amplitudes in BusyBGM was not due
to simple phonic masking effects of the stimulus sounds
by background music because the same loudness RelaxBGM
did not show the same effects. In addition, P3 amplitude
related to pure tone was comparable in all background
music, suggesting that the observed amplitude change was
white noise-specific. The reduction in P3 amplitude could
be assumed as a reflection of reduced cognitive capacity to
the sound stimulation, according to the processing capacity
model (Kok, 2001). A study using a similar sound stimulation
technique reported reduced ERP amplitudes in a state with
increased mental concentration (Ullsperger et al., 2001). The
amplitude reduction in sound-related ERP due to mental
state is reminiscent of distress-dependent ERP changes in the
present study. Thus, it is suggested that passive hearing of
BusyBGM continuously consumes cognitive capacity, thereby
reducing the white noise-related P3 component, although
RelaxBGM did not have such an effect. In addition, a similar
sound probe experiment showed the P3 amplitude related to
startling loud sound was reduced while subjects were looking
at emotional pictures (Keil et al, 2007). Because our study
used normative loudness sound (50 dB) stimulation, instead
of loud sound (95 dB) as in Keil’s study, the present results
expand the knowledge that appraisal response to everyday
level loudness sound could also be modulated by background
music. Contrary to our findings, a study addressing the effects
of similar background music conditions (excited background
music, relax background music, and NoBGM) on cognitive
inhibitory function reported that N2d and P3 component
amplitudes are not affected (Burkhard et al., 2018). These
findings suggest that the interference of background music
might be a cognitive function specific, although this idea awaits
further examination.

The time range corresponding to P3 (300-650 ms) is thought
to be involved in linking sound stimuli and emotion (Koelsch,
2010). Our previous findings also support the involvement of
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P3 in the valence determination for white noise perception
(Masuda et al., 2018). To further examine the mechanism of
reduced P3 amplitude, we performed the current source density
analysis on aversive perception related potentials. This analysis
showed significantly different neuroelectric activities between
white noise and pure tone in NoBGM and RelaxBGM, whereas
no significant difference was found in BusyBGM.

The absence of significantly different neuroelectric activity in
BusyBGM was consistent with the decreased P3 amplitude
difference in BusyBGM, whereas significantly different
neuroelectric activities were consistent with the significant
ERP amplitudes difference in NoBGM and RelaxBGM. The
increased neuroelectric activity of the parietal region in NoBGM
may have resulted from the additional process associated with
white noise, presumably resolving the sound feature (Masuda
et al., 2018). In RelaxBGM, increased neuroelectric activity was
found in the PCC. The PCC is generally believed to function
as one of the nodes in default mode network (Buckner et al,,
2008), and thus, increased activity in white noise compared with
pure tone process is unexpected. However, a report mentioned
that the PCC also plays a role in the cognitive perception
of tintius (Vanneste and De Ridder, 2012), suggesting that
the activity in the area may be involved in the perception
of discomfort auditory experience. These results suggested
that background music exert effects on process later than
300 ms, explaining why we did not find background music
effect on EPN.

Considering that the HR increase was the difference between
NoBGM and BusyBGM, HR increase could be a physiological
feature predicting reduced perception of aversiveness. Because
increased HR is associated with increased mental workload (Liu
et al., 2017), HR increase in BusyBGM may reflect increased
mental workload related to continuous auditory processing
of busy noise. This assumption fits aforementioned cognitive
capacity model. Thus, the P3 amplitude reducing effect may
be exerted by background music that accompanies an increase
in HR possibly through increased mental activity, which was
typically found in BusyBGM in this study.

Although we have discussed the results of the present study
in relation to music and possible link to music therapy in
general, there are several limitations. First, we used white noise
as aversive stimulation, although it was only shown to be
aversive relative to 1,000 Hz pure tone. Thus, we should be
careful when interpreting the findings of the present study
as a common mechanism underlying all aversive stimuli. In
addition, we used two background music, as a representative of
busy music and relaxing music. However, it is not warranted
that all music within one category will have the same effect.
In fact, RelaxBGM did not improve the mood in this study,
although it apparently prevented mood worsening. Thus, it is
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