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Time-frequency decompositions of the EEG/MEG have become such a familiar part of the
cognitive neuroscience landscape over the past two decades that their appearance no longer
seems remarkable. But to those of us who labored in the days when the signal analysis toolbox
contained Fourier analysis, event-related potentials and not much else, the arrival of time-
frequency decompositions was little short of revolutionary. With their introduction, complex
information about both the timing and frequency of changes in the EEG/MEG could be presented
in the visually attractive format of time-frequency plots (TFPs). Like maps, with time on the
abscissa, frequency on the ordinate and a color or gray scale to indicate the amplitude or power
at each time-frequency location, TFPs provide a convenient and efficient way to represent a
large amount of detailed information in an easily digestible format and, for that, they are to be
commended. Yet, despite all these benefits, it is my contention that TFPs, in the format most
commonly seen in journal articles and at conferences, systematically distort and bias our perception
of the EEG/MEG signals that they are supposed to help us understand.

Specifically, my contention is that TFPs are biased by the use of linear frequency scales. Linear
frequency scales distort our perception of the EEG/MEG signal by placing far too much emphasis
on the high frequency components of the signal, where there is very little energy, and far too little
emphasis on the lower frequencies where the biggest changes are seen. This disproportionate focus
on high frequencies confers a degree of significance to the gamma band that is not justified by
the evidence.

In the waking state, EEG/MEG spectral power approximately follows a 1
f

distribution

(Linkenkaer-Hansen et al., 2001), where f is the frequency, which means that power is greatest
at low frequencies and diminishes rapidly as frequency increases. The consequence of this is that
less than a quarter of EEG/MEG power from 1 to 80Hz is in gamma (30–80Hz) even though this
spans close to two-thirds of the frequency range. In contrast, nearly half the power in the signal is
in delta (1 to 4Hz) and theta (4 to 8Hz) which together cover <10% of the total frequency range.
In short, the use of linear frequency scales is biased in that it massively over-represents the higher
frequency ranges at the expense of the lower ones.

Signal power, of course, is not the only consideration and this disproportionate emphasis on
higher frequencies could be justified if the most significant EEG/MEG frequency bands were
particularly densely distributed in the higher frequency range, but they are not. Despite the
widespread lack of consensus about anything to do with EEG/MEG frequency bands (even the
number of bands that exist is disputed), the rule that bandwidth increases with frequency is
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near universally acknowledged, at least implicitly (Penttonen and
Buzsáki, 2003; Roopun et al., 2008; Pletzer et al., 2010; Klimesch,
2013; Newson and Thiagarajan, 2018). If we consider the five
classical frequency bands, delta is typically defined as 3Hz wide
(1–4Hz), theta 4Hz (4–8Hz), alpha 5Hz (8–13), beta 17Hz (13–
30Hz), and gamma is variously defined as anything from 15Hz
(30–45Hz) to 70Hz (30–100Hz) wide. Of course, definitions
of the classical frequency bands vary widely (Newson and
Thiagarajan, 2018) and each of are sometimes sub-divided into
two or more sub-bands, but the general rule remains: the higher
the frequency, the broader the band. The clear consequence of
this is that the frequency bands, however many of them there are,
are clustered in the lower part of the frequency range and this
means that linear frequency scales over-represent the very parts
of the time-frequency plane that are most sparsely populated
by distinct frequency bands. This relative lack of variation at
higher frequencies often appears on TFPs as a characteristic series
of narrow vertical stripes in the gamma range that represent
broad-spectrum, low amplitude oscillations

In some ways, TFPs with linear frequency scales are like
Mercator projection maps. The Mercator projection is a means
of representing the geography of the globe in two dimensions

FIGURE 1 | Different representations of 4s of randomly generated 1/f noise. Panel (A) shows the time-series of the noise. For illustrative purposes, the time series was

treated as a single epoch of EEG/MEG recorded during an even-related paradigm where the time from −1 to 0s was considered as a baseline period and the time

from 0 to 3s as the post-event period. Panel (B) shows the Fourier power spectrum of the noise (blue line) together with the theoretical 1/f power spectrum (red line).

Panel (C) shows a Morlet wavelet time-frequency decomposition of the 1/f noise with a conventional linear frequency scale. Panel (D) is the same as Panel (C) but

with an octave frequency scale. Panel (E) is the same a Panel (D) but showing signal amplitude instead of signal power. Panel (F) shows the signal amplitude at each

time and frequency as a percentage of the mean signal amplitude at that frequency in the baseline period (−1 to 0s).

and produces the standard world map that we are all familiar
with. Unfortunately, the Mercator projection is misleading in
important ways for whilst it preserves angle, thereby reproducing
the shape of the continents accurately, it massively distorts area.
For example, Greenland and Africa appear to be of similar size
when in reality Africa is 14 times larger. It also exaggerates
the relative size of Europe and gives it pride of place in the
middle of the map. As size is all too readily equated with
importance, the Mercator projection has often been accused
of bias, promoting a Euro-centric world view, colonialism and
even racism (Johnson, 2017). Like the Mercator projection,
linear frequency scales distort area by over-representing higher
frequencies at the expense of lower ones and this distortion
inevitably biases our perception of the relative contribution of
the different frequency components. Alternatives to theMercator
projection, such as the Peter’s Projection, correct the area bias
but at the cost of distorting shape. The fundamental problem, of
course, is that both theMercator and Peters projections and TFPs
are representations of reality and not reality itself; all models
are compromises.

So, how often are linear frequency scales used in TFPs? To
answer this question, I conducted a cursory search of original
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articles published in “Frontiers of Human Neuroscience” using
search terms “Time-frequency” or “wavelets” and identified 44
articles that included a TFP and, of these, nearly all (41 out
of 44 or 93%) used linear frequency scales although many
covered only a narrow frequency range where the bias between
the highest and lowest frequencies displayed would have been
relatively modest. There is no reason to think that “Frontiers in
Human Neuroscience” is unusual in this respect, nor is the use of
linear frequency scales restricted to journal articles. Indeed, linear
frequency scales appear to be the norm at scientific conferences
and are the default, and sometimes, the only option, in many
software packages. In short, linear frequency scales dominate the
TFP scene.

Having identified the bias, the solution is straightforward. As
EEG/MEG power is proportional to 1

f
, the total power between

any two frequency points, for f 6= 0, can be derived from
the integral,

∫

1
f
df = ln

∣

∣f
∣

∣ + c. It follows that we can achieve

a proportional relationship between frequency and power by
adopting a logarithmic scale. Unfortunately, logarithmic scales
are not intuitive to most users. A log10 scale, for example, would
cover the entire EEG frequency range in 3 steps (0, 1 and 2
for 1, 10, and 100Hz) and 2.5, 5, 10, 20, and 40Hz would be
represented by 0.4, 0.7, 1.0, 1.3, and 1.6, respectively. However,
octave scales, familiar from music, in which the relationships
between frequencies are represented as the base-2 logarithm of

the ratio of their frequencies, log2

(

f2
f1

)

, provide a natural fit to

the EEG and powers of 2 (1, 2, 4, 8, 16, 32, 64, etc.) involve
sequential doublings that are intuitive and easy to understand.
Furthermore, it has often been noted that the EEG frequency
bands naturally follow a logarithmic scale, with a base value of
about 2 although there is a dispute as to whether the base-value
is Euler’s number, e [2.7182 (Penttonen and Buzsáki, 2003)], the
Golden Ratio, ϕ, [1.6180 (Roopun et al., 2008; Pletzer et al.,
2010)] or 2 itself (Klimesch, 2013).

Figure 1 illustrates the effect of linear and octave scales on

EEG/MEG data. Figure 1A shows a random sample of 2000 data

points selected from a 1
f
power noise distribution (Little et al.,

2007) to represent 4 s of EEG/MEG recorded with a sampling rate

of 500Hz and scaled to RMS amplitude of 30 µV and Figure 1B

shows the power distribution of the data. Figure 1C shows a

Morlet wavelet time-frequency decomposition of the signal with
a linear scale. Note the characteristic series of narrow vertical

stripes in the gamma range that represent broad-spectrum low
amplitude oscillations and that the highest power regions occupy
a very narrow band at the bottom of the panel. Figure 1D shows

the same data on an octave scale and the advantages of this

format are immediately apparent: the high power changes at
low frequency are much more easily discernible and, although

the narrow vertical stripes in gamma are foreshortened, the
high frequency changes remain clearly visible. It is not that

“octave” scales are “right” and linear scales “wrong,” they are
both representations of reality, but octave scales produce a
more equitable distribution between signal power and frequency
range than linear scales and thereby reduce the bias toward
high frequencies.

There are, however, two objections to the use of octave scales
that should be considered. First, a researcher might claim that
they are only interested in a narrow range of frequencies or
a specific frequency band, not the broad-spectrum from 1 to
80Hz shown in Figure 1 and that, in such cases, the difference
between linear and octave scales is relatively unimportant. There
is some truth to this and many of the TFPs previously published
in “Frontiers in Human Neuroscience” have used a restricted
frequency range, presumably for this reason but some degree
of bias will remain. In addition, recent theoretical developments
suggest that event-related changes in the EEG/MEG involve co-
ordinated synchronization across a broad range of frequencies
(Burgess, 2012) and this, together with the increased awareness of
the importance of cross-frequency coupling (Canolty andKnight,
2010), suggest the EEG/MEG cannot be properly understood
by focusing on a narrow band of frequencies alone. From
this perspective, electing to present only a narrow range of
frequencies could look like “cherry picking” and becomes difficult
to justify.

The second objection, related to the first, is that if a broad-
spectrum frequency range is used, the power differential between
high and low frequencies means that changes in the higher
frequency ranges are obscured regardless of whether a linear
or an octave scale is used. Again, there is some truth to
this but there are also simple solutions. The color scales in
TFPs most commonly represent EEG/MEG power which is
positively skewed (lognormal distribution) so the plots tend to
be dominated by the colors representing low power with only a
few areas showing high power colors. Amplitude is less skewed
than power (amplitude =

√
power), so using color to represent

amplitude rather than power [ensures a greater color variation
across the TFP and reveals more detail (Figure 1E)].

Using amplitude goes some way to attenuating the differential
between high and low frequencies but the problem can be
completely overcome by normalizing the color scale for each
frequency. As EEG/MEG follows a 1

f
distribution, weighting

each time-frequency point in proportion to its frequency
might seem to be a suitable normalizing factor. Unfortunately,
this fails to take into account the poorer signal to noise
ratio seen at higher frequencies with the result that although
the 1

f
distribution is corrected, noise is disproportionately

amplified at higher frequencies. A more conventional approach
is shown in Figure 1F which displays the same data as
before but this time each pixel represents the percentage
change in amplitude based on the mean amplitude in a
defined baseline period (in this case, from −1 s to 0 s) at
that frequency. Using this simple transformation, a myriad of
small, high-frequency changes emerge that were not seen in the
previous plots.

The purpose of this opinion piece has been to point out an
important bias in the conventional visual representation of time-
frequency decompositions and to propose a few simple changes
to enhance the effectiveness of TFPs as aids in the interpretation
of EEG/MEG data. These changes are to use (i) broad-spectrum
frequency ranges, (iii) amplitude instead of power, (ii) frequency-
specific normalization of amplitude and, most importantly, (iii)
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octave frequency scales. TFPs are, after all, simply models of our
data and, as George Box’s aphorism has it, “All models are wrong
but some are useful” (Box, 1976) and we should do what we can
to enhance their usefulness.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

REFERENCES

Box, G.E. P. (1976). Science and statistics. J. Am. Stat. Assoc. 71, 791–799.

Burgess, A. P. (2012). Towards a unified understanding of event-related changes

in the EEG: the firefly model of synchronization through cross-frequency

phase modulation. PLoS ONE 7:e45630. doi: 10.1371/journal.pone.004

5630

Canolty, R. T., and Knight, R. T. (2010). The functional role of cross-

frequency coupling. Trends Cogn. Sci. 14, 506–515. doi: 10.1016/j.tics.2010.0

9.001

Johnson, A. (2017). US Schools to Get NewWorld Map After 500 Years of ’Colonial’

Distortion. Boston Globe 17 March.

Klimesch, W. (2013). An algorithm for the EEG frequency architecture of

consciousness and brain body coupling. Front. Hum. Neurosci. 7:766.

doi: 10.3389/fnhum.2013.00766

Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., and Ilmoniemi,

R. J. (2001). Long-range temporal correlations and scaling

behavior in human brain oscillations. J. Neurosci. 21, 1370–1377.

doi: 10.1523/JNEUROSCI.21-04-01370.2001

Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A., and Moroz, I.

M. (2007). Exploiting nonlinear recurrence and fractal scaling properties for

voice disorder detection. Biomed. Eng. Online 6:23. doi: 10.1186/1475-925

X-6-23

Newson, J. J., and Thiagarajan, T. C. (2018). EEG frequency bands in psychiatric

disorders: a review of resting state studies. Front. Hum. Neurosci. 12:521.

doi: 10.3389/fnhum.2018.00521

Penttonen, M., and Buzsáki, G. (2003). Natural logarithmic relationship

between brain oscillators. Thalamus Relat. Syst. 2, 145–152.

doi: 10.1016/S1472-9288(03)00007-4

Pletzer, B., Kerschbaum, H., and Klimesch, W. (2010). When frequencies never

synchronize: the golden mean and the resting EEG. Brain Res. 1335, 91–102.

doi: 10.1016/j.brainres.2010.03.074

Roopun, A. K., Kramer, M. A., Carracedo, L. M., Kaiser, M., Davies, C. H., Traub,

R. D., et al. (2008). Temporal interactions between cortical rhythms. Front.

Neurosci. 2, 145–154. doi: 10.3389/neuro.01.034.2008

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Burgess. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 4 June 2019 | Volume 13 | Article 212

https://doi.org/10.1371/journal.pone.0045630
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.3389/fnhum.2013.00766
https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001
https://doi.org/10.1186/1475-925X-6-23
https://doi.org/10.3389/fnhum.2018.00521
https://doi.org/10.1016/S1472-9288(03)00007-4
https://doi.org/10.1016/j.brainres.2010.03.074
https://doi.org/10.3389/neuro.01.034.2008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	How Conventional Visual Representations of Time-Frequency Analyses Bias Our Perception of EEG/MEG Signals and What to Do About It
	Author Contributions
	References


